首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we found that bis(allixinato)oxovanadium(IV) (VO(alx)(2)) exhibits a potent hypoglycemic activity in type 1-like diabetic mice. Since the enhancement of insulin sensitivity is involved in one of the mechanisms by which vanadium exerts its anti-diabetic effects, VO(alx)(2) was further tested in type 2 diabetes with low insulin sensitivity. The effect of oral administration of VO(alx)(2) was examined in obesity-linked type 2 diabetic KKA(y) mice. Treatment of VO(alx)(2) for 4 weeks normalized hyperglycemia, glucose intolerance, hyperinsulinemia, hypercholesterolemia and hypertension in KKA(y) mice; however, it had no effect on hypoadiponectinemia. VO(alx)(2) also improved hyperleptinemia, following attenuation of obesity in KKA(y) mice. This is the first example in which a vanadium compound improved leptin resistance in type 2 diabetes by oral administration. On the basis of these results, VO(alx)(2) is proposed to enhance not only insulin sensitivity but also leptin sensitivity, which in turn improves diabetes, obesity and hypertension in an obesity-linked type 2 diabetic animal.  相似文献   

2.
In order to find orally active Zn(II) complexes that can treat diabetes mellitus (DM) at low doses, four new Zn(II)-dithiocarbamate complexes with Zn(II)-sulfur coordination bonds were prepared and their in vitro insulinomimetic activity and in vivo anti-diabetic ability were evaluated. Among the Zn(II)-dithiocarbamate complexes, the bis(pyrrolidine-N-dithiocarbamate)zinc(II) (Zn(pdc)(2)) complex was found to be the most effective in terms of inhibiting free fatty acid-release and enhancing glucose-uptake in adipocytes. After oral administration of the Zn(pdc)(2) complex to KK-A(y) mice with obesity and type 2 DM, we observed that the high blood glucose levels in the mice were lowered from approximately 500 mg/dL to 350 mg/dL within 6 days, and the effect was maintained during the administration period. Also, indicators of insulin resistance such as serum insulin, leptin, and triglyceride levels were also reduced compared with those in untreated mice. Moreover, the Zn(pdc)(2) complex improved not only the hypertension in the mice, but also the adiponectin level in the serum. On the basis of the results, the Zn(pdc)(2) complex is proposed to improve hyperglycemia and insulin resistance in type 2 DM animals on daily oral administrations.  相似文献   

3.
4.
High blood glucose levels of KK-A(y) mice with type 2 diabetes mellitus were normalized by daily intraperitoneal (ip) administration of a zinc(II) complex, bis(maltolato)zinc(II) (Zn(Mal)(2)) with a Zn(O(4)) coordination mode, following the finding of strong in vitro insulinomimetic activity in isolated rat adipocytes treated with epinephrine in terms of the inhibition of free fatty acid release. The blood glucose level was maintained in the normal range during administration of the Zn(Mal)(2) complex for 14 days and improvements in the glucose tolerance were confirmed by an oral glucose tolerance test.  相似文献   

5.
Several metal ions and their complexes have been known to mimic the action of insulin in in vitro and in vivo systems. We prepared a family of Zn(II) complexes derived from amino ligands with Zn(Nn) (n=3 and 4) coordination modes, the insulinomimetic activity being estimated by an inhibitory effect of free fatty acid release from isolated rat adipocytes treated with epinephrine. In comparison with the positive controls VOSO(4) and ZnSO(4), Zn(II)-amine complexes with stability constants (log beta) lower than 11.5 exhibited higher insulinomimetic activities. Among them, a bis(2-aminomethyl pyridinato)Zn(II) (Zn(2-ampy)(2)(2+)) complex with the highest insulinomimetic activity and a higher stability constant but lower than 11.5 was selected, and subjected to in vivo evaluation in KK-A(y) mice with a genetically type 2 diabetes mellitus. The high blood glucose level of the mice was lowered by daily intraperitoneal injections of Zn(2-ampy)(2)(2+) at a dose of 2 mg Zn/kg body weight for 14 days. Based on the results, Zn(2-ampy)(2)(2+) with Zn(N(4)) coordination mode was proposed to have both a high in vitro insulinomimetic activity and an in vivo blood glucose lowering effect.  相似文献   

