首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F1 antigen (Caf1) of Yersinia pestis is assembled via the Caf1M chaperone/Caf1A usher pathway. We investigated the ability of this assembly system to facilitate secretion of full-length heterologous proteins fused to the Caf1 subunit in Escherichia coli. Despite correct processing of a chimeric protein composed of a modified Caf1 signal peptide, mature human interleukin-1beta (hIL-1beta), and mature Caf1, the processed product (hIL-1beta:Caf1) remained insoluble. Coexpression of this chimera with a functional Caf1M chaperone led to the accumulation of soluble hIL-1beta:Caf1 in the periplasm. Soluble hIL-1beta:Caf1 reacted with monoclonal antibodies directed against structural epitopes of hIL-1beta. The results indicate that Caf1M-induced release of hIL-1beta:Caf1 from the inner membrane promotes folding of the hIL-1beta domain. Similar results were obtained with the fusion of Caf1 to hIL-1beta receptor antagonist or to human granulocyte-macrophage colony-stimulating factor. Following coexpression of the hIL-1beta:Caf1 precursor with both the Caf1M chaperone and Caf1A outer membrane protein, hIL-1beta:Caf1 could be detected on the cell surface of E. coli. These results demonstrate for the first time the potential application of the chaperone/usher secretion pathway in the transport of subunits with large heterogeneous N-terminal fusions. This represents a novel means for the delivery of correctly folded heterologous proteins to the periplasm and cell surface as either polymers or cleavable monomeric domains.  相似文献   

2.
The chaperone/usher system is one of the best characterized pathways for protein secretion and assembly of cell surface appendages in Gram-negative bacteria. In particular, this pathway is used for biogenesis of the P pilus, a key virulence factor used by uropathogenic Escherichia coli to adhere to the host urinary tract. The P pilus individual subunits bound to the periplasmic chaperone PapD are delivered to the outer membrane PapC usher, which serves as an assembly platform for subunit incorporation into the pilus and secretion of the pilus fiber to the cell surface. PapC forms a dimeric, twin pore complex, with each monomer composed of a 24-stranded transmembrane β-barrel channel, an internal plug domain that occludes the channel, and globular N- and C-terminal domains that are located in the periplasm. Here we have used planar lipid bilayer electrophysiology to characterize the pore properties of wild type PapC and domain deletion mutants for the first time. The wild type pore is closed most of the time but displays frequent short-lived transitions to various open states. In comparison, PapC mutants containing deletions of the plug domain, an α-helix that caps the plug domain, or the N- and C-terminal domains form channels with higher open probability but still exhibiting dynamic behavior. Removal of the plug domain results in a channel with extremely large conductance. These observations suggest that the plug gates the usher channel closed and that the periplasmic domains and α-helix function to modulate the gating activity of the PapC twin pore.  相似文献   

3.
The F1 antigen of Yersinia pestis belongs to a class of non-pilus adhesins assembled via a classical chaperone-usher pathway. Such pathways consist of PapD-like chaperones that bind subunits and pilot them to the outer membrane usher, where they are assembled into surface structures. In a recombinant Escherichia coli model system, chaperone-subunit (Caf1M:Caf1n) complexes accumulate in the periplasm. Three independent methods showed that these complexes are rod- or coil-shaped linear arrays of Caf1 subunits capped at one end by a single copy of Caf1M chaperone. Deletion and point mutagenesis identified an N-terminal donor strand region of Caf1 that was essential for polymerization in vitro, in the periplasm and at the cell surface, but not for chaperone-subunit interaction. Partial protease digestion of periplasmic complexes revealed that this region becomes buried upon formation of Caf1:Caf1 contacts. These results show that, despite the capsule-like appearance of F1 antigen, the basic structure is assembled as a linear array of subunits held together by intersubunit donor strand complementation. This example shows that strikingly different architectures can be achieved by the same general principle of donor strand complementation and suggests that a similar basic polymer organization will be shared by all surface structures assembled by classical chaperone-usher pathways.  相似文献   

4.
The Yersinia pestis(causative agent of plague) capsule antigen is a homopolymer of Caf1 protein. Export of the subunits is mediated by the periplasmic chaperone Caf1M. To study the mechanism of Caf1M activity, two hybrid genes including coding sequences for the Caf1 signal peptide, human granulocyte–macrophage colony-stimulating factor (GM-CSF) or interleukin-1 (IL-1) receptor antagonist, and mature Caf1 were constructed and expressed in Escherichia coli.We have shown that in the absence of Caf1M the majority of Caf1 moieties within the hybrid proteins undergo proteolysis in the periplasmic space, presumably by the DegP protease. The coexpression of a gene for chaperone Caf1M significantly increased the amount of full-size hybrid proteins in the periplasm, probably as a result of stabilization of the subunit's spatial structure within the hybrid. This effect was not observed in JCB571 cells, which lack periplasmic disulfide isomerase DsbA, essential for Caf1M activity.  相似文献   

5.
Despite a high capacity for secretion of homologous proteins, the secretion of heterologous proteins by Bacillus subtilis is frequently inefficient. In the present studies, we have investigated and compared bottlenecks in the secretion of four heterologous proteins: Bacillus lichenifomis α-amylase (AmyL), Escherichia coli TEM β-lactamase (Bla), human pancreatic α-amylase (HPA), and a lysozyme-specific single-chain antibody. The same expression and secretion signals were used for all four of these proteins. Notably, all identified bottlenecks relate to late stages in secretion, following translocation of the preproteins across the cytoplasmic membrane. These bottlenecks include processing by signal peptidase, passage through the cell wall, and degradation in the wall and growth medium. Strikingly, all translocated HPA was misfolded, its stability depending on the formation of disulfide bonds. This suggests that the disulfide bond oxidoreductases of B. subtilis cannot form the disulfide bonds in HPA correctly. As the secretion bottlenecks differed for each heterologous protein tested, it is anticipated that the efficient secretion of particular groups of heterologous proteins with the same secretion bottlenecks will require the engineering of specifically optimized host strains.  相似文献   

6.
The outer membrane usher protein Caf1A of the plague pathogen Yersinia pestis is responsible for the assembly of a major surface antigen, the F1 capsule. The F1 capsule is mainly formed by thin linear polymers of Caf1 (capsular antigen fraction 1) protein subunits. The Caf1A usher promotes polymerization of subunits and secretion of growing polymers to the cell surface. The usher monomer (811 aa, 90.5 kDa) consists of a large transmembrane β-barrel that forms a secretion channel and three soluble domains. The periplasmic N-terminal domain binds chaperone-subunit complexes supplying new subunits for the growing fiber. The middle domain, which is structurally similar to Caf1 and other fimbrial subunits, serves as a plug that regulates the permeability of the usher. Here we describe the identification, characterization, and crystal structure of the Caf1A usher C-terminal domain (Caf1AC). Caf1AC is shown to be a periplasmic domain with a seven-stranded β-barrel fold. Analysis of C-terminal truncation mutants of Caf1A demonstrated that the presence of Caf1AC is crucial for the function of the usher in vivo, but that it is not required for the initial binding of chaperone-subunit complexes to the usher. Two clusters of conserved hydrophobic residues on the surface of Caf1AC were found to be essential for the efficient assembly of surface polymers. These clusters are conserved between the FGL family and the FGS family of chaperone-usher systems.  相似文献   

7.
The chaperone/usher pathway assembles surface virulence organelles of Gram-negative bacteria, consisting of fibers of linearly polymerized protein subunits. Fiber subunits are connected through 'donor strand complementation': each subunit completes the immunoglobulin (Ig)-like fold of the neighboring subunit by donating the seventh β-strand in trans. Whereas the folding of Ig domains is a fast first-order process, folding of Ig modules into the fiber conformation is a slow second-order process. Periplasmic chaperones separate this process in two parts by forming transient complexes with subunits. Interactions between chaperones and subunits are also based on the principle of donor strand complementation. In this study, we have performed mutagenesis of the binding motifs of the Caf1M chaperone and Caf1 capsular subunit from Yersinia pestis and analyzed the effect of the mutations on the structure, stability, and kinetics of Caf1M-Caf1 and Caf1-Caf1 interactions. The results suggest that a large hydrophobic effect combined with extensive main-chain hydrogen bonding enables Caf1M to rapidly bind an early folding intermediate of Caf1 and direct its partial folding. The switch from the Caf1M-Caf1 contact to the less hydrophobic, but considerably tighter and less dynamic Caf1-Caf1 contact occurs via the zip-out-zip-in donor strand exchange pathway with pocket 5 acting as the initiation site. Based on these findings, Caf1M was engineered to bind Caf1 faster, tighter, or both faster and tighter. To our knowledge, this is the first successful attempt to rationally design an assembly chaperone with improved chaperone function.  相似文献   

