首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A pair of multipolar stretch-receptive neurons were found in the bursa copulatrix of the female cabbage white butterfly, Pieris rapae crucivora. The cell body of each neuron, about 10 m in diameter, lies on the edge of the muscular region in the antero-lateral wall of the corpus bursae. No special accessory structure, such as a receptor muscle, is associated with the neuron. The several dendrites extend radially into the muscle layer. The dendrites are ensheathed except for their terminal tips, and, on their course, they anchor repeatedly on the epithelial cells or the muscle fibers in such a manner that their basement membranes fuse together. While the ensheathed dendrite is usually 0.1–0.2 m in diameter, it often forms 1–2 m varicosities especially at anchor sites, so that it looks like a varicose, or beaded, chain. The varicosities contain a number of mitochondria, but only microtubules are found in the fine interconnecting parts of the dendrite. The naked dendritic tips terminate in the basement membrane of the epithelial cell. The varicosities, as well as naked tips, seem to be important for stimulus transduction in the sensory cell of this type.  相似文献   

2.
Summary The structure of the basement membrane of Saccoglossus horsti has been examined with the electron microscope. The membrane consists of two lamellae each of two layers. An outer amorphous layer 150 nm across and an inner fibrillar layer 1–3 m across. The fibrils of the fibrillar layer are two sizes, the majority are 5–9 nm in diameter and at least 2 m long. The thicker 30 nm fibrils occur in small patches and have striations with a 30 nm period.Within the lamellae of the basement membrane are blood spaces. The only regularly found structures in these spaces are blood particles some 12–16 nm in diameter.Nerve fibres of varying diameters traverse all the layers of basement membrane. These fibres run longitudinally and obliquely through the basement membrane, and emerge amongst the muscle cells inserted into the coelomic side of the membrane. No motor end plates have been seen. Preliminary observations suggest that many of the nerve fibres have no sheath other than the cell membrane of the fibre itself.The muscle cells are attached to the basement membrane by structures that resemble hemidesmosomes. The blood vessels of Saccoglossus have a basement membrane on the lumenal side of the endothelial cell cytoplasm.I wish to thank Professor J. Z. Young, F. R. S. for continuous encouragement and advice. To Dr. R. Newell I am indebted for the collection and identification of the specimens. I am pleased to acknowledge my debt to Dr. R. Bellairs for the use of electron microscope facilities, and to Mrs. J. Hamilton and Mr. R. Moss for skillful technical assistance.  相似文献   

3.
Summary Ganglia from Auerbach's plexus of the large intestine (caecum, appendix vermiformis, colon transversum and rectum) in man, rhesus monkey and guinea-pig are composed of nerve cells and their processes, typical Schwann cells and a vast neuropil. The neuropil consists of dendrites and axons of intrinsic nerve cell perikarya and axons of extrinsic neurons. Axonal profiles in large nerve fibre bundles are of uniform size and appearance, embedded in infoldings of Schwann cell cytoplasm and contain occasional large granular vesicles, mitochondria and neurotubules. Preterminal axons widen into vesicle filled varicosities, some of which establish synaptic contact with intrinsic nerve cell bodies.At least three different types of neuronal processes can be distinguished in the myenteric neuropil according to the size, appearance and commutual proportion of vesicles present in axonal varicosities, and their ability to accumulate exogenous 5- and 6-hydroxydopamine and 5-hydroxydopa: 1. Axonal enlargements containing a major population of small electron lucent synaptic vesicles (350–600 Å in diameter) together with a small number of membrane-bound, opaque granules (800–1,100 Å). These profiles have been identified as cholinergic axons. The boutons establish synaptic contacts with dendritic processes of intrinsic nerve cell bodies; membrane specializations are found at the preand postsynaptic sites. 