6.
During the investigation of the development of insulin-mimetic zinc(II) complexes with a blood glucose-lowering effect in experimental diabetic animals, we found a potent bis(maltolato)zinc(II) complex, Zn(ma)2, exhibiting significant insulin-mimetic effects in a type 2 diabetic animal model. By using this Zn(ma)2 as the leading compound, we examined the in vitro and in vivo structure–activity relationships of Zn(ma)2 and its related complexes. The in vitro insulin-mimetic activity of these complexes was determined by the inhibition of free fatty acid release and the enhancement of glucose uptake in isolated rat adipocytes treated with epinephrine. A new Zn(II) complex with allixin isolated from garlic, Zn(alx)2, exhibited the highest insulin-mimetic activity among the complexes analyzed. The insulin-mimetic activity of the Zn(II) complexes examined strongly correlated (correlation coefficient=0.96) with the partition coefficient (logP) of the ligand, indicating that the activity of Zn(ma)2-related complexes depends on the lipophilicity of the ligand. The blood glucose-lowering effects of Zn(alx)2 and Zn(ma)2 were then compared, and both complexes were found to normalize hyperglycemia in KK-Ay mice after a 14-day course of daily intraperitoneal injections. However, Zn(alx)2 improved glucose tolerance in KK-Ay mice much more than did Zn(ma)2, indicating that Zn(alx)2 possesses greater in vivo anti-diabetic activity than Zn(ma)2. In addition, Zn(alx)2 improved leptin resistance and suppressed the progress of obesity in type 2 diabetic KK-Ay mice. On the basis of these observations, we conclude that the Zn(alx)2 complex is a novel potent candidate for the treatment of type 2 diabetes mellitus.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00775-004-0590-8  相似文献   

7.
In developing new insulinomimetic zinc(II) complexes with different coordination structures and with a blood glucose-lowering effect to treat type 2 diabetic animals, we found a potent bis(maltolato)zinc(ll) complex, Zn(mal)2. Using the complex as the leading compound, we examined the in vitro and in vivo structure-activity relationships of Zn(mal)2 and its related complexes in respect to the inhibition of free fatty acids (FFA) release and the enhancement of glucose uptake in isolated rat adipocytes treated with epinephrine (adrenaline), and hypoglycemic activity. Among the compounds tested, a new Zn(II) complex with allixin that was isolated from garlic, bis(allixinato)Zn(II), Zn(alx)2, was found to exhibit the highest insulin-mimetic and hypoglycemic activities in type 2 KK-Ay diabetic mice. On the basis of the results, Zn(alx)2, complex was proposed to be a potent candidate for the treatment of type 2 diabetes.  相似文献   

8.
9.
The number of worldwide patients suffering from diabetes mellitus (DM) is forecasted to increase over time. The development of compounds without severe side effects for type 2 DM is required not only to treat DM but also to improve the quality of life (QOL) of patients. In this paper, we have described the synthesis of novel first transition metal complexes with S2O2 coordination mode and discussed their anti-diabetic activities. Di(1-oxy-2-pyridinethiolato)Zn complex (Zn(opt)2) with Zn(S2O2) coordination mode displayed higher insulin mimetic with anti-diabetic activity, compared to the ZnCl2 or clinically used medicine (pioglitazone). In addition, Zn(opt)2 improved the insulin and adiponectine levels in the plasma. The gastrointestinal absorption of the Zn complex was found to be higher than that of ZnCl(2). Based on these results, we propose that the Zn(opt)2 complex with Zn(S2O2) coordination mode is a novel candidate for the treatment of type 2 DM; through oral administration.  相似文献   

10.
Three zinc(II) complexes of picolinic acid and its derivatives with a Zn(N2O2) coordination mode were prepared and evaluated for their insulinomimetic activities by in vitro and in vivo studies. By introducing an electron-donating methyl group into the picolinate ligand (pic), bis(6- or 3-methylpicolinato)zinc(II) complexes [Zn(6-mpa)2 or Zn(3-mpa)2, respectively] were prepared. The Zn(6-mpa)(2) complex was crystallized as a water adduct [Zn(6-mpa)2(H2O)].H2O, in which two carboxylate oxygens and two pyridine nitrogens of 6-mpa and a water oxygen coordinate to a zinc(II) with a trigonal bipyramidal geometry. By in vitro evaluation of the inhibition of free fatty acid (FFA) release from isolated rat adipocytes in the presence of epinephrine, the insulinomimetic activities of Zn(pic)2, Zn(6-mpa)2, and Zn(3-mpa)2 (IC50=0.64 +/- 0.13, 0.31 +/- 0.05, and 0.40 +/- 0.07 mM, respectively) were found to be higher than those of VOSO(4) (IC50=1.00 mM) and ZnSO(4) (IC50=1.58 +/- 0.05 mM) in terms of IC50 value, the 50% inhibition concentrations for the FFA release from the adipocytes. Then, Zn(6-mpa)2, which exhibited the highest in vitro insulinomimetic activity among three complexes examined, was given at a dose of 3.0 mg (45.9 micromol) Zn/kg body weight to KK-A(y) mice with type 2 diabetes mellitus by daily intraperitoneal injections for 14 days and it was found that the hereditary high blood glucose levels were lowered during the administration of the complex. The improvement of diabetes mellitus was confirmed with the oral glucose tolerance test.  相似文献   

11.
Following observations that bis(3,5-diisopropylsalicylato)diaquazinc(II), [Zn(II)(3,5-DIPS)(2)(H(2)O)(2)], had anti-convulsant activity, bis(acetylsalicylate)diaquazinc(II), [Zn(II)(aspirinate)(2)(H(2)O)(2)], and the Zn(II) ternary 1,10-phenanthroline (phen), 2,9-dimethyl-1,10-phenanthroline (neocuproine, NC) or dimethyl sulfoxide (DMSO) complexes of Zn(II)3,5-diisopropylsalicylate, salicylate, and acetylsalicylate were synthesized and spectroscopically characterized. Anti-convulsant and Rotorod toxicity activities of these complexes were determined to examine their anti-convulsant and undesirable central nervous stimulant or depressant activities of these Zn(II) non-steroidal anti-inflammatory agent complexes. Bis(3,5-diisopropylsalicylato)-1,10-phenanthorlinezinc(II), [Zn(II)(3,5-DIPS)(2)(phen)], (1) has one bidentate phen ligand and two mono-deprotonated 3,5-DIPS ligands. One of the carboxylates bonds in an asymmetric chelating mode. The Zn(II) atom exhibits a distorted bicapped rectangular pyramidal environment N(2)O(2)OO (4+1+1 *). In the neocuproine complex, bis(3,5-diisopropylsalicylato)-2,9-dimethyl-1,10-phenanthorlinezinc(II), [Zn(II)(3,5-DIPS)(2)(NC)] (2), the Zn(II) atom has a much more distorted bicapped rectangular pyramidal environment, N(2)O(2)O(2) (4+2 *), compared to 1. The two carboxylate ligands exhibit the same asymmetric coordinating mode with longer metalloelement-oxygen bond distances compared to 1. The space group of [Zn(II)(aspirinate)(2)(H(2)O)(2)] (3), which has been reported as Cc is corrected to C2/c. The zinc atom exhibits a (4+2 *) bicapped square pyramidal environment. While the two ternary phenanthroline-containing complexes, 1 and 2, evidenced weak protection against maximal electroshock (MES)- and subcutaneous Metrazol (scMET) induced seizures, [Zn(II)(3,5-DIPS)(2)(DMSO)(2)], [Zn(II)(aspirinate)(2)(H(2)O)(2)], and bis(salicylato)-1,10-phenanthorlinezinc(II), [Zn(II)(salicylate)(2)(phen)], were found to be particularly useful in protecting against MES and scMET seizures and [Zn(II)(aspirinate)(2)(H(2)O)(2)] and [Zn(II)(salicylate)(2)(phen)] were found to have activity in protecting against Psychomotor seizures, without causing Rotorod toxicity. Activities of these and other Zn(II) complexes of non-steroidal anti-inflammatory agents are consistent with the well-known anti-inflammatory responses of Zn(II)-dependent enzymes. There was also some evidence of Rotorod toxicity consistent with a mechanism of action involving sedative-hypnotic activity of recognized anti-epilepticdrugs.  相似文献   

12.
A novel bis(6-ethylpicolinato)(H(2)O)oxovanadium(IV) complex (VO(6epa)(2) x (H(2)O)) was prepared and its structure was revealed by X-ray analysis (space group Pc(#7), a=10.838(2), b=11.148(5), c=16.642(3) A, and Z=2). Because VO(6epa)(2) x (H(2)O) exhibited higher in vitro insulinomimetic activity compared to that of vanadyl sulfate in terms of inhibition of free fatty acid (FFA) release from isolated rat adipocytes in the presence of epinephrine, its in vivo effect on whether the complex has a blood glucose normalizing effect was examined in KK-A(y) mice, a model animal of type 2 diabetes mellitus. VO(6epa)(2) x (H(2)O) was found to normalize the high blood glucose levels of KK-A(y) mice when given intraperitoneally at doses of 49 micromol/kg body weight for the first 4 days and then 39 micromol/kg body weight for 10 days. In addition, VO(6epa)(2) x (H(2)O) improved glucose tolerance ability as examined by the oral glucose test and seemed to have little toxicity in terms of serum parameters. VO(6epa)(2) x (H(2)O) showed higher normoglycemic activity than bis(6-methylpicolinato)oxovanadium(IV) (VO(6mpa)(2)) at the same dose. These results indicated that greater enhancement of the blood glucose normalizing effect in KK-A(y) mice by ethyl substitution compared to methyl substitution may be due to its being more strongly lipophilic.  相似文献   

13.
5-Fluoroorotic acid (H(3)FOro) is a potent inhibitor for some metalloproteins such as dihydroorotase and dihydroorotate dehydrogenase and for thymidylate synthase (nonmetalloprotein) in the human malaria parasite Plasmodium falciparum. To study the coordination chemistry of H(3)Foro, the ammonium salt [NH(4)(+)][H(2)FOro(-)].1H(2)O (1) and the first coordination compounds of H(3)FOro with transition metals [Ni(HFOro(2-))(H(2)O)(4)].1H(2)O (2), [Cu(HFOro(2-))(NH(3))(H(2)O)](n) (3) and [Cu(3)(FOro(3-))(2)(NH(3))(6)(H(2)O)(2)] (4) have been synthesised and characterised by single-crystal X-ray diffraction, IR spectroscopy and by thermogravimetry. Three different coordination modes of 5-fluoroorotic acid have been established. In all cases the ligand is chelated to the metal via an amido-nitrogen and a carboxylate-oxygen but for (3), there is also a carboxylate oxygen from another HFOro(2-) ligand resulting in a polymeric structure and for (4), the second amido-nitrogen in the ororotic acid ring coordinates to give a trinuclear complex. The metal coordination polyhedra are octahedral in (2), square-pyramidal in (3) and square-planar and approximately square-pyramidal in (4). An octahedral coordination geometry including a N(1)/O(61)-chelating HFOro(2-) ligand with four aqua ligands is proposed for the Zn complex [Zn(HFOro(2-)) (H(2)O)(4)].0.5H(2)O (5), based on IR and thermogravimetric data. Extensive hydrogen bonded networks and some ring-ring stacking interactions are observed in each of the structures.  相似文献   

14.
Twelve zinc(II) complexes with thiosemicarbazone and semicarbazone ligands were prepared and characterized by elemental analysis, thermogravimetric and differential thermal analysis (TG/DTA), FT-IR and 1H and 13C NMR spectroscopy. Seven three-dimensional structures of zinc(II) complexes were determined by single-crystal X-ray analysis. Their antimicrobial activities were evaluated by MIC against four bacteria (B. subtilis, S. aureus, E. coli and P. aeruginosa), two yeasts (C. albicans and S. cerevisiae) and two molds (A. niger and P. citrinum). The 5- and 6-coordinate zinc(II) complexes with a tridentate thiosemicarbazone ligand (Hatsc), ([Zn(atsc)(OAc)](n) 1, [Zn(Hatsc)(2)](NO(3))(2).0.3H(2)O 2, [ZnCl(2)(Hatsc)] 3 and [Zn(SO(4))(Hatsc)(H(2)O)].H(2)O 4 [Hatsc=2-acetylpyridine(thiosemicarbazone)]), showed antimicrobial activities against test organisms, which were different from those of free ligands or the starting zinc(II) compounds. Especially, complex 2 showed effective activities against P. aeruginosa, C. albicans and moderate activities against S. cerevisiae and two molds. These facts are in contrast to the results that the 5- or 6-coordinate zinc(II) complexes with a tridentate 2-acetylpyridine-4N-morpholinethiosemicarbazone, ([Zn(mtsc)(2)].0.2EtOH 5, the previously reported catena-poly [Zn(mtsc)-mu-(OAc-O,O')](n) and [Zn(NO(3))(2)(Hmtsc)] [Hmtsc=2-acetylpyridine (4N-morpholyl thiosemicarbazone)]), showed no activities against the test microorganisms. The 5- and 6-coordinate zinc(II) complexes with a tridentate 2-acetylpyridinesemicarbazone, ([Zn(OAc)(2)(Hasc)] 6 and [Zn(Hasc)(2)](NO(3))(2) 7 [Hasc=2-acetylpyridine(semicarbazone)]), showed no antimicrobial activities against bacteria, yeasts and molds. Complex [ZnCl(2)(Hasc)] 8, which was isostructural to complex 3, showed modest activity against Gram-positive bacterium, B. subtilis. The 1:1 complexes of zinc(II) with pentadentate thiosemicarbazone ligands, ([Zn(dmtsc)](n) 9 and [Zn(datsc)](n) 10 [H(2)dmtsc=2,6-diacetylpyridine bis(4N-morpholyl thiosemicarbazone) and H(2)datsc=2,6-diacetylpyridine bis(thiosemicarbazone)]), did not inhibit the growth of the test organisms. On the contrary, 7-coordinate zinc(II) complexes with one pentadentate semicarbazone ligand and two water molecules, ([Zn(H(2)dasc)(H(2)O)(2)](OAc)(2).5.3H(2)O 11 and [Zn(H(2)dasc)(H(2)O)(2)](NO(3))(2).H(2)O 12 [H(2)dasc=2,6-diacetylpyridine bis(semicarbazone)]), showed modest to moderate activities against bacteria. Based on the X-ray structures, the structure-activity correlation for the antimicrobial activities was elucidated. The zinc(II) complexes with 4N-substituted ligands showed no antimicrobial activities. In contrast to the previously reported nickel(II) complexes, properties of the ligands such as the ability to form hydrogen bonding with a counter anion or hydrated water molecules or the less bulkiness of the 4N moiety would be a more important factor for antimicrobial activities than the coordination number of the metal ion for the zinc(II) complexes.  相似文献   

15.
Some new complexes of mefenamic acid with potentially interesting biological activity are described. The complexes of mefenamic acid [Mn(mef)(2)(H(2)O)(2)], 1, [Co(mef)(2)(H(2)O)(2)], 2, [Ni(mef)(2)(H(2)O)(2)], 3, [Cu(mef)(2)(H(2)O)](2), 4 and [Zn(mef)(2)], 5, were prepared by the reaction of mefenamic acid, a potent anti-inflammatory drug with metal salts. Optical and infrared spectral data of these new complexes are reported. Monomeric six-coordinated species were isolated in the solid state for Mn(II), Ni(II) and Co(II), dimeric five-coordinated for Cu(II) and monomeric four-coordinated for Zn(II). In DMF or CHCl(3) solution the coordination number is retained and the coordinated molecules of water are replaced by solvent molecules. The anti-oxidant properties of the complexes were evaluated using the 1,1-diphenyl-2-picrylhydrazyl, DPPH, free radical scavenging assay. The scavenging activities of the complexes were measured and compared with those of the free drug and vitamin C. We have explored their ability to inhibit soybean lipoxygenase, beta-glucuronidase and trypsin- induced proteolysis. The complex [Mn(mef)(2)(H(2)O)(2)] exhibits the highest antioxidant activity and the highest inhibitory effect against the soybean lipogygenase (LOX), properties that are not demonstrated by mefenamic acid. Their inhibitory effects on rat paw edema induced by Carrageenan was studied and compared with those of mefenamic acid. The complex [Zn(mef)(2)] exhibited a strong inhibitory effect at 0.1 mmol/Kg B.W. (81.5 +/- 1.3% inhibition), superior to the inhibition induced by mefenamic acid at the same dose (61.5 +/- 2.3% inhibition). Mefenamic acid and its metal complexes have been evaluated for antiproliferative activity in vitro against the cells of three human cancer cell lines: MCF-7 (human breast cancer cell line), T24 (bladder cancer cell line), A-549 (non-small cell lung carcinoma) and a mouse fibroblast L-929 cell line. The copper(II) complex displays against T24, MCF-7 and L-929 cancer cell lines, IC(50) values in a microM range similar to that of the antitumor drug cis-platin and they are considered for further stages of screening in vitro and/or in vivo as agents with potential antitumor activity.  相似文献   

16.
A new ligand N-salicyloyl-N'-o-hydroxythiobenzhydrazide (H2Sotbh) forms complexes [Mn(HSotbh)2], [Fe(Sotbh-H)(H2O)2], [M(Sotbh)] [M=Co(II), Cu(II) and Zn(II)] and [Ni(Sotbh)(H(2)O)2], which were characterized by various physico-chemical techniques. M?ssbauer spectrum of [Fe(Sotbh-H)(H2O)2] reveals the quantum admixture of 5/2 and 3/2 spin-states. Mn(II), Cu(II) and Ni(II) complexes were observed to inhibit the growth of tumor in vitro, whereas, Fe(III), Co(II), Zn(II) complexes did not. In vivo administration of Mn(II), Cu(II) and Ni(II) resulted in prolongation of survival of tumor bearing mice. Tumor bearing mice administered with Mn(II), Cu(II) and Ni(II) complexes showed reversal of tumor growth associated induction of apoptosis in lymphocytes. The paper discusses the possible mechanisms and therapeutic implication of the H2Sotbh and its metal complexes in tumor regression and tumor growth associated immunosuppression.  相似文献   

17.
Synthesis and crystal structure of two Zn(II) dimer complexes with 1-methylcytosine (1-MeC) are reported. In complex [Zn(2)Cl(4)(mu-1-MeC-O2,N3)(2)] (1), two 1-MeC ligands are bridging two ZnCl(2) moieties. In [Zn(2)(1-MeC-N3)(4)(mu-SO(4))(2)].2H(2)O (2), the sulfates act as bridging ligands and 1-MeC are linked via N3 to Zn(II) as terminal ligands. Both complexes represent the first examples of Zn(II)-pyrimidine dimers. The potential biological significance of 1 and 2 is discussed.  相似文献   

18.
In this work we present the synthesis and structural and spectroscopic characterization of Cu(II), Co(II) and Zn(II) coordination compounds with the antibiotic metronidazole ([double bond]emni). Coordination to metal ions is through its imidazolic nitrogen, while the hydroxyethyl and nitro groups act as supramolecular synthons. [Co(emni)(2)Br(2)], and [Zn(emni)(2)X(2)] (X(-)=Cl, Br) stabilize zig-zag chains, and a 2D supramolecular structure is formed by inter-chain contacts through inter-molecular hydrogen-bonding. Pleated sheet or layers are formed by [Co(emni)(2)Cl(2)] and [Cu(emni)(2)Cl(H(2)O)](2)Cl(2), respectively. The dinuclear Cu(II) compound [Cu(emni)mu(O(2)CMe)(2)](2) gives a one-dimensional zig-zag arrangement. The contribution of metal ions in metronidazole coordination compounds is shown in the stabilization of the different aggregate structures.  相似文献   

19.
Solution speciation (stoichiometry and stability constants) of the insulin mimetic Zn(II) complexes of several bidentate ligands with (O,O), (N,O) or (S,O) coordination modes have been determined by pH-metry at 25 degrees Celsius and I=0.2M (KCl). All ligands were found to coordinate in a bidentate way forming mono, bis and tris complexes, besides a mixed hydroxo bis complex ZnL(2)(OH) detected in the slightly basic pH range together with the tris complex. Relationships between the stability data, lipophilicity of the complexes and earlier biological data are evaluated. The validity of the linear free energy relationships (LFER) between the proton and Zn(II) complexes and also between the VO(IV) and Zn(II) complexes is tested.  相似文献   

20.
The coordination chemistry of the 2-His-1-carboxylate facial triad mimics 3,3-bis(1-methylimidazol-2-yl)propionate (MIm(2)Pr) and 3,3-bis(1-ethyl-4-isopropylimidazol-2-yl) propionate (iPrEtIm(2)Pr) towards ZnCl(2) was studied both in solution and in the solid state. Different coordination modes were found depending both on the stoichiometry and on the ligand that was employed. In the 2:1 ligand-to-metal complex [Zn(MIm(2)Pr)(2)], the ligand coordinates in a tridentate, tripodal N,N,O fashion similar to the 2-His-1-carboxylate facial triad. However, the 1:1 ligand-to-metal complexes [Zn(MIm(2)Pr)Cl(H(2)O)] and [Zn(iPrEtIm(2)Pr)Cl] were crystallographically characterized and found to be polymeric in nature. A new, bridging coordination mode of the ligands was observed in both structures comprising N,N-bidentate coordination of the ligand to one zinc atom and O-monodentate coordination to a zinc second atom. A rather unique transformation of pyruvate into oxalate was found with [Zn(MIm(2)Pr)Cl], which resulted in the isolation of the new, oxalato bridged zinc coordination polymer [Zn(2)(MIm(2)Pr)(2)(ox)].6H(2)O, the structure of which was established by X-ray crystal structure determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号