首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The autosomal dominant cerebellar ataxias (ADCA) are clinically and genetically heterogeneous. To date, several loci (SCAI-V) have been identified for ADCA type I. We have studied two large families from the northern part of The Netherlands with ADCA type I with a broad intra-familial variation of symptoms. In both families significant linkage is shown of the disease to the markers of the SCA3 locus on chromosome 14. Through recombinations, the candidate region for SCA3 could be refined to a 13-cM range between D14S256 and D14S81. No recombinations were detected with the markers D14S291 and D14S280, which suggests that the SCA3 gene lies close to these loci. This finding will benefit the individuals at risk in these two families who are seeking predictive testing or prenatal diagnosis.  相似文献   

2.
The gene locus of Machado-Joseph disease (MJD) has recently been mapped within a 29-cM subregion of 14q chromosome. We did a linkage study of 24 multigenerational MJD Japanese pedigrees, in an attempt to narrow the candidate region of this gene. Pairwise and multipoint linkage analysis, together with haplotype segregation analysis, led to the conclusion that the MJD gene is located at the 6.8-cM interval between D14S256 and D14S81 (Zmax = 24.78, multipoint linkage analysis). D14S291 and D14S280, located at the center of this interval, showed no obligate recombination with the MJD gene (Zmax = 5.93 for D14S291 and 9.99 for D14S280). A weak, but significant, linkage disequilibrium of MJD gene was noted with D14S81 (P < .05) but not with D14S291 or D14S280. These results suggest that a 3.6-cM interval flanked by D14S291/D14S280 and D14S81 is the most likely location of the MJD gene and that it is closest to D14S81.  相似文献   

3.
The autosomal dominant cerebellar ataxias (ADCA) type I are a group of neurological disorders that are clinically and genetically heterogeneous. Two genes implicated in the disease, SCA1 (spinal cerebellar ataxia 1) and SCA2, are already localized. We have mapped a third locus to chromosome 14q24.3-qter, by linkage analysis in a non-SCA1/non-SCA2 family and have confirmed its existence in a second such family. We suggest designating this new locus “SCA3.” Combined analysis of the two families restricted the SCA3 locus to a 15-cM interval between markers D14S67 and D14S81. The gene for Machado-Joseph disease (MJD), a clinically different form of ADCA type I, has been recently assigned to chromosome 14q24.3-q32. Although the SCA3 locus is within the MJD region, linkage analyses cannot yet demonstrate whether they result from mutations of the same gene. Linkage to all three loci (SCA1, SCA2, and SCA3) was excluded in another family, which indicates the existence of a fourth ADCA type I locus.  相似文献   

4.
Myoclonus-dystonia (M-D) is an autosomal dominant disorder characterized by myoclonic and dystonic muscle contractions that are often responsive to alcohol. The dopamine D2 receptor gene (DRD2) on chromosome 11q has been implicated in one family with this syndrome, and linkage to a 28-cM region on 7q has been reported in another. We performed genetic studies, using eight additional families with M-D, to assess these two loci. No evidence for linkage was found for 11q markers. However, all eight of these families showed linkage to chromosome 7 markers, with a combined multipoint LOD score of 11.71. Recombination events in the families define the disease gene within a 14-cM interval flanked by D7S2212 and D7S821. These data provide evidence for a major locus for M-D on chromosome 7q21.  相似文献   

5.
A locus for Machado-Joseph disease (MJD) has recently been mapped to a 30-cM region of chromosome 14q in five pedigrees of Japanese descent. MJD is a clinically pleomorphic neurodegenerative disease that was originally described in subjects of Azorean descent. In light of the nonallelic heterogeneity in other inherited spinocere-bellar ataxias, we were interested to determine if the MJD phenotype in Japanese and Azorean pedigrees arose from mutations at the same locus. We provide evidence that MJD in five pedigrees of Azorean descent is also linked to chromosome 14q in an 18-cM region between the markers D14S67 and AACT (multipoint lod score +7.00 near D14S81). We also report molecular evidence for homozy-gosity at the MJD locus in an MJD-affected subject with severe, early-onset symptoms. These observations confirm the initial report of linkage of MJD to chromosome 14; suggest that MJD in Japanese and Azorean subjects may represent allelic or identical mutations at the same locus; and provide one possible explanation (MJD gene dosage) for the observed phenotypic heterogeneity in this disease.  相似文献   