2. Axonal beads of sometimes very large diameter, containing an approximately equal amount of large granular vesicles (850–1,600 Å) and small, electron lucent or faintly opaque vesicles (400–600 Å). The granular core of the large vesicles is of medium electron density and may either fill the entire vesicle or is separated from the limiting membrane by a more or less clear interspace. The fibres probably belong to intrinsic neurons, and because of the similarity of the large, membrane-bound vesicles with neurosecretory elementary granules, they have been designated p-type fibres (polypeptide fibres). The granular core of the vesicles in these fibres becomes more electron dense after treatment with 5-OH-dopa. The accumulation of an amine precursor analogue in combination with a possible storage of a polypeptide substance (or an ATP-like substance) resembles the situation in several diffusely distributed endocrine cell systems. 3. Varicosities of axons equipped with small (400–600 Å) empty or sometimes granular vesicles, medium sized (500–900 Å) vesicles with highly electron dense cores and occasional large (900–1,300 Å) granular vesicles. Pretreatment with 5-OH-dopamine increases the electron density in almost all medium-sized granular vesicles and some of the large granular vesicles; an osmiophilic core develops in some small vesicles. 6-hydroxydopamine results in degenerative changes in the varicosities of this type of neurons. Concomitantly, both catecholamine analogues markedly reduce neuronal noradrenaline in the large intestine, as demonstrated by fluorescence histochemistry and in fluorimetric determinations. The ultrastructural features of these varicosities and their reaction to 5- and 6-OH-dopamine indicate that they belong to adrenergic, sympathetic nerves. No membrane specializations could be detected at sites of close contact of the adrenergic boutons with dendrites and cell bodies of intrinsic nerve cells.Supported by grants from the Deutsche Forschungsgemeinschaft.Supported by a grant from Albert Pahlsson's Foundation, Sweden. The work was carried out within a research organization sponsored by the Swedish Medical Research Council (projects No. B70-14X-1007-05B, B70-14X-712-05, and B70-14X-56-06).  相似文献   

4.
Zusammenfassung Die innere Augenmuskulatur des Huhnes besteht ausschließlich aus sehr kurzen, dünnen quergestreiften Muskelfasern, die einfach innerviert sind. Die Fasern des M.ciliaris sind 280–1700 m lang. Die Irismuskelfasern sind stark verzweigt und zu einem dreidimensionalen Netz zusammengefügt. Die Verbindung der einzelnen Fasern erfolgt entweder durch Zwischensehnen, die aus ungewöhnlich dicken (3000–4000 Å) kollagenen Fibrillen und einer elektronendichten, amorph erscheinenden Zwischensubstanz bestehen, oder nur durch basalmembranartiges Material, das Cholinesteraseaktivität zeigt.Der überwiegende Teil des dreidimensionalen Faserwerks der Irismuskulatur folgt einer circulären Grundanordnung (M. sphincter pupillae), nur ein kleiner Teil der Fasern zeigt eine radiäre Vorzugsrichtung (M. dilatator pupillae).Das Sarkoplasma der inneren Augenmuskulatur enthält sehr viele Mitochondrien (bis zu 12% des Gesamtquerschnittes), zumeist auch zahlreiche Triglyceridtröpfchen und Glykogen-Granula. Im reich entwickelten sarkoplasmatischen Retikulum ist eine große Zahl von Triaden erkennbar, die bei den Mm. ciliaris und sphincter pupillae meist regelmäßig nahe der A-I-Grenze im A-Band-Bereich liegen, beim M. dilatator pupillae meist unregelmäßig über das ganze A-Band verstreut sind.Das Querstreifungsmuster läßt deutlich ein M-Band, schwer nur eine Pseudo-H-Zone erkennen. Der Z-Streifen ist mit 1200–1600 Å auffallend breit und zeigt einen unregelmäßigen Verlauf. Die Sarkomere einer Faser können verschiedene Größen zeigen, die beiden I-Band-Hälften ein und desselben Sarkomers verschieden breit sein.Die periphere motorische Nervenbahn besteht aus 2 Neuronen. Das im Ganglion ciliare beginnende periphere Neuron besitzt eine Markscheide und endet an motorischen Endplatten der inneren Augenmuskelfasern. Einem Neuron können etwa 4 Muskelfasern zugeordnet werden. Die motorischen Endplatten sind groß; die Relative Innervationsgröße m2 synaptischer Fläche/1,000.000 m3 Muskelfaservolumen) zeigt den ganz außergewöhnlichen Wert von 10.000. Die synaptische Membran ist faltenfrei, das terminale Axoplasma enthält neben zahlreichen normalen synaptischen Bläschen eine Anzahl größerer Vesikel mit dunklem Kern.Acetylcholin führt zu einer Kontraktur des M. sphincter pupillae. Adrenalin zeigt keine Pupillenveränderung. Bei Reizung des postganglionären Nerven erhält man maximale tetanische Kontraktion bei einer Reizfrequenz von 200 Hz (SV).