8.
The Yersinia pestis (causative agent of plague) capsule antigen is a homopolymer of Caf1 protein. Export of the subunits is mediated by the periplasmic chaperone Caf1M. To study the mechanism of Caf1M activity, two hybrid genes including coding sequences for the Caf1 signal peptide, human granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin-1 (IL-1) receptor antagonist, and mature Caf1 were constructed and expressed in Escherichia coli. We have shown that in the absence of Caf1M the majority of Caf1 moieties within the hybrid proteins undergo proteolysis in the periplasmic space, presumably by the DegP protease. The coexpression of a gene for chaperone Caf1M significantly increased the amount of full-size hybrid proteins in the periplasm, probably as a result of stabilization of the subunits spatial structure within the hybrid. This effect was not observed in JCB571 cells, which lack periplasmic disulfide isomerase DsbA, essential for Caf1M activity.  相似文献   

9.
Autotransporters are a superfamily of virulence proteins produced by Gram-negative bacteria. They consist of an N-terminal β-helical domain (“passenger domain”) that is secreted into the extracellular space and a C-terminal β-barrel domain (“β-domain”) that anchors the protein to the outer membrane. Because the periplasm lacks ATP, vectorial folding of the passenger domain in a C-to-N-terminal direction has been proposed to drive the secretion reaction. Consistent with this hypothesis, mutations that disrupt the folding of the C terminus of the passenger domain of the Escherichia coli O157:H7 autotransporter EspP have been shown to cause strong secretion defects. Here, we show that point mutations introduced at specific locations near the middle or N terminus of the EspP β-helix that perturb folding also impair secretion, but to a lesser degree. Surprisingly, we found that even multiple mutations that potentially abolish the stability of several consecutive rungs of the β-helix only moderately reduce secretion efficiency. Although these results provide evidence that the free energy derived from passenger domain folding contributes to secretion efficiency, they also suggest that a significant fraction of the energy required for secretion is derived from another source.  相似文献   

10.
Type 1 pili from uropathogenic Escherichia coli are a prototype of adhesive surface organelles assembled and secreted by the conserved chaperone/usher pathway. They are composed of four different homologous protein subunits that need to be assembled in a defined order. In the periplasm, the pilus chaperone FimC donates a β-strand segment to the subunits to complete their imperfect immunoglobulin-like fold. During subunit assembly, this segment of the chaperone is displaced by an amino-terminal extension of an incoming subunit in a reaction termed donor-strand exchange. To date, the molecular mechanisms underlying the coordinated subunit assembly, in particular the role of the outer membrane usher FimD, are still poorly understood. Here we show that the binding of complexes between FimC and the different pilus subunits to the amino-terminal substrate recognition domain of FimD is an extremely fast process, with association rate constants in the range of 107-108 M 1 s− 1 at 20 °C. Furthermore, we demonstrate that the ordered assembly of pilus subunits is a consequence of the usher's ability to selectively catalyze the assembly of defined subunit-subunit pairs that are adjacent in the mature pilus. The usher therefore coordinates the assembly of pilus subunits at the stage of donor-strand exchange between pairs of subunits and not at the level of the initial binding of chaperone-subunit complexes.  相似文献   

11.
Type IV pili are polymeric fibers which protrude from the cell surface and play a critical role in adhesion and invasion by pathogenic bacteria. The secretion of pili across the periplasm and outer membrane is mediated by a specialized secretin protein, PilQ, but the way in which this large channel is formed is unknown. Using NMR, we derived the structures of the periplasmic domains from N. meningitidis PilQ: the N-terminus is shown to consist of two β-domains, which are unique to the type IV pilus-dependent secretins. The structure of the second β-domain revealed an eight-stranded β-sandwich structure which is a novel variant of the HSP20-like fold. The central part of PilQ consists of two α/β fold domains: the structure of the first of these is similar to domains from other secretins, but with an additional α-helix which links it to the second α/β domain. We also determined the structure of the entire PilQ dodecamer by cryoelectron microscopy: it forms a cage-like structure, enclosing a cavity which is approximately 55 Å in internal diameter at its largest extent. Specific regions were identified in the density map which corresponded to the individual PilQ domains: this allowed us to dock them into the cryoelectron microscopy density map, and hence reconstruct the entire PilQ assembly which spans the periplasm. We also show that the C-terminal domain from the lipoprotein PilP, which is essential for pilus assembly, binds specifically to the first α/β domain in PilQ and use NMR chemical shift mapping to generate a model for the PilP:PilQ complex. We conclude that passage of the pilus fiber requires disassembly of both the membrane-spanning and the β-domain regions in PilQ, and that PilP plays an important role in stabilising the PilQ assembly during secretion, through its anchorage in the inner membrane.  相似文献   

12.
The presence of neuritic plaques containing aggregated amyloid-β (Aβ) peptides in the brain parenchyma is a pathological hallmark of Alzheimer disease (AD). Aβ is generated by sequential cleavage of the amyloid β precursor protein (APP) by β- and γ-secretase, respectively. As APP processing to Aβ requires transport through the secretory pathway, trafficking of the substrate and access to the secretases are key factors that can influence Aβ production (Thinakaran, G., and Koo, E. H. (2008) Amyloid precursor protein trafficking, processing, and function. J. Biol. Chem. 283, 29615–29619). Here, we report that retention in endoplasmic reticulum 1 (RER1) associates with γ-secretase in early secretory compartments and regulates the intracellular trafficking of γ-secretase. RER1 overexpression decreases both γ-secretase localization on the cell surface and Aβ secretion and conversely RER1 knockdown increases the level of cell surface γ-secretase and increases Aβ secretion. Furthermore, we find that increased RER1 levels decrease mature APP and increase immature APP, resulting in less surface accumulation of APP. These data show that RER1 influences the trafficking and localization of both γ-secretase and APP, thereby regulating the production and secretion of Aβ peptides.  相似文献   

13.
The detection of the activities of pathogen-encoded virulence factors by the innate immune system has emerged as a new paradigm of pathogen recognition. Much remains to be determined with regard to the molecular and cellular components contributing to this defense mechanism in mammals and importance during infection. Here, we reveal the central role of the IL-1β signaling axis and Gr1+ cells in controlling the Escherichia coli burden in the blood in response to the sensing of the Rho GTPase-activating toxin CNF1. Consistently, this innate immune response is abrogated in caspase-1/11-impaired mice or following the treatment of infected mice with an IL-1β antagonist. In vitro experiments further revealed the synergistic effects of CNF1 and LPS in promoting the maturation/secretion of IL-1β and establishing the roles of Rac, ASC and caspase-1 in this pathway. Furthermore, we found that the α-hemolysin toxin inhibits IL-1β secretion without affecting the recruitment of Gr1+ cells. Here, we report the first example of anti-virulence-triggered immunity counteracted by a pore-forming toxin during bacteremia.  相似文献   

14.
Besides formate dehydrogenase N (FDH-N), which is involved in the major anaerobic respiratory pathway in the presence of nitrate, Escherichia coli synthesizes a second isoenzyme, called FDH-O, whose physiological role is to ensure rapid adaptation during a shift from aerobiosis to anaerobiosis. FDH-O is a membrane-bound enzyme complex composed of three subunits, α (FdoG), β (FdoH), and γ (FdoI), which exhibit high sequence similarity to the equivalent polypeptides of FDH-N. The topology of these three subunits has been studied by using blaM (β-lactamase) gene fusions. A collection of 47 different randomly generated Fdo-BlaM fusions, 4 site-specific fusions, and 3 sandwich fusions were isolated along the entire sequence of the three subunits. In contrast to previously reported predictions from sequence analysis, our data suggested that the αβ catalytic dimer is located in the cytoplasm, with a C-terminal anchor for β protruding into the periplasm. As expected, the γ subunit, which specifies cytochrome b, was shown to cross the cytoplasmic membrane four times, with the N and C termini exposed to the cytoplasm. Protease digestion studies of the 35S-labelled FDH-O heterotrimer in spheroplasts add further support to this model. Consistently, prior studies regarding the bioenergetic function of formate dehydrogenase provided evidence for a mechanism in which formate is oxidized in the cytoplasm.  相似文献   

15.
The twin arginine translocation (Tat) pathway exports folded proteins from the cytoplasm to the periplasm of bacteria. The targeting of the exported proteins to the Tat pathway relies on a specific amino-terminal signal sequence, which is cleaved after exportation. In the phytopathogen Dickeya dadantii, the pectin lyase homologue PnlH is exported by the Tat pathway without cleavage of its signal sequence, which anchors PnlH into the outer membrane. In proteobacteria, the vast majority of outer membrane proteins consists of β-barrel proteins and lipoproteins. Thus, PnlH represents a new kind of outer membrane protein. In Escherichia coli, periplasmic chaperones SurA, Skp, and DegP work together with the β-barrel assembly machinery (Bam) to target and insert β-barrel proteins into the outer membrane. In this work, we showed that SurA is required for an efficient targeting of PnlH to the outer membrane. Moreover, we were able to detect an in vitro interaction between SurA and the PnlH signal sequence. Since the PnlH signal sequence contains a highly hydrophobic region, we propose that SurA protects it from the hydrophobic periplasm during targeting of PnlH to the outer membrane. We also studied the nature of the information carried by the PnlH signal sequence responsible for its targeting to the outer membrane after exportation by the Tat system.  相似文献   

16.
Invasin and intimin are major virulence factors of enteropathogenic Yersiniae and Escherichia coli, mediating invasion into and intimate adherence to host cells, respectively. Several studies have hinted that extracellular portion of these homologous proteins might be exported via an autotransport mechanism, but rigorous experimental proof has been lacking. Here, we present a topology model for invasin and intimin, consistent with the hypothesis that the N-terminal β-barrel domain acts as a translocation pore to secrete the C-terminal passenger domain. We confirmed this topology model by inserting epitope tags into the loops of the β-barrel. We further show that obstructing the pore of β-barrel hinders the export of the passenger domain. As for classical autotransport, the biogenesis of invasin and intimin is dependent on the Bam complex and the periplasmic chaperone SurA, whereas the chaperone/protease DegP is involved in quality control. However, compared to classical autotransporters (Type Va secretion), the domain structure of intimin and invasin is inverted. We conclude that proteins of the intimin and invasin family constitute a novel group of autotransported proteins, and propose that this class of autotransporters be termed Type Ve secretion.  相似文献   

17.

Objective

In the pathogenesis of coronary atherosclerosis, local macrophage-driven inflammation and secretion of proinflammatory cytokines, interleukin-1β (IL-1β) in particular, are recognized as key factors. Moderate alcohol consumption is associated with a reduced risk of coronary artery disease mortality. Here we examined in cultured human macrophages whether ethanol modulates the intracellular processes involved in the secretion of IL-1β.

Results

Ethanol decreased dose-dependently the production of mature IL-1β induced by activators of the NLRP3 inflammasome, i.e. ATP, cholesterol crystals, serum amyloid A and nigericin. Ethanol had no significant effect on the expression of NLRP3 or IL1B mRNA in LPS-primed macrophages. Moreover, secretion of IL-1β was decreased in parallel with reduction of caspase-1 activation, demonstrating that ethanol inhibits inflammasome activation instead of synthesis of pro-IL-1β. Acetaldehyde, a highly reactive metabolite of ethanol, had no effect on the ATP-induced IL-1β secretion. Ethanol also attenuated the secretion of IL-1β triggered by synthetic double-stranded DNA, an activator of the AIM2 inflammasome. Ethanol conferred the inhibitory functions by attenuating the disruption of lysosomal integrity and ensuing leakage of the lysosomal protease cathepsin B and by reducing oligomerization of ASC.

Conclusion

Ethanol-induced inhibition of the NLRP3 inflammasome activation in macrophages may represent a biological pathway underlying the protective effect of moderate alcohol consumption on coronary heart disease.  相似文献   

18.
Proteins that are produced for commercial purposes in Bacillus subtilis are commonly secreted via the Sec pathway. Despite its high secretion capacity, the secretion of heterologous proteins via the Sec pathway is often unsuccessful. Alternative secretion routes, like the Tat pathway, are therefore of interest. Two parallel Tat pathways with distinct specificities have previously been discovered in B. subtilis. To explore the application potential of these Tat pathways, several commercially relevant or heterologous model proteins were fused to the signal peptides of the known B. subtilis Tat substrates YwbN and PhoD. Remarkably, the YwbN signal peptide directed secretion of active subtilisin, a typical Sec substrate, via the B. subtilis TatAyCy route. In contrast, the same signal peptide directed Tat-independent secretion of the Bacillus licheniformis α-amylase (AmyL). Moreover, the YwbN signal peptide directed secretion of SufI, an Escherichia coli Tat substrate, in a Tat-independent manner, most likely via Sec. Our results suggest that cytoplasmic protein folding prior to translocation is probably a major determinant of Tat-dependent protein secretion in B. subtilis, as is the case with E. coli. We conclude that future applications for the Tat system of B. subtilis will most likely involve commercially interesting proteins that are Sec incompatible.  相似文献   

19.
Minimum requirements have been determined for synthesis and secretion of the Pediococcus antimicrobial peptide, pediocin AcH, in Escherichia coli. The functional mature domain of pediocin AcH (Lys+1 to Cys+44) is targeted into the E. coli sec machinery and secreted to the periplasm in active form when fused in frame to the COOH terminus of the secretory protein maltose-binding protein (MBP). The PapC-PapD specialized secretion machinery is not required for secretion of the MBP-pediocin AcH chimeric protein, indicating that in Pediococcus, PapC and PapD probably are required for recognition and processing of the leader peptide rather than for translocation of the mature pediocin AcH domain across the cytoplasmic membrane. The chimeric protein displays bactericidal activity, suggesting that the NH2 terminus of pediocin AcH does not span the phospholipid bilayer in the membrane-interactive form of the molecule. However, the conserved Lys+1-Tyr-Tyr-Gly-Asn-Gly-Val+7-sequence at the NH2 terminus is important because deletion of this sequence abolishes activity. The secreted chimeric protein is released into the culture medium when expressed in a periplasmic leaky E. coli host. The MBP fusion-periplasmic leaky expression system should be generally advantageous for production and screening of the activity of bioactive peptides.  相似文献   

20.
Isoprenoids are a large and diverse group of metabolites with interesting properties such as flavour, fragrance and therapeutic properties. They are produced via two pathways, the mevalonate pathway or the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. While plants are the richest source of isoprenoids, they are not the most efficient producers. Escherichia coli and yeasts have been extensively studied as heterologous hosts for plant isoprenoids production. In the current study, we describe the usage of the food grade Lactococcus lactis as a potential heterologous host for the production of sesquiterpenes from a local herbaceous Malaysian plant, Persicaria minor (synonym Polygonum minus). A sesquiterpene synthase gene from P. minor was successfully cloned and expressed in L. lactis. The expressed protein was identified to be a β-sesquiphellandrene synthase as it was demonstrated to be functional in producing β-sesquiphellandrene at 85.4% of the total sesquiterpenes produced based on in vitro enzymatic assays. The recombinant L. lactis strain developed in this study was also capable of producing β-sesquiphellandrene in vivo without exogenous substrates supplementation. In addition, overexpression of the strain’s endogenous 3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR), an established rate-limiting enzyme in the eukaryotic mevalonate pathway, increased the production level of β-sesquiphellandrene by 1.25–1.60 fold. The highest amount achieved was 33 nM at 2 h post-induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号