6.
Autosomal dominant cerebellar ataxia type III (ADCA III) is a relatively benign, late-onset, slowly progressive neurological disorder characterized by an uncomplicated cerebellar syndrome. Three loci have been identified: a moderately expanded CAG trinucleotide repeat in the SCA 6 gene, the SCA 5 locus on chromosome 11, and a third locus on chromosome 22 (SCA 10). We have identified two British families in which affected individuals do not have the SCA 6 expansion and in which the disease is not linked to SCA 5 or SCA 10. Both families exhibit the typical phenotype of ADCA III. Using a genomewide searching strategy in one of these families, we have linked the disease phenotype to marker D15S1039. Construction of haplotypes has defined a 7.6-cM interval between the flanking markers D15S146 and D15S1016, thereby assigning another ADCA III locus to the proximal long-arm of chromosome 15 (SCA 11). We excluded linkage of the disease phenotype to this region in the second family. These results indicate the presence of two additional ADCA III loci and more clearly define the genetic heterogeneity of ADCA III.  相似文献   

7.
Autosomal dominant cerebellar ataxias (ADCAs) are a group of neurodegenerative disorders that are clinically and genetically heterogeneous. We report here a genetic linkage study, with five chromosome 12q markers, of three Martinican families with ADCA type I, for which the spinocerebellar ataxia 1 (SCA1) locus was excluded. Linkage to the SCA2 locus was demonstrated with a maximal lod score of 6.64 at = 0.00 with marker D12S354. Recombinational events observed by haplotype reconstruction demonstrated that the SCA2 locus is located in an approximately 7-cM interval flanked by D 12S 105 and D12S79. Using thez max-l method, multipoint analysis further reduced the candidate interval for SCA2 to a region of 5 cM. Two families shared a common haplotype at loci spanning 7 cM, which suggests a founder effect, whereas a different haplotype segregated with the disease in the third family. Finally, a mean anticipation of 12 ± 14 years was found in parent-child couples, with no parental sex effect, suggesting that the disease might be caused by an expanded and unstable triplet repeat.  相似文献   

8.
Machado-Joseph disease (MJD) is an autosomal dominant spinocerebellar degeneration originally described in families of Portuguese-Azorean ancestry. The hypothesis that its present world distribution could result from the spread of an original founder mutation has been raised. To test this possibility we have conducted a linkage disequilibrium study of markers segregating with the MJD1 locus in a total of 64 unrelated families of different geographical origins. Significant association was detected between the MJD1 locus and marker alleles at loci D14S280, D14S1050 and D14S81. All affected individuals, except one Chinese family, had allele 3 (237 bp) at D14S280. This finding is consistent with a founder effect in our MJD population. However, distinct haplotypes were observed in patients originating from the two Azorean islands showing the highest disease prevalence; therefore, the possible existence of more than one founder mutation can not be excluded with the markers currently available. Received: 27 February 1996 / Revised: 4 June 1996  相似文献   

9.
Cleidocranial dysplasia (CCD) is an autosomal dominant generalized bone dysplasia characterized by mild-to-moderate short stature, clavicular aplasia or hypoplasia, supernumerary and ectopic teeth, delayed eruption of secondary teeth, a characteristic craniofacial appearance, and a variety of other skeletal anomalies. We have performed linkage studies in five families with CCD, with 24 affected and 20 unaffected individuals, using microsatellite markers spanning two candidate regions on chromosomes 8q and 6. The strongest support for linkage was with chromosome 6p microsatellite marker D6S282 with a two-point lod score of 4.84 (theta = .03). Furthermore, the multipoint lod score was 5.70 in the interval between D6S282 and D6S291. These data show that the gene for autosomal dominant CCD is located within a 19-cM interval on the short arm of chromosome 6, between D6S282 and D6S291.  相似文献   