Summary The inner eye muscles of the chicken consist exclusively of very thin striated muscle fibers which are singly innervated. The fibers of the ciliary muscle are 280–1700 m long. The muscle fibers of the iris are richly ramified and build up a three-dimensional network.The connection of the single fibers is effectuated either by short tendons, consisting of unusually thick (3000–4000 Å) collagenous fibrils and an intermediate substance of electrondense and amorphous appearance, or by a basal membrane-like material, showing CHE-activity.The predominant part of the three-dimensional network of iris muscle fibers are circularly arranged (sphincter pupillae muscle), only a small part (dilatator pupillae muscle) shows radial arrangement.The sarcoplasm of the inner eye muscles contains numerous mitochondria (up to 12% of the whole cross-section-area), usually also, a lot of triglycerid-droplets and glycogen granules. The sarcoplasmatic reticulum is richly developed. A great number of triads can be seen; in the ciliary and sphincter pupillae muscles they lie regularly near the A-I border within the area of A, in the dilatator pupillae muscle they usually are scattered irregularly over the whole A-band.The striated pattern shows a marked M-line, whereas the pseudo-H-zone is scarcely distinguishable. The Z-line is remarkably broad (1200–1600 Å) and shows an irregular course. The sarcomeres of a fiber may be of varying size; the two I-band halves of one single sarcomere may vary in width.The peripheral motor pathway consists of two neurons. The peripheral neuron beginning in the ciliary ganglion, possesses a myelin sheath and ends at motor endplates of the inner eye muscle fibers. Approximately four muscle fibers can be related to one neuron. The motor endplates are large; the relative size of innervation (m2 synaptic area/1,000.000 m3 muscle fiber volume) has the extraordinary value of 10.000. The synaptic membranes have no folds, the terminal axoplasma, besides numerous normal synaptic vesicles, contains a number of larger vesicles with dark cores. Acetylcholine induces a contracture of sphincter pupillae muscle. Adrenaline shows no influence upon the width of the pupil. Maximal tetanic contraction is brought about by stimulation of the postganglionic nerve at the frequency of 200 Hz.


Herrn Prof. Dr. K. Goerttler mit den besten Wünschen zum 70. Geburtstag zugeeignet.  相似文献   

5.
Purinergic P2X receptors associated with the parasympathetic nerves supplying human bladder smooth muscle (detrusor) are implicated in control of detrusor contractility. The relative abundance of all seven subtypes colocalised with synaptic vesicles on parasympathetic nerves was examined in specimens from normal adult bladder and in adults with the urodynamics findings of sensory urgency (SU) to determine how receptor distribution varied in patients with a small bladder capacity. Alteration in control of detrusor innervation was examined with P2X subtype-specific antibodies and an antibody (SV2) against synaptic vesicles, using immunofluorescence and confocal microscopy. Detrusor samples were taken from: controls, at cystectomy for cancer or cystoscopic biopsy for haematuria (n=22, age 33–88 years) and adults with sensory urgency at cystoscopy/cystodistension (n=11, age 37–70 years). Normal adult specimens contained detrusor muscle innervated by parasympathetic nerves possessing large varicosities (1.2 m) distributed along their length. These mostly all showed colocalised patches of presynaptic P2X1,2,3,5 subtypes while presynaptic subtypes P2X4,6,7 were present in only 6–18% of varicosities. Detrusor nerve varicosities from SU patients revealed general loss of all presynaptic P2X subtypes with the proportion containing receptors reducing to only 0.5–5% depending on P2X subtype. The same loss was recorded from the sensory nerves in the surrounding lamina propria. This specific loss of P2X receptors may impair control of detrusor distension and contribute to the pathophysiology of sensory urgency.The study was funded by the National Health and Medical Research Council of Australia  相似文献   

6.
