首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The susceptibility of cytotoxic effector lymphocytes and their induction to in vivo or in vitro treatment with rabbit anti-neutral glycolipid ganglio-N-tetraosylceramide (anti-ASGM1) antiserum was investigated. Intravenous injection of anti-ASGM1 antiserum eliminated measurable natural killer (NK) cell activity in spleen cells of mice infected for 5 days with Vaccinia virus, or for 8 days with lymphocytic choriomeningitis virus (LCMV) if injected 24 hr prior to testing. In addition, this treatment lowered measurable virus-specific cytotoxic T cell activity by 60 to 95%. Virus-specific cytotoxic T cell and NK cell activity generated during a primary infection in vivo was also sensitive to treatment in vitro with anti-ASGM1 antiserum (1/300 to 1/600 dilution) plus rabbit complement at a dilution of 1/15 (20 to 50% cell death, more than 30-fold decrease of cytotoxic activity); in vitro treatment with rabbit complement alone often enhanced NK and cytotoxic T cell activity slightly. In vivo treatment with anti-ASGM1 before primary immunization decreased generation of primary CTL only if high doses of anti-ASGM1 antiserum were injected twice. Antiviral T cells generated during secondary stimulation in vitro and alloreactive cytotoxic T cells from a mixed lymphocyte culture were resistant to treatment in vitro with anti-ASGM1 plus complement at the end of the culture period. Treatment in vitro of in vivo-primed responder spleen cells with anti-ASGM1 plus complement before their addition to a secondary restimulation culture resulted in complete inhibition of a secondary antiviral cytotoxic T cell response. In vivo treatment with anti-ASGM1 24 hr before their spleen cells were harvested and restimulated in vitro significantly reduced the virus-specific T cell activity of mice that had been immunized with virus several weeks previously. A cloned T cell line exclusively exerting NK-like activity was resistant, and two cloned virus-specific cytotoxic T cell lines were susceptible to treatment with anti-ASGM1 plus complement in vitro. These results caution the general use of rabbit anti-ASGM1 as a marker to distinguish NK from CTL cells; they indicate a possible relationship between NK and CTL cells and suggest that in vitro culture of lymphocytes may alter or select the cell surface expression or availability of the ASGM1 marker(s).  相似文献   

2.
By using rabbit antiserum to a glycolipid, ganglio-n-tetraosylceramide (ASGM1), the accessory effect of natural killer (NK) cells on the generation of alloimmune CTL in mice was investigated. When normal C3H/He mice were immunized with C57BL/6 or BALB/c spleen cells, they generated alloimmune CTL with a surface marker phenotype of Thy-1+ Lyt-1-2+ ASGM1-, preceded by early augmentation of cytotoxic activity of NK cells with a Thy-1-Lyt-1-2-ASGM1+ phenotype. Administration of anti-ASGM1 (10 microliters) in mice resulted in a complete depletion of NK activity and ASGM1+ cells in the spleen even 1 day after injection, but no changes in the proportions of T (Thy-1+) cells and their Lyt-1 and Lyt-2 subsets as revealed by an immunofluorescence analyzer (FACS) and phagocytic cells. When these anti-ASGM1-treated mice were immunized with allogeneic cells, they showed neither augmented NK activity nor generation of alloimmune CTL, and spleen cells isolated from these anti-ASGM1-treated mice produced no CTL response to alloimmunization in vitro. Normal spleen cells treated with the antiserum and complement in vitro also showed a complete NK depletion without any deterioration of T cells and their Lyt-1 and Lyt-2 subsets, and when stimulated with allogeneic cells they generated no CTL. Spleen NK (ASGM1+) cells were purified by Percoll-gradient centrifugations followed by complement-dependent killing of T cells with the use of anti-Thy-1 monoclonal antibody, and were further purified by panning methods with anti-ASGM1, giving a preparation consisting of greater than 90% ASGM1+, Ly-5+ cells, and less than 0.5% of Thy-1+, Lyt-1+, and Lyt-2+ cells. These purified ASGM1+ Thy-1- cells alone generated no alloimmune CTL in response to alloantigens, suggesting that ASGM1+ NK cells contained no precursors of alloimmune CTL. When added into NK-depleted spleen cells, they restored the normal alloimmune CTL response of the spleen cells, indicating that ASGM1+ fractions contained cells to provide an accessory function for CTL generation. Lyt-1+ cells purified by panning methods did not restore the CTL response of NK-depleted spleen cells. These results indicate that ASGM1+ NK cells, but not Lyt-1+ helper T cells contaminating ASGM1+ fractions at undetectable levels, are responsible for the accessory function. When these purified ASGM1+ Thy-1- cells were stimulated with allogeneic cells, they produced IL 2 and IFN.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
(C57BL/6 x DBA/2)F1 mice transplanted with parental C57BL/6 spleen cells become splenic chimeras, show donor antihost cytotoxic T cell activity, and lose their T cell-mediated, humoral, and natural immunity. Injection of anti-asialo-GM1 (ASGM1) into transplanted mice strongly suppresses splenic cytotoxic activity and causes a significant reduction of spleen cells expressing ASGM1, Thy-1, and Lyt-2. In vitro treatment of spleen cells from transplanted mice with antibody and complement shows that the cytotoxic effector cells are ASGM1+, Thy-1+, Lyt-2+, L3T4-, NK1.1-, and H-2d-, hence of donor origin. The cytotoxic effector cells are specific for H-2d targets and lack NK activity. In an attempt to explore whether in vivo elimination of the cytotoxic effector cells has any influence on splenic chimerism or humoral immunity, F1 mice injected with parental splenocytes were treated with anti-ASGM 1. Results show that this treatment eliminates a substantial proportion of cytotoxic effector cells but has no effect on splenic chimerism or restoration of humoral immunity. It therefore appears that cytotoxic effector cells are not primarily responsible for induction of chimerism or suppression of humoral immunity. In support of this injection of parental spleen cells with the nu/nu mutation induces killer cells in F1 mice but fails to induce splenic chimerism or immunosuppression. In contrast, injection of parental spleen cells with the bg/bg mutation generates both splenic chimerism and suppression of humoral immunity although their ability to generate cytotoxic effector cells in F1 hosts is seriously impaired and comparable to the cytotoxic potential of C57BL/6 nu/nu cells. It is concluded that the ASGM1 + cytotoxic T cells are not primarily responsible for splenic chimerism and suppression of humoral immunity and that the two effects are likely caused by parental cells with a different phenotype and function.  相似文献   

4.
Aberrant T cells in beige mutant mice   总被引:2,自引:0,他引:2  
Cytotoxic T lymphocyte (CTL) morphology and function was examined in beige (bg/bg) mutant mice during infection with lymphocytic choriomeningitis virus (LCMV). Virus-specific, class I-restricted CTL activity mediated by total spleen leukocytes isolated from bg/+ or +/+ mice on days 7 or 9 postinfection with LCMV was moderately higher than that mediated by spleen cells isolated from bg/bg mice. The CTL generated in bg/bg mice had aberrant morphology. Lyt-2+ cells isolated from bg/+ or +/+ mice had typical large granular lymphocyte (LGL) morphology and contained numerous small azurophilic granules, whereas Lyt-2+ cells isolated from bg/bg mice contained only one or two large atypical granules in their cytoplasm. Aberrant LGL morphology correlated with reduced lytic capacity. The bg/bg CTL were inefficient killer cells mediating, on a per cell basis, only one fourth of the lysis mediated by bg/+ CTL. The bg/bg mice appeared to mount a compensatory response to regulate virus replication, because frequencies of Lyt-2+ cells and cells that specifically bound to virus-infected target cells were elevated as compared with their frequencies in bg/+ mice. The higher proportion of the CTL phenotype cells appeared to be a consequence of expanded proliferation of Lyt-2+ cells. These results demonstrate that, in comparison with bg/+ and +/+ mice, bg/bg mice have CTL with reduced lytic capacities, but may compensate during virus infection by expanding the number of these cells. Furthermore, these data suggest that the depressed lytic activity may be a consequence of aberrant granule formation.  相似文献   

5.
The question of whether virus-induced immunosuppression includes the antibody response against the infecting virus itself was evaluated in a model situation. Transgenic mice expressing the T-cell receptor (TCR) specific for peptide 32-42 of lymphocytic choriomeningitis virus (LCMV) glycoprotein 1 presented by Db reacted with a strong transgenic cytotoxic T-lymphocyte (CTL) response starting on day 3 after infection with a high dose (10(6) PFU intravenously [i.v.]) of the WE strain of LCMV (LCMV-WE); LCMV-specific antibody production in the spleen was suppressed in these mice. Low-dose (10(2) PFU i.v.) infection resulted in an antiviral antibody response comparable to that of the transgene-negative littermates. The induction of suppression of LCMV-specific antibody responses was specifically mediated by CD8+ TCR transgenic CTLs, since the LCMV-8.7 variant virus (which is not recognized by transgenic TCR-expressing CTLs because of a point mutation) did not induce suppression. In addition, treatment with CD8 monoclonal antibody in vivo abrogated suppression. Once suppression had been established, it was found to be nonspecific. The abrogation of antibody responses depended on the relative kinetics of the antibody response involved and the kinetics of the anti-LCMV CTL response. Analysis of T- and B-cell subpopulations showed no significant changes, but immunohistochemical analysis of spleens revealed extensive destruction of follicular organization in lymphoid tissue by day 4 in transgenic mice infected with LCMV-WE but not in those infected with the CTL escape mutant LCMV-8.7. Impairment of antigen presentation rather than of T or B cells was also suggested by adoptive transfer experiments, showing that transferred infected macrophages may improve the anti-LCMV antibody response in LCMV-immunosuppressed transgenic recipients; also, T and B cells from suppressed transgenic mice did respond in irradiated and virus-infected nontransgenic mice with antibody formation to LCMV. Such virus-triggered, T-cell-mediated immunopathology causing the suppression of B cells and of protective antibody responses, including those against the infecting virus itself, may permit certain viruses to establish persistent infections.  相似文献   

6.
During virus infection, exogenous IL-4 strongly downregulates expression of antiviral cytokines and cytotoxic T lymphocyte (CTL) responses. In this study, we have employed a T cell receptor (TCR) transgenic system to more closely investigate the effect of IL-4 on CTL activity. This system involves mice transgenic for an H2-Kb restricted TCR recognising an ovalbumin (OVA)-specific peptide (OT-I mice), and recombinant vaccinia viruses expressing the gene for OVA (VV-OVA), or OVA together with IL-4 (VV-OVA-IL-4). Spleen cells from OT-I mice were adoptively transferred to irradiated C57BL/6 mice infected with VV-OVA or VV-OVA-IL-4. Five days following transfer, markedly stronger CTL activity was detected in VV-OVA- than in VV-OVA-IL-4-infected recipients. The reduction in CTL activity was associated with a reduction in the number of OVA-specific CD8+ T cells. Proliferation of cells from VV-OVA-IL-4-infected recipients was dramatically reduced, and this is a likely explanation for the IL-4-mediated reduction in the total number of OVA-specific cells and the reduced cytotoxic activity. On a per cell basis, the production of IFNgamma and cytotoxic activity of OVA-specific CD8+ cells was not influenced by IL-4. Taken together, our results indicate that the reduction in CTL activity by exogenous IL-4 is due to a reduced number of antigen-specific effectors, and does not involve a downregulation of effector function of these cells.  相似文献   

7.
The present study determines the Ly phenotype of T cells mediating tumor cell rejection in vivo and investigates some of cellular mechanisms involved in the in vivo protective immunity. C3H/HeN mice were immunized to syngeneic X5563 plasmacytoma by intradermal (i.d.) inoculation of viable X5563 tumor cells, followed by the surgical resection of the tumor. Spleen cells from these immune mice were fractionated by treatment with anti-Lyt antibodies plus complement, and each Lyt subpopulation was tested for the reconstituting potential of in vivo protective immunity in syngeneic T cell-depleted mice (B cell mice). When C3H/HeN B cell mice were adoptively transferred with Lyt-1-2+ T cells from the above tumor-immunized mice, these B cell mice exhibited an appreciable cytotoxic T lymphocyte (CTL) response to the X5563 tumor, whereas they failed to resist the i.d. challenge of X5563 tumor cells. In contrast, the adoptive transfer of Lyt-1+2- anti-X5563 immune T cells into B cell mice produced complete protection against the subsequent tumor cell challenge. Although no CTL or antibody response against X5563 tumors was detected in the above tumor-resistant B cell mice, these mice were able to retain Lyt-1+2- T cell-mediated delayed-type hypersensitivity (DTH) responses to the X5563 tumor. These results indicate that Lyt-1+2- T cells depleted of the Lyt-2+ T cell subpopulation containing CTL or CTL precursors are effective in in vivo protective immunity, and that these Lyt-1+2- T cells implement their in vivo anti-tumor activity without inducing CTL or antibody responses. The mechanism(s) by which Lyt-1+2- T cells function in vivo for the implementation of tumor-specific immunity is discussed in the context of DTH responses to the tumor-associated antigens and its related Lyt-1+2- T cell-mediated lymphokine production.  相似文献   

8.
This study establishes assay systems for helper T cell activities assisting cytotoxic T lymphocyte (CTL) and antibody responses to tumor-associated antigens (TAA) and demonstrates the existence of TAA that induce preferentially anti-TAA CTL helper and B cell helper T cell activities in two syngeneic tumor models. C3H/HeN mice were immunized to the syngeneic X5563 plasmacytoma or MH134 hepatoma. Spleen cells from these mice were tested for anti-TAA helper T cell activity capable of augmenting anti-trinitrophenyl(TNP) CTL and anti-TNP antibody responses from anti-TNP CTL and B cell precursors (responding cells) by stimulation with TNP-modified X5563 or MH134 tumor cells. The results demonstrate that cultures of responding cells plus 85OR X-irradiated tumor-immunized spleen cells (helper cells) failed to enhance anti-TNP CTL or antibody responses when in vitro stimulation was provided by either unmodified tumor cells or TNP-modified syngeneic spleen cells (TNP-self). In contrast, these cultures resulted in appreciable augmentation of anti-TNP CTL or antibody response when stimulated by TNP-modified tumor cells. Such anti-TAA helper activities were revealed to be Lyt-1+2- T cell mediated and TAA specific. Most interestingly, immunization with X5563 tumor cells resulted in anti-TAA helper T cell activity involved in CTL, but not in antibody responses. Conversely, TAA of MH134 tumor cells induced selective generation of anti-TAA helper T cell activity responsible for antibody response. These results indicate that there exists the qualitative TAA-heterogeneity as evidenced by the preferential induction of anti-TAA CTL- and B cell-helper T cell activities. The results are discussed in the light of cellular mechanisms underlying the preferential anti-TAA immune responses, and the interrelationship between various types of cell functions including CTL- and B cell-help.  相似文献   

9.
Intravenous injections of urea-denatured ovalbumin (UD-OA) into OA-primed high responder mice suppressed the antibody response not only to the priming antigen but also to subsequent immunization with dinitrophenyl derivatives of OA (DNP-OA). The transfer of normal spleen cells or OA-primed spleen cells into UD-OA-treated animals did not restore the capacity of responding to DNP-OA to form anti-DNP IgE and IgG antibodies. The transfer of splenic T cell fraction from the UD-OA-treated animals into normal syngeneic mice diminished both IgE and IgG antibody responses of the recipients to DNP-OA. The B cell-rich fraction from the same donors failed to affect the anti-hapten antibody response and enhanced anti-cancer (OA) IgG antibody response of the recipients. It was also found that the transfer of T cell-rich fraction of OA-primed spleen cells failed to suppress antibody response of the recipients to DNP-OA. The results indicated that spleen cells of UD-OA-treated mice contained suppressor T cells which are distinct from helper cells. Suppressive activity of T cells in the UD-OA treated animals was specific for OA. The transfer of the T cell-rich fraction failed to suppress anti-DNP antibody response of the recipients to DNP-KLH.  相似文献   

10.
Previous studies of the immunoregulatory activity of thymocytes from SJL/J mice have shown loss of suppressor activity for the antibody response by 24 weeks of age with appearance of helper activity. At the same time, suppressor cells developed which inhibit the generation of cytotoxic T lymphocytes (CTL). We now show a similar pattern of helper and suppressor activity in MRL/Mp mice. Presence of the lpr/lpr genotype significantly accelerated the onset of these changes in thymocyte activity. A similar pattern of thymocyte activity was not detected in C57B1/6 mice. In aged MRL-lpr mice, evidence of increased suppressor cell activity for the CTL response could be demonstrated in spleen, and the suppressor was sensitive to treatment with anti-thy 1.2 + complement. The magnitude of the deficiency in the CTL response in MRL-lpr mice was greater than could be accounted for by suppressor cell activity alone. Measurement of the frequency of CTL precursors (CTLP), the yield of CTL per CTLP, and the ability to produce and to respond to interleukin 2 (IL-2) indicated that a drop in CTLP frequency, subnormal generation of IL-2, and probably an intrinsic defect in the responsiveness of MRL-lpr CTLP to IL-2 was contributing to the defective CTL response. We were not able to link suppressor T cells with reduced responsiveness to IL-2. Ageing involves different patterns of change in immunoregulatory T-cell subsets in different strains of mice, depending on their genetic constitution. The general implications of this conclusion for prediction of immune dysfunction with age in genetically distinct members of an outbred population are discussed.  相似文献   

11.
BALB/c mice infected with the Woodruff variant of coxsackievirus group B type 3 (CVB3W) develop myocarditis mediated by autoimmune cytolytic T lymphocytes. A variant of CVB3W (designated H3-10A1) which infects the myocardium but induces minimal mortality of myocarditis compared to the parental virus was selected. Although H3-10A1 infections stimulate normal CTL responses to CVB3-infected myocytes, the autoimmune response to myocardial antigens is absent. Treatment of H3-10A1-infected mice with 50 mg of cyclophosphamide per kg of body weight, a treatment which preferentially eliminates suppressor cells, allows both the development of the autoimmune cytotoxic T-lymphocyte response and the expression of myocarditis. Similar treatment of CVB3W-infected mice had no effect on the disease. The presence of the immunoregulatory cells was confirmed by adoptive transfer of T lymphocytes from either H3-10A1 or CVB3W-infected donor mice into syngeneic CVB3W-infected recipients. Animals given H3-10A1-immune cells had minimal myocardial inflammation, while animals given CVB3W-immune lymphocytes developed enhanced cardiac disease. Elimination of the T-lymphocyte population from the donor cells prior to transfer abrogated suppression with the H3-10A1-immune population, showing that immunoregulation depended upon T lymphocytes. Both H3-10A1 and CVB3W have cross-reactive epitopes between the adenine translocator protein and the virion which are indicative of antigenic mimicry and may be the basis for the autoimmunity to cardiac antigens. These results suggest that immunoregulatory T cells may be primarily responsible for the nonpathogenicity of the H3-10A1 variant.  相似文献   

12.
Cytotoxic T lymphocytes (CTL) are critical effector cells in tumor immunity. Adoptive transfer therapy with in vitro-expanded tumor-specific CTL is a promising approach for preventing cancer metastasis and recurrence. Transferred CTL are not effective in clinical trials, however, due to inadequate tumor-infiltration. Therefore, the development of functionally modified CTL, such as tumor-targeting CTL, is widely desired. Here, we designed the tumor-targeting CTL expressing a single-chain antibody fragment (scFv-CTL) specific for vascular endothelial growth factor receptor 2 (VEGFR2/flk1) by transducing the CTL with a retroviral vector. The scFv-CTL bound to VEGFR2/flk1-expressing cells and retained their cytotoxic activity against tumor cells. In addition, adoptive transfer of scFv-CTL into tumor-bearing mice effectively suppressed tumor growth due to the augmented accumulation of the transferred CTL in the tumor tissue. These findings indicate that the creation of CTL capable of targeting tumor vascular endothelial cells by scFv-expression technique is considerably promising for improvement of efficacy in adoptive immunotherapy.  相似文献   

13.
Results of the preceding report demonstrated that in vivo treatment with monoclonal anti-I-A antibodies provided an effective means of prolonging the survival of murine tail skin allografts. The mechanism of antibody action was shown to include the activation of alloantigen-specific suppressor T cells (Ts), although the relationship between Ts expression and graft survival was not determined. This issue was addressed in the current studies through a kinetic analysis of suppressor and effector T cell responses in control and treated allograft recipients. Donor-specific delayed-type hypersensitivity (DTH) and cytotoxic T lymphocyte (CTL) responses were detectable in untreated A/J recipients of B10.A allografts 8 days after transplantation, rising to near maximum levels by day 12. Rejection in these animals occurred by day 11. In contrast, the predominant cellular response of anti-I-A treated animals for 12 days after transplantation was that of transferable suppression, DTH and CTL reactivity not being evident until day 15, coincident with the decay of Ts activity. Rejection in these animals was observed approximately 19 days post-transplant. CTL responsiveness in the latter group could not be reconstituted by the addition of antigen-presenting cells to the secondary in vitro culture system, nor was the CTL deficit due to antibody carry-over. It is considered that the altered expression of effector cell responses to graft alloantigens is due at least in part to the in vivo inhibition of helper T cell activity by anti-I-A-induced Ts, and that rejection in the treated host results from an eventual decline in the functional expression of this regulatory T cell subset.  相似文献   

14.
Natural killer (NK) cells were tested for their ability to suppress antigen-induced antibody responses in vitro. Asialo-GM1+ (ASGM1+) cells were prepared from nylon-wool-nonadherent spleen cells obtained from normal mice. After depletion of Ig+, L3T4+ and Lyt-2+ cells, the ASGM1+-enriched cell population had high NK activity which was abrogated by treatment with anti-ASGM1 and C'. This NK-enriched ASGM1+ cell fraction significantly suppressed the generation of antibody-producing cells when added to in vitro immunization cultures of primed spleen cells. Treatment of the NK-enriched cell population with anti-ASGM1 and C' abrogated the ability of these cells to suppress antibody responses. In vitro antibody production by purified B cells was also suppressed in the presence of the NK-enriched cell population, although the kinetics of the suppression differed from that observed with unfractionated spleen cells. In addition, the NK-enriched cell population suppressed the proliferation of the B cell line WEHI-279.1. Suppression of WEHI-279.1 cells was abrogated when the NK-enriched cell population was treated with anti-ASGM1 and C'. These results suggest that normal NK cells suppress the generation of antibody-producing B cells and that this occurs, at least in part, through a direct regulation of the B cell.  相似文献   

15.
Adoptive immunotherapy for treatment of cancers and infectious diseases is often hampered by a high degree of variability in the final T cell product and in the limited in vivo function and survival of ex vivo expanded antigen-specific cytotoxic T cells (CTL). This has stimulated interest in development of standardized artificial antigen presenting cells (aAPC) to reliably expand antigen specific CTL. However, for successful immunotherapy the aAPC ex vivo generated CTL must have anti-tumor activity in vivo. Here, we demonstrate that HLA-Ig based aAPC stimulated tumor-specific CTL from human peripheral blood T lymphocytes showed robust expansion and functional activity in a human/SCID mouse melanoma model. HLA-Ig based aAPC expanded CTL were detected in the peripheral blood up to 15 days after transfer. Non-invasive bioluminescence imaging of tumor bearing mice demonstrated antigen dependent localization of transferred CTL to the tumor site. Moreover, adoptive transfer of HLA-Ig based aAPC generated CTL inhibited the tumor growth both in prevention and treatment modes of therapy and was comparable to that achieved by dendritic cell expanded CTL. Thus, our data demonstrate potential therapeutic in vivo activity of HLA-Ig based aAPC expanded CTL to control tumor growth.  相似文献   

16.
The role of asialo GM1+ (ASGM1+) cells and exogenous IL-2 in the age-related decline in allospecific CTL activity was evaluated. Primary CTL were generated in mixed leukocyte culture (MLC) [BALB/cANN (H-2d) anti C57BL/6N (H-2b)] and tested for allospecific lytic activity against the EL-4 (H-2b) cell culture line, and for non-MHC-restricted activity against WEHI-3 (H-2d) and YAC-1 (H-2a). Cultures included responder cell populations which had been treated with antibody to ASGM1 plus complement or complement alone, and irradiated stimulator cells, in the presence or absence of rIL-2 or crude IL-2-containing supernatants. The amount of rIL-2 used to accommodate the age-related decline in IL-2 production was determined empirically to be 500 U by assessing IL-2 production in MLCs containing responder cells from young versus old animals. rIL-2 appeared to restore the allospecific CTL activity generated by spleen cells of old mice to the level of that of young. However, treatment with anti-ASGM1 antibody revealed that this restoration was due to an effect of the IL-2 on ASGM1+ cells. The allospecific target cells, EL-4, were not sensitive to lymphokine-activated killer (LAK) cells induced by IL-2 alone under the conditions used. It is suggested that the apparent restoration was due to increased LAK-like (or MHC-nonrestricted) activity mediated by an ASGM1+ cell in the CTL precursor population.  相似文献   

17.
Absence of CD4+ T cell help has been suggested as a mechanism for failed anti-tumor cytotoxic T lymphocytes (CTL) response. We examined the requirement for CD4+ T cells to eliminate an immunogenic murine fibrosarcoma (6132A) inoculated into the peritoneal cavity. Immunocompetent C3H mice eliminated both single and repeat intraperitoneal (IP) inoculums, and developed high frequency of 6132A-specific interferon-γ (IFNγ)-producing CTL in the peritoneal cavity. Adoptive transfer of peritoneal exudate cells (PEC) isolated from control mice, protected SCID mice from challenge with 6132A. In contrast, CD4 depleted mice had diminished ability to eliminate tumor and succumbed to repeat IP challenges. Mice depleted of CD4+ T cells lacked tumor-specific IFNγ producing CTL in the peritoneal cavity. Adoptive transfer of PEC from CD4 depleted mice failed to protect SCID mice from 6132A. However, splenocytes isolated from same CD4 depleted mice prevented tumor growth in SCID mice, suggesting that 6132A-specific CTL response was generated, but was not sustained in the peritoneum. Treating CD4 depleted mice with agonist anti-CD40 antibody, starting on days 3 or 8 after initiating tumor challenge, led to persistence of 6132A-specific IFNγ producing CTL in the peritoneum, and eliminated 6132A tumor. The findings suggest that CTL can be activated in the absence of CD4+ T cells, but CD4+ T cells are required for a persistent CTL response at the tumor site. Exogenous stimulation through CD40 can restore tumor-specific CTL activity to the peritoneum and promote tumor clearance in the absence of CD4+ T cells.Supported in part by grants from Children’s Hospital of Wisconsin Foundation, Society of University Surgeons Foundation, Florence and Marshall Schwid Foundation, Elsa Pardee Foundation, Kathy Duffy Fogarty Fund of the Greater Milwaukee Foundation (JS) and NIH grant RO1-CA-37156 (HS); Andrew Lodge and Ping Yu have contributed equally to this work.  相似文献   

18.
Previously we reported that as AKR.H-2b:Fv-1b mice become older than 9 wk of age they begin to specifically lose the ability to generate anti-AKR/Gross murine leukemia virus (MuLV) CTL responses after immunization and in vitro restimulation with cells expressing AKR/Gross MuLV-encoded Ag. Interestingly, the frequency of virus-specific precursor cytotoxic T lymphocytes (CTL) observed in moderately-aged AKR.H-2b:Fv-1b mice was not substantially decreased from that found in their young responder counterparts. To further investigate the mechanism(s) responsible for the inability of moderately-aged AKR.H-2b:Fv-1b mice to mount AKR/Gross MuLV-specific CTL responses, adoptive transfer experiments were performed in the present study. Transferring splenocytes from moderately-aged AKR.H-2b:Fv-1b donors into young AKR.H-2b:Fv-1b recipients resulted in inhibition of AKR/Gross MuLV-specific CTL responsiveness. Anti-Thy-1.1 plus complement depletion of T cells from the donor cell population before adoptive transfer resulted in a near complete restoration of AKR/Gross MuLV responsiveness of young recipient AKR.H-2b:Fv-1b mice suggesting that the inhibition observed in moderately aged mice was mediated by T lymphocytes. Additional experiments using depletion of T subsets before cell transfer demonstrated that inhibition of AKR/Gross MuLV-specific CTL responsiveness was mediated by a CD4-CD8+ T lymphocyte.  相似文献   

19.
The role of the immune system in promoting the midterm death of Mus caroli embryos transferred to the Mus musculus uterus was studied in vivo by transferring M. caroli blastocysts to recipients with altered immune status. Transfers of embryos to chimaeric mothers (Mus musculus in equilibrium Mus caroli), which were expected to be tolerant of species antigens, resulted in survival of M. musculus embryos but death of M. caroli embryos. The preferential survival of M. musculus embryos was explained by showing that M. musculus embryos can survive in the M. caroli uterus. Transfers to T cell-deficient mice of genotype nu/nu and to NK cell-deficient mice of genotype bg/bg as well as treatment of normal transfer recipients with Cyclosporin A or anti-Ia antiserum failed to prolong survival. However, immunization of recipients with M. caroli lymphocytes promoted more rapid and uniform failure of the interspecies pregnancy. Cytotoxic cells were detected in the resorbing embryos on Day 10.5 in immune pregnancies and on Day 12.5 in non-immune pregnancies and these cells were promiscuous in their pattern of lysis, showing equal reactivity against M. caroli, transfer recipient and 3rd party target cells. These experiments show that failure of M. caroli embryos in the M. musculus uterus is complex, but probably does not involve responses by classical cytotoxic T lymphocyte or natural killer cell pathways. Participation of the immune system in the resorption process, however, is confirmed and is associated with generation of promiscuous cytolytic cells.  相似文献   

20.
The present investigation was initiated to determine the mechanism by which 1,3-bis(2-chloro-ethyl)-1-nitrosourea (BCNU) treatment of tumor-bearing mice results in a high percentage of surviving mice which are resistant to subsequent homologous tumor challenge. Spleen cells from C57BL/6 mice bearing the syngeneic LSA ascites tumor failed to demonstrate significant tumor-specific cytotoxic T lymphocyte (CTL) activity when stimulated in vitro with irradiated tumor cells. This lack of CTL activity correlated with the presence and high activity of two types of CTL-regulatory suppressor T cells (Ts), tumor-specific Thy-1+, Lyt-1-2+ and tumor-nonspecific Thy-1+, Lyt-1+2+ cells, as demonstrated by a double-positive selection technique. In contrast, spleen cells from BCNU-treated tumor-bearing mice generated high tumor-specific CTL activity when stimulated in vitro with irradiated tumor cells. This CTL activity correlated with the lack of demonstrable tumor-specific Ts and greatly diminished tumor-nonspecific Ts activity. The tumor-specific helper activity of Thy-1+, Lyt-1+,2- cells was found to be similar in both BCNU-treated and untreated tumor-bearing mice. BCNU-treated mice that survived a primary LSA tumor challenge (referred to as BCNU-cured mice) resisted subsequent challenge with the homologous (LSA) but not with a heterologous syngeneic tumor (EL-4). However, rejection of a secondary challenge with LSA tumor by BCNU-cured mice was inhibited by adoptive transfer of spleen cells from either normal mice or mice bearing LSA tumors. Furthermore, LSA tumor cells that failed to evoke tumor-specific CTL activity in normal mice could induce high CTL activity in BCNU-cured mice. The present study suggests that, in addition to its direct tumoricidal activity, BCNU inhibits the induction of tumor-specific Ts, thereby explaining why a high percentage of mice survive a primary syngeneic tumor challenge after treatment with BCNU, and also resist subsequent rechallenge with the homologous tumor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号