10.
Meckel-Gruber syndrome (MKS), the most common monogenic cause of neural tube defects, is an autosomal recessive disorder characterised by a combination of renal cysts and variably associated features, including developmental anomalies of the central nervous system (typically encephalcoele), hepatic ductal dysplasia and cysts, and polydactyly. Locus heterogeneity has been demonstrated by the mapping of the MKS1locus to 17q21-24 in Finnish kindreds, and of MKS2 to 11q13 in North African-Middle Eastern cohorts. In the present study, we have investigated the genetic basis of MKS in eight consanguineous kindreds, originating from the Indian sub-continent, that do not show linkage to either MKS1 or MKS2. We report the localisation of a third MKS locus ( MKS3) to chromosome 8q24 in this cohort by a genome-wide linkage search using autozygosity mapping. We identified a 26-cM region of autozygosity between D8S586 and D8S1108 with a maximum cumulative two-point LOD score at D8S1179 ( Z(max)=3.04 at theta=0.06). A heterogeneity test provided evidence of one unlinked family. Exclusion of this family from multipoint analysis maximised the cumulative multipoint LOD score at locus D8S1128 ( Z(max)=5.65). Furthermore, a heterozygous SNP in DDEF1, a putative candidate gene, suggested that MKS3 mapped within a 15-cM interval. Comparison of the clinical features of MKS3-linked cases with reports of MKS1- and MKS2-linked kindreds suggests that polydactyly (and possibly encephalocele) appear less common in MKS3-linked families.  相似文献   

11.
Blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) is an autosomal dominant malformation of the eyelids that may severely impair visual function. Chromosomal aberrations involving chromosomes 3q23, 3p25 and 7p34 have been reported in BPES but the disease gene has not been hitherto localized by linkage analysis. We have mapped a gene for BPES to chromosome 3q23 in a large French pedigree (Z max = 4.62 at =0 for probe AFM 182yc5 at locus D3S1549). The best estimate for the location of the disease gene is at locus D3S1549, between the loci D3S1292 and D3S1555 (maximum lod score of 5.10).  相似文献   

12.
Leukoencephalopathy with vanishing white matter (VWM) is an autosomal recessive disorder with normal early development and, usually, childhood-onset neurological deterioration. At present, diagnosis of VWM is based on clinical examination and the results of repeat magnetic resonance imaging and magnetic resonance spectroscopy, which show that, with time, increasing amounts of the cerebral white matter vanish and are replaced by cerebrospinal fluid. We have performed a genome linkage screening of a panel of 19 families of different ethnic origins. Significant linkage to chromosome 3q27 was observed in a 7-cM interval between markers D3S3730 and D3S3592, with a maximum multipoint LOD score of 5.1 calculated from the entire data set. The results of genealogical studies have suggested that seven parents in four Dutch families with VWM may have inherited an allele for the disease from a common ancestor who lived at least eight generations ago. Analysis of these families provided further evidence for the localization of the gene for VWM to 3q27. The patients shared a haplotype spanning 5 cM between markers D3S1618 and D3S3592. In one family of a different ethnic background, the patient had, in the same region, homozygosity for 13 consecutive markers spanning at least 12 cM, suggesting consanguinity between the parents. A healthy sibling of this patient had the same homozygous haplotype, which suggests that the healthy sibling is presymptomatic for the disease.  相似文献   

13.
Brachydactyly type B (BDB), an autosomal dominant disorder, is the most severe of the brachydactylies and is characterized by hypoplasia or absence of the terminal portions of the index to little fingers, usually with absence of the nails. The thumbs may be of normal length but are often flattened and occasionally are bifid. The feet are similarly but less severely affected. We have performed a genomewide linkage analysis of three families with BDB, two English and one Portugese. The two English families show linkage to the same region on chromosome 9 (combined multipoint maximum LOD score 8.69 with marker D9S257). The 16-cM disease interval is defined by recombinations with markers D9S1680 and D9S1786. These two families share an identical disease haplotype over 18 markers, inclusive of D9S278-D9S280. This provides strong evidence that the English families have the same ancestral mutation, which reduces the disease interval to <12.7 cM between markers D9S257 and D9S1851 in chromosome band 9q22. In the Portuguese family, we excluded linkage to this region, a result indicating that BDB is genetically heterogeneous. Reflecting this, there were atypical clinical features in this family, with shortening of the thumbs and absence or hypoplasia of the nails of the thumb and hallux. These results enable a refined classification of BDB and identify a novel locus for digit morphogenesis in 9q22.  相似文献   

14.
The spinocerebellar ataxia 3 locus (SCA3) for type I autosomal dominant cerebellar ataxia (ADCA type I), a clinically and genetically heterogeneous group of neuro-degenerative disorders, has been mapped to chromosome 14q32.1. ADCA type I patients from families segregating SCA3 share clinical features in common with those with Machado-Joseph disease (MJD), the gene of which maps to the same region. We show here that the disease gene segregating in each of three French ADCA type I kindreds and in a French family with neuropatho-logical findings suggesting the ataxochoreic form of dentatorubropallidoluysian atrophy carries an expanded CAG repeat sequence located at the same locus as that for MJD. Analysis of the mutation in these families shows a strong negative correlation between size of the expanded CAG repeat and age at onset of clinical disease. Instability of the expanded triplet repeat was not found to be affected by sex of the parent transmitting the mutation. Evidence was found for somatic and gonadal mosaicism for alleles carrying expanded trinucleotide repeats.  相似文献   

15.
We performed a genomewide search for linkage in an extended Dutch family with hereditary vascular retinopathy associated with migraine and Raynaud phenomenon. Patients with vascular retinopathy are characterized by microangiopathy of the retina, accompanied by microaneurysms and telangiectatic capillaries. The genome search, using a high throughput capillary sequencer, revealed significant evidence of linkage to chromosome 3p21.1-p21.3 (maximum pairwise LOD score 5.25, with D3S1578). Testing of two additional families that had a similar phenotype, cerebroretinal vasculopathy, and hereditary endotheliopathy with retinopathy, nephropathy, and stroke, revealed linkage to the same chromosomal region (combined maximum LOD score 6.30, with D3S1588). Haplotype analysis of all three families defined a 3-cM candidate region between D3S1578 and D3S3564. Our study shows that three autosomal dominant vasculopathy syndromes with prominent cerebroretinal manifestations map to the same 3-cM interval on 3p21, suggesting a common locus.  相似文献   

16.
Childhood absence epilepsy (CAE), a common form of idiopathic generalized epilepsy, accounts for 5%-15% of childhood epilepsies. To map the chromosomal locus of persisting CAE, we studied the clinical and electroencephalographic traits of 78 members of a five-generation family from Bombay, India. The model-free affected-pedigree member method was used during initial screening with chromosome 6p, 8q, and 1p microsatellites, and only individuals with absence seizures and/or electroencephalogram 3-4-Hz spike- and multispike-slow wave complexes were considered to be affected. Significant P values of .00000-.02 for several markers on 8q were obtained. Two-point linkage analysis, assuming autosomal dominant inheritance with 50% penetrance, yielded a maximum LOD score (Zmax) of 3.6 for D8S502. No other locus in the genome achieved a significant Zmax. For five smaller multiplex families, summed Zmax was 2.4 for D8S537 and 1.7 for D8S1761. Haplotypes composed of the same 8q24 microsatellites segregated with affected members of the large family from India and with all five smaller families. Recombinations positioned the CAE gene in a 3.2-cM interval.  相似文献   