Summary The fine structure of the preterminal nerve fibers of the rabbit myometrial smooth muscle was studied using potassium permanganate fixation or glutaraldehyde fixation with postosmification. The preterminal fibers were mostly formed by 2–10 axons enveloped by Schwann cells. Two kinds of axons and axon terminals were found. (1) Adrenergic axons, which contained many small, granular vesicles (diameter 300–600 Å) and large granular vesicles (diameter 700–1200 Å) which represented ca. 2% of the total count of the vesicles. (2) Nonadrenergic axons, which contained small agranular vesicles (diameter 300–600 Å) and large granular vesicles (diameter 700–1200 Å). Both types of axons formed preterminal varicosities along their course. The real terminal varicosities, representing the anatomical end of the axons, were usually larger than the preterminal ones and showed close contact to the plasma membranes of the smooth muscle cells. Both adrenergic and nonadrenergic terminals were found close to the smooth muscle cells, but a gap of at least 2000 Å was always present between the two cell membranes. The axons and preterminal varicosities of both types of nerves were in intimate contact with each other within the preterminal nerve fiber. Axo-axonal interactions between the two types of axons are possible in the rabbit myometrium. The relative proportion of the nonadrenergic axons from the total was about one fourth.  相似文献   

7.
In vivo restitution of airway epithelium   总被引:10,自引:0,他引:10  
Epithelial shedding occurs in health and, extensively, in inflammatory airway diseases. This study describes deepithelialisation, reepithelialisation and associated events in guinea-pig trachea after shedding-like epithelial denudation in vivo. Mechanical deepithelialisation of an 800-m wide tracheal zone was carried out using an orotracheal steel probe without bleeding or damage to the basement membrane. Reepithelialisation was studied by scanning- and transmission electron microscopy and light microscopy. Nerve fibres were examined by immunostaining. Cell proliferation was analysed by [3H]-thymidine autoradiography. Immediately after epithelial removal secretory and ciliated (and presumably basal) epithelial cells at the wound margin dedifferentiated, flattened and migrated rapidly (2–3 m/min) over the denuded basement membrane. Within 8–15 h a new, flattened epithelium covered the entire deepithelialised zone. At 30 h a tight epithelial barrier was established and after 5 days the epithelium was fully redifferentiated. After completed migration an increased mitotic activity occurred in the epithelium and in fibroblasts/smooth muscle beneath the restitution zone. Reinnervating intraepithelial calcitonin gene-related peptide-containing nerve fibres appeared within 30 h. We conclude that (1) reproducible shedding-like denudation, without bleeding or damage to the basement membrane, can be produced in vivo; (2) secretory and ciliated cells participate in reepithelialisation by dedifferentiation and migration; (3) the initial migration is very fast in vivo; (4) shedding-like denudation may cause strong secretory and exudative responses as well as proliferation of epithelium, and fibroblasts/smooth muscle. Rapid restitution of airway epithelium may depend on contributions from the microcirculation and innervation.  相似文献   

8.
