首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The levels of binding of [3H]dihydroalprenolol to beta-adrenergic receptors in the visual centres and frontal cortex from brains of control, dark-reared and monocularly deprived rats were compared. Receptor binding is changed in monocularly deprived rats in the lateral geniculate nuclei and superior colliculi of both sides. Scatchard analyses indicated that the changes in the [3H]dihydroalprenolol binding in the lateral geniculate nuclei were due to alterations in both receptor affinity and receptor number. No effect of dark-rearing could be detected.  相似文献   

2.
Abstract: A successfully developed enzyme-based lactate microsensor with rapid response time allows the direct and continuous in vivo measurement of lactic acid concentration with high temporal resolution in brain extracellular fluid. The fluctuations coupled to neuronal activity in extracellular lactate concentration were explored in the dentate gyrus of the hippocampus of the rat brain after electrical stimulation of the perforant pathway. Extracellular glucose and oxygen levels were also detected simultaneously by coimplantation of a fast-response glucose sensor and an oxygen electrode, to provide novel information of trafficking of energy substances in real time related to local neuronal activity. The results first give a comprehensive picture of complementary energy supply and use of lactate and glucose in the intact brain tissue. In response to acute neuronal activation, the brain tissue shifts immediately to significant energy supply by lactate. A local temporary fuel "reservoir" is established behind the blood-brain barrier, evidenced by increased extracellular lactate concentration. The pool can be depleted rapidly, up to 28% in 10–12 s, by massive, acute neuronal use after stimulation and can be replenished in ∼20 s. Glutamate-stimulated astrocytic glycolysis and the increase of regional blood flow may regulate the lactate concentration of the pool in different time scales to maintain local energy homeostasis.  相似文献   

3.
Recording of slow spontaneous fluctuations at rest using functional magnetic resonance imaging (fMRI) allows distinct long-range cortical networks to be identified. The neuronal basis of connectivity as assessed by resting-state fMRI still needs to be fully clarified, considering that these signals are an indirect measure of neuronal activity, reflecting slow local variations in de-oxyhaemoglobin concentration. Here, we combined fMRI with multifocal transcranial magnetic stimulation (TMS), a technique that allows the investigation of the causal neurophysiological interactions occurring in specific cortico-cortical connections. We investigated whether the physiological properties of parieto-frontal circuits mapped with short-latency multifocal TMS at rest may have some relationship with the resting-state fMRI measures of specific resting-state functional networks (RSNs). Results showed that the activity of fast cortico-cortical physiological interactions occurring in the millisecond range correlated selectively with the coupling of fMRI slow oscillations within the same cortical areas that form part of the dorsal attention network, i.e., the attention system believed to be involved in reorientation of attention. We conclude that resting-state fMRI ongoing slow fluctuations likely reflect the interaction of underlying physiological cortico-cortical connections.  相似文献   

4.
Mitochondria from different regions of the brain were prepared, and the activation of the mitochondrial permeability transition (MPT) by calcium was investigated by monitoring the associated mitochondrial swelling. In general, the properties of the MPT in brain mitochondria were found to be qualitatively similar to those observed in liver and heart mitochondria. Thus, swelling was inhibited by adenine nucleotides (AdNs) and low pH (<7.0), whereas thiol reagents and alkalosis facilitated swelling. Cyclosporin A and its nonimmunosuppressive analogue N-methyl-Val-4-cyclosporin A (PKF 220-384) both inhibited swelling and prevented the translocation of cyclophilin D from the matrix to the membranes of cortical mitochondria. However, the calcium sensitivity of the MPT differed in mitochondria from three brain regions (hippocampus > cortex > cerebellum) and is correlated with the susceptibility of these regions to ischemic damage. Depleting mitochondria of AdNs by treatment with pyrophosphate ions sensitized the MPT to [Ca2+] and abolished regional differences, implying regional differences in mitochondrial AdN content. This was confirmed by measurements showing significant differences in AdN content among regions (cerebellum > cortex > hippocampus). Our data add to recent evidence that the MPT may be involved in neuronal death.  相似文献   

5.
Abstract— Kittens deprived of pattern vision until the 28th day of life received monocular visual experience for 3, 6, 14, and 75 h. Biphasic response of serotonin was found in the visual cortex. Stimulation for 3 h resulted in an increase of serotonin level whereas at 14 h it produced a decrease. The effects are transient, no longer observable after 75 h stimulation. No changes were observed in somatosensory cortex.  相似文献   

6.
目的探讨临床上常用的麻醉剂氯胺酮对乳鼠脑细胞凋亡的影响。方法新生7日龄SD大鼠15只,随机分成3组:氯胺酮低剂量组、高剂量组分别腹腔注射20 mg/kg、80 mg/kg氯胺酮,对照组给予等量的生理盐水。麻醉后24 h,取脑组织作HE染色,用TUNEL法检测脑细胞的凋亡情况,用免疫组织化学法检测Caspase-3的表达水平。结果与对照组比较,氯胺酮低剂量组的凋亡细胞增多但不明显(P〉0.05),神经元核固缩和Caspase-3阳性细胞数明显增多(P〈0.05);氯胺酮高剂量组的凋亡细胞数、神经元核固缩及Caspase-3阳性细胞数显著性增加(P〈0.05)。神经元核固缩、凋亡细胞和Caspase-3阳性细胞均以皮层区多见。结论 80 mg/kg氯胺酮可引起乳鼠脑细胞凋亡,以皮层区为主,Caspase-3的激活可能是其作用机制之一;20 mg/kg氯胺酮对乳鼠脑细胞凋亡的影响较轻微,其临床等效剂量为3 mg/kg。氯胺酮小儿麻醉用量不宜过多,避免引起脑细胞的凋亡。  相似文献   

7.
Abstract: Angiotensin-converting enzyme (ACE) activity was measured by a radiochemical assay in 30 specific areas of the rat brain stem. ACE activity is unevenly distributed, with a 60-fold difference between the lowest and the highest activity. The area postrema exhibits the highest activity. The substantia nigra (pars reticulata), the locus coeruleus, the areas A1 and A2, the nuclei commissuralis, and tractus solitarii have a substantial ACE activity, whereas the lowest activity is found in the raphe nuclei and the nuclei of the reticular formation.  相似文献   

8.
Ontogenesis of Adenosine Deaminase Activity in Rat Brain   总被引:1,自引:1,他引:0  
The activity of adenosine deaminase (ADA) was determined in whole brain of rats at the embryonic age of 15 days through to adulthood and in nine brain regions in rats 1 day old through to adulthood. In 1-day-old rats, the highest activity was seen in olfactory bulbs (550 +/- 15 nmol/mg protein/30 min) and this was 4.5-fold higher than that in the pons, which was the lowest. In adult animals, olfactory bulb still contained the greatest activity, which was about eightfold higher than hippocampus, which had the lowest. Except for hypothalamus, where ADA activity increased nearly twofold in rats between the ages of 1 and 50 days, significant decreases of as much as fivefold were found in whole brain, superior colliculus, cortex, hippocampus, cerebellum, olfactory bulbs, and olfactory nucleus. In contrast, ADA activity in pons and subcortex remained relatively constant throughout the developmental period. The Km values for ADA in whole brain at 18 days gestation (48 +/- 5 microM) were not significantly different from that observed in adult rats (38 +/- 7 microM), whereas the Vmax values decreased significantly from 339 +/- 9 to 108 +/- 8 nmol/mg protein/30 min. Taken together, the developmental patterns observed in the various brain regions appear not to correspond to any one particular process such as periods of rapid cell proliferation, cell death, synaptogenesis, or myelination. Nor do they correspond to known developmental profiles of transmitters, their receptors, or their metabolic enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Abstract: Angiotensin-converting enzyme (ACE) activity in brain microvessels of spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) controls was measured. Cerebral microvessels, prepared from the cerebral cortices by the albumin flotation and glass bead filtration technique, were free of neuronal and glial elements. ACE activity in brain microvessels of SHR was lower than that of WKY. A Woolf-Augustinsson-Hofstee plot showed that the reduction of the enzyme activity in SHR was due to a 30% decrease in Vmax without any change in Km for substrate. The decrease of ACE activity in brain micro-vessels of SHR may indicate an impairment of the central renin-angiotensin system and may be related to cerebral microvascular dysfunctions occurring in hypertension.  相似文献   

10.
11.
Sialidase Activity in Nuclear Membranes of Rat Brain   总被引:1,自引:1,他引:0  
Abstract: A highly purified nuclear membrane preparation was obtained from adult rat brain and examined for sialidase activity using GM3, GD1a, GD1b, or N -acetylneuramin lactitol as the substrate. The nuclear membranes contained an appreciable level of sialidase activity; the specific activities toward GM3 and N -acetylneuramin lactitol were 20.5 and 23.8% of the activities in the total brain homogenate, respectively. The sialidase activity in nuclear membranes showed substrate specificity distinct from other membrane-bound sialidases localized in lysosomal membranes, synaptosomal plasma membranes, or myelin membranes. These results strongly suggest the existence of a sialidase activity associated with the nuclear membranes from rat brain.  相似文献   

12.
The activity of transglutaminase was characterized in the rat brain. In adults, comparable levels of transglutaminase activity are present in all brain regions examined. The activity is present in all subcellular fractions, as studied by differential centrifugation, but the soluble fraction contains the highest specific activity. The endogenous activity (enzyme activity assayed in the absence of the exogenous substrate casein) is very low in all subcellular fractions, except in the synaptosomal fraction where its highest levels are about 40-60% of the activity assayed in the presence of casein. Furthermore, enzyme activity is present on the external surface of synaptosomes. In the soluble fraction, maximal activity can be detected between pH values of 9 and 10 when assayed in the presence of 5 mM CaCl2 (with half-maximal activity requiring 0.75 mM CaCl2) and 0.4 mM putrescine (with an apparent Km for putrescine of 0.1 mM). The activity can be partially inhibited by ZnCl2 (with an IC50 of 4.5 mM) and by AlCl3 (with an IC50 of 5.1 mM). In the cerebellum, where the full span of neuronal development can be studied after birth, the highest specific activity is observed just after birth, thereafter the activity starts to decline and by 14 days, after a reduction of about 65%, it reaches levels observed throughout life.  相似文献   

13.
The binding of [3H]colchicine to postmitochondrial supernatant fractions of chick brain has been studied, absorbing colchicine-bearing proteins on DEAE-cellulose filter discs. This was assayed at several times after unilateral enucleation of day-old chicks. Binding was unaltered in optic lobes or anterior dorsal forebrain regions contralateral to the removed eye, relative to the corresponding regions contralateral to and thus directly or secondarily innervated by the intact eye. Colchicine binding was also assayed after training chicks to suppress pecking at a metallic bead coated with aversive-tasting methylanthranilate. At 4 but not 24 h after the one-trial training, binding was selectively elevated in the anterior dorsal forebrain roof. Results are taken to imply that alterations in tubulin content of chick brain may reflect stress-related changes, possibly mediated by systemic endocrine flux, rather than a more localized learning experience.  相似文献   

14.
D W I对脑转移瘤及胶质瘤的应用价值   总被引:1,自引:0,他引:1       下载免费PDF全文
目的:探讨弥散加权成像(DWI)对脑转移瘤与胶质瘤鉴别诊断的应用价值。方法:对常规MR扫描检出的42例颅内占位痛人行DWI扫描,对病人术后痛理随访后,将高级胶质瘤、低级胶质瘤及脑转移瘤各分成一组,并测定肿瘤区、水肿区、时侧正常脑组织的表观弥散系数(ADC)值及相时ADC(rADC)值。结果:低级胶质瘤与转移瘤的瘤灶rADC值比较存在差异;高级别胶质瘤与转移瘤瘤周水肿的rADC值相比较存在差异。结论:DWI及瘤灶、瘤周rADC值的定量测定对脑转移瘤与胶质瘤的鉴别诊断具有一定的临床应用价值。  相似文献   

15.
The turnover of neuronal histamine (HA) in nine brain regions and the spinal cord of the guinea pig and the mouse was estimated and the values obtained were compared with data previously obtained in rats. The size of the neuronal HA pool was determined from the decrease in HA content, as induced by (S)-alpha-fluoro-methylhistidine (alpha-FMH), a suicide inhibitor of histidine decarboxylase. The ratios of neuronal HA to the total differed with the brain region. Pargyline hydrochloride increased the tele-methylhistamine (t-MH) levels linearly up to 2 h after administration in both the guinea pig and the mouse whole brain. Regional differences in the turnover rate of neuronal HA, calculated from the pargyline-induced accumulation of t-MH, as well as in the size of the neuronal HA pool, were more marked in the mouse than in the guinea pig brain. The hypothalamus showed the highest rate in both species. There was a good correlation between the steady-state t-MH levels and the turnover rate in different brain regions. Neither the elevation of the t-MH levels by pargyline nor the reduction of HA by alpha-FMH was observed in the spinal cord, thereby suggesting that the HA present in this region is of mast cell origin. The half-life of neuronal HA in different brain regions was in the range of 13-38 min for the mouse and 24-37 min for the guinea pig, except for HA from the guinea pig hypothalamus, which had an extraordinarily long value of 87 min. These results suggest that there are species differences in the function of the brain histaminergic system.  相似文献   

16.
The molecular forms of angiotensin converting enzyme (ACE; EC 3.4.15.1) in preparations of pig brain cortical microvessels and striatal synaptosomal membranes have been identified by immunoelectrophoretic blot analysis. The cortical microvessels contained only the endothelial form of the enzyme, Mr 180,000, which comigrated with pig kidney ACE on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In contrast, the synaptosomal membranes contained only a smaller form of ACE, Mr 170,000, which represents the neuronal form of the enzyme. No significant differences in inhibitor sensitivity or substrate specificity were detected between the two forms of ACE. In particular, neurokinin A was resistant to hydrolysis by either microvessel or synaptosomal membrane ACE, and the pattern of hydrolysis of substance P by the two preparations was identical.  相似文献   

17.
Regulation of DOPA Decarboxylase Activity in Brain of Living Rat   总被引:3,自引:1,他引:3  
Abstract: To test the hypothesis that l -DOPA decarboxylase (DDC) is a regulated enzyme in the synthesis of dopamine (DA), we developed a model of the cerebral uptake and metabolism of [3H]DOPA. The unidirectional blood-brain clearance of [3H]DOPA ( K D1) was 0.049 ml g−1 min−1. The relative DDC activity ( k D3) was 0.26 min−1 in striatum, 0.04 min−1 in hypothalamus, and 0.02 min−1 in hippocampus. In striatum, 3,4-[3H]dihydroxyphenylacetic acid ([3H]DOPAC) was formed from [3H]DA with a rate constant of 0.013 min−1, [3H]homovanillic acid ([3H]HVA) was formed from [3H]DOPAC at a rate constant of 0.020 min−1, and [3H]HVA was eliminated from brain at a rate constant of 0.037 min−1. Together, these rate constants predicted the ratios of endogenous DOPAC and HVA to DA in rat striatum. Pargyline, an inhibitor of DA catabolism, substantially reduced the contrast between striatum and cortex, in comparison with the contrast seen in autoradiograms of control rats. At 30 min and at 4 h after pargyline, k D3 was reduced by 50% in striatum and olfactory tubercle but was unaffected in hypothalamus, indicating that DDC activity is reduced in specific brain regions after monoamine oxidase inhibition. Thus, DDC activity may be a regulated step in the synthesis of DA.  相似文献   

18.
To elucidate principles of neuronal organization providing preservation of informational content of converging impulse flows in afferent impulsation of neurons, a comparison is performed of results obtained in the previously carried out experiments on a model of neuronal network and in a study of correlates of behavior in the neuronal network of the monkey brain neostriatum (putamen). This comparison has shown that responses of the neuronal network model to different ratio of input impulse flows and changes of the neostriatal neuronal activity, which accompany different behavioral actions, are seen the most clearly in reorganization of composition of the most active neurons. Each combination of input signals and each behavioral action of the animal correspond to a non-repeated mosaic of neuronal activity. The data obtained indicate that the neuronal network, both real and in the simplest model variant, is able to transform the converging input signals into the mosaic equivalent to their entire combination and thereby to transmit the result of generalization of the input signals of the network to the innervated brain structures.  相似文献   

19.
Cerebral endothelial cells form the selective permeability barrier between brain and blood by virtue of their impermeable tight junctions and the presence of specific carrier systems. These specialized properties of brain capillaries are reflected in the presence of proteins that are not found in other capillaries of the body. gamma-Glutamyltranspeptidase (GGT) has been widely used as a marker for brain capillaries and differentiated properties of brain endothelial cells. By using histochemical and biochemical methods we have investigated the expression of GGT in isolated capillaries, cultured brain endothelial cells and pericytes, and cocultures of astrocytes and brain endothelial cells. It was surprising that the majority of GGT activity was associated with pericytes, but not endothelial cells, suggesting that GGT is a specific marker for brain pericytes. The remaining GGT activity that was associated with endothelial cells rapidly disappeared from cultured cells but was reinduced in cocultures with astrocytes. Our results emphasize the need for pure endothelial cells for the investigation of blood-brain barrier characteristics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号