17.
Mutations of MYO6 are associated with recessive deafness,DFNB37   总被引:10,自引:0,他引:10       下载免费PDF全文
Cosegregation of profound, congenital deafness with markers on chromosome 6q13 in three Pakistani families defines a new recessive deafness locus, DFNB37. Haplotype analyses reveal a 6-cM linkage region, flanked by markers D6S1282 and D6S1031, that includes the gene encoding unconventional myosin VI. In families with recessively inherited deafness, DFNB37, our sequence analyses of MYO6 reveal a frameshift mutation (36-37insT), a nonsense mutation (R1166X), and a missense mutation (E216V). These mutations, along with a previously published missense allele linked to autosomal dominant progressive hearing loss (DFNA22), provide an allelic spectrum that probes the relationship between myosin VI dysfunction and the resulting phenotype.  相似文献   

18.
To identify genetic loci for autism-spectrum disorders, we have performed a two-stage genomewide scan in 38 Finnish families. The detailed clinical examination of all family members revealed infantile autism, but also Asperger syndrome (AS) and developmental dysphasia, in the same set of families. The most significant evidence for linkage was found on chromosome 3q25-27, with a maximum two-point LOD score of 4.31 (Z(max )(dom)) for D3S3037, using infantile autism and AS as an affection status. Six markers flanking over a 5-cM region on 3q gave Z(max dom) >3, and a maximum parametric multipoint LOD score (MLS) of 4.81 was obtained in the vicinity of D3S3715 and D3S3037. Association, linkage disequilibrium, and haplotype analyses provided some evidence for shared ancestor alleles on this chromosomal region among affected individuals, especially in the regional subisolate. Additional potential susceptibility loci with two-point LOD scores >2 were observed on chromosomes 1q21-22 and 7q. The region on 1q21-22 overlaps with the previously reported candidate region for infantile autism and schizophrenia, whereas the region on chromosome 7q provided evidence for linkage 58 cM distally from the previously described autism susceptibility locus (AUTS1).  相似文献   

19.
Van der Woude syndrome (VWS) is an autosomal dominant craniofacial disorder characterized by lip pits, clefting of the primary or secondary palate, and hypodontia. The gene has been localized, by RFLP-based linkage studies, to region 1q32-41 between D1S65-REN and D1S65-TGFB2. In this study we report the linkage analysis of 15 VWS families, using 18 microsatellite markers. Multipoint linkage analysis places the gene, with significant odds of 2,344:1, in a 4.1-cM interval flanked by D1S245 and D1S414. Two-point linkage analysis demonstrates close linkage of VWS with D1S205 (lod score [Z] = 24.41 at theta = .00) and with D1S491 (Z = 21.23 at theta = .00). The results revise the previous assignment of the VWS locus and show in an integrated map of the region 1q32-42 that the VWS gene resides more distally than previously suggested. When information about heterozygosity of the closely linked marker D1S491 in the affected members of the VWS family with a microdeletion is taken into account, the VWS critical region can be further narrowed, to the 3.6-cM interval between D1S491 and D1S414.  相似文献   

20.
Peripheral neuropathy with or without agenesis of the corpus callosum (ACCPN) is a devastating neurodegenerative disorder that is transmitted as an autosomal recessive trait. Genealogical studies in a large number of affected French Canadian individuals suggest that ACCPN results from a single founder mutation. A genomewide search using 120 microsatellite DNA markers in 14 French Canadian families allowed the mapping of the ACCPN gene to a 5-cM region on chromosome 15q13-q15 that is flanked by markers D15S1040 and D15S118. A maximum two-point LOD score of 11.1 was obtained with the marker D15S971 at a recombination fraction of 0. Haplotype analysis and linkage disequilibrium support a founder effect. These findings are the first step in the identification of the gene responsible for ACCPN, which may shed some light on the numerous conditions associated with the progressive peripheral neuropathy or agenesis of the corpus callosum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号