Electron microscopy of the tracheal ciliated mucosa in rat   总被引:19,自引:0,他引:19  
Summary The structure of the tracheal epithelial cells from rat has been studied by electron microscopy on approximately 200 Å thick sections with a resolution of better than 30 Å.The epithelium is found to be of a simple columnar type composed of ciliated cells, mucus producing (goblet) cells, basal cells and a fourth kind of cell, here called brush cell. A great number of non-ciliated cells has also been encountered. It has been proved that these represent goblet cells in different stages of intracellular synthesis of mucous granules. The ciliated cells have approximately 8–9 cilia per square micron and there are about 270 cilia on each cell, the calculated surface area being 33 square microns. They are covered by a 70 Å thick membrane. The ciliary filaments are arranged in a pattern of 2 separate ones in the center and a ring of 9 peripheral ones, each divided into 2 subfilaments by a wall with same thickness as the filamentous wall itself, this being 60 Å. The peripheral filaments are continuous with the basal corpuscles. The structure of the corpuscles as compared with earlier findings is discussed. A number of 0.05 micron thick and 1 micron long filiform projections emerge from the cell surface. No cuticle is present.The cell membrane facing adjacent cells is 90 Å and separated from their cell membrane by a 105 Å wide space, this space, being expanded towards a level corresponding to the proximal parts of the cell. A structure that represents terminal bar has been encountered. The cytoplasm is loose and composed of 160 Å thick granules. Spaces enclosed by 50 Å thick membranes with attached 160 Å thick granules (-cytomembranes) are rare. The Golgi zone is analyzed and its regular composition of -cytomembranes, granules and vacuoles is confirmed. The mitochondria with a mean width of 0.23 micron differ to their inner structure from the common type in that the triple layered membranes are highly interconnected. Large opaque granules are encountered in the cytoplasm. Ring-shaped, 850 Å wide, structures are present in the nuclear membrane. The goblet cells are not as abundant as the ciliated cells, the ratio being 14. Small filiform projections covered by a 95 Å thick membrane protrude from the cell surface. This membrane is continuous with the cell membrane, the latter with the same dimensions as in the ciliated cells. Terminal bars are present. The cytoplasm is very opaque due to a dense packing of the 165 Å opaque granules, many in clusters of 4–6. The -cytomembranes have the same dimensions as mentioned above for those present in the ciliated cells. The Golgi zone is of regular composition. There is a suggestion that the Golgi vacuoles and the -cytomembranes are involved in the formation of mucus. In the stage of cellular activity with but few mucous granules, there is a great number of large opaque granules, the size varying from 0.4–1 micron. The mitochondria with a mean width of 0.23 micron have an outer triple layered membrane with a total thickness of 180 Å. The central less opaque layer is 70 Å and the opaque layer on either side is 55 Å. The inner membranes are arranged parallel to each other and have a triple layered composition where the central less opaque layer is 65 Å and the opaque layers each 60 Å. The brush cells belong to the non-ciliated cells. They are encountered singly, surrounded by goblet cells. The surface structures are shaped like brushes or clumsy protrusions which emerge from the distal end of the cell, and are covered by a 95 Å thick membrane. There have been no suggestions of the brushes being cilia in a stage of growth, nor is it probable that they represent stereocilia. They most nearly resemble the intestinal brush border extensions and thus might serve as a resorbing structure.The cytoplasm of the brush cells appears of medium opacity between the ciliated cells and goblet cells and is composed of 155 Å opaque granules. The -cytomembranes are very rare. The Golgi zone is diminutive though of regular composition. The mitochondria are abundant and small with a mean width of 0.14 micron. The outer and inner membranes are triple layered with approximately the same dimensions as reported for the mitochondria of the ciliated and goblet cells. The inner membranes are very few, often only one or two are present. Some of the large opaque granules have inside a very regular arrangement of small 60 Å thick opaque granules arranged in a crystallinic pattern. In the cytoplasm 0.5–1 micron long bundles of 30–40 Å wide fibrils are encountered. The nucleolus shows a characteristic structure of concentrically arranged thin membranes. The basal cells are believed to represent lymphocytes or white blood cells. They sometimes rest on the basement membrane, sometimes are encountered in the distal part of the intercellular spaces. They are bordered by a 110 Å thick cell membrane and have a rather opaque cytoplasm characterized by 160 Å thick opaque granules. A very small Golgi zone is present. The mitochondria, the mean width being 0.14 micron, have triple layered outer and inner membranes, where the less opaque central layer is 65–70 Å and the opaque layers 45–50 Å each. The basement membrane has a thickness of 600 Å. No inner structure has been resolved. The basement membrane is separated from adjacent parts of the ciliated, goblet, brush, and basal cells by a 250 Å wide less opaque space. Below the basement membrane is the lamina propria of the trachea, which is composed of collagen and elastin fibers together with fibroblasts, white blood cells and lymphocytes. The relationship between different types of tracheal epithelial cells in rat has been analyzed. There has been found no indication of a transformation of any type of cells observed into a different type of cell. The development of basal cells via supporting cells or intermediate cells to goblet cells or ciliated cells has not been noticed. On the contrary, all cells that in light microscopy could have been considered to be supporting or intermediate cells, we have been able to recognize as brush cells or as goblet cells to a varying degree filled with mucous granules. If the cells did not seem to reach the cell surface it has been found to be due to a diagonal direction of the sectioning. In this connection it should be emphasized that this relationship is valid only in rat where it is known that the epithelium is of a simple columnar type as distinct from the conditions in man, that epithelium being of a pseudostratified columnar type.This paper is based on a report given at the meeting of Deutsche Gesellschaft für Elektronenmikroskopie in Münster, March 28–31, 1955 and at the Scandinavian Electron Microscope Society Meeting in Stockholm, May 13, 1955.  相似文献   

9.
Summary The ependymal cells bordering the median eminence to the third ventricle are characterised by many microvillus-like projections and bulbous cell processes of the luminal plasma membrane. The latter contain many vesicles 500–1,000 Å in diameter. Cilia with 9+2 fibrillar pattern are seen occasionally. Adhesive devices in the from of zonula adhaerens and zonula occludens are found in the apical part of the intercellular junction. Unmyelinated nerve fibres with a mean diameter of 1 and containing many electron dense granules of 830–1,330 Å are often seen between the ependymal cells.Two types of glial cells are found in the median eminence. One is characterised by a nucleus with dense blods of chromatin and dense cytoplasm, and it is associated chiefly with the nerve fibres in the region of the hypothalamo-hypophysial tract. The other type of glial cell is characterised by fine, uniformly distributed chromatin in the nucleus and a relatively pale cytoplasm and branched processes which terminate perivascularly in the base of the median eminence.Myelinated nerve fibres are seen only in the region of the hypothalamo-hypophysial tract. Only a part of them contain electron dense granules 1,330–2,330 Å in diameter.Three types of unmyelinated nerve fibres can be distinguished in the median eminence according to the size of the electron dense granules they contain: 1. Nerve fibres containing granules 1,330–2,330 Å in diameter. They are seen primarily in the hypothalamo-hypophysial tract, but also in the zona externa; 2. those containing granules with a mean diameter of 1,330 Å; and 3. those containing granules with a mean diameter of 1,000 Å. The last two types are both encountered in the hypothalamo-hypophysial tract, the zona externa and the perivascular region of the base of the median eminence. Under high magnification, the membrane of the granules show evidence of a trilaminar structure and the content of the granules with a low electron density appeares to consist of small microvesicles or globular components. Besides granules, these nerve fibres contain vesicles mostly 420 Å in diameter whose relative number increases towards the perivascular nerve endings. 53 per cent of the inclusions in the hypothalamo-hypophysial tract are granules and 47 per cent vesicles, while the corresponding percentages for the zona externa are 40 and 60 and for the perivascular nerve endings 20 and 80.The mean width of the pericapillary space is 1 , but it varies greatly. It containes many collagen fibrils and fibroblasts. The capillary endothelium is frequently fenestrated and contains many vesicles of various sizes.Two types of granules-containing cells are found in the pars tuberalis depending on the size of the electron dense granules: 1. cells containing granules with a mean diameter of 1,330 Å: and 2. cells containing granules with a mean diameter of 2,000 Å. In addition, there are occasional follicular cavities filled with amorphous material, microvilli and cilia of 9+2 fibrillar pattern.Aided by a grant from the Sigrid Jusélius Stifteise.  相似文献   

10.
Summary The fine structure of the muscle of the urinary bladder in female rats is similar to that of other visceral muscles, although it is arranged in bundles of variable length, cross-section and orientation, forming a meshwork. When distended, the musculature is 100–120 m thick, with some variation and occasional discontinuity. Extended areas of cell-to-cell apposition with uniform intercellular space occur between muscle cells, whereas attachment plaques for mechanical coupling are less common than in other visceral muscles. There are no gap junctions between muscle cells. Many bundles of microfilaments and small elastic fibres run between the muscle cells. After chronic partial obstruction of the urethra, the bladder enlarges and is about 15 times heavier, but has the same shape as in controls; the growth is mainly accounted for by muscle hypertrophy. The outer surface of the hypertrophic bladder is increased 6-fold over the controls; the muscle is increased 3-fold in thickness, and is more compact. Mitoses are not found, but there is a massive increase in muscle cell size. There is a modest decrease in percentage volume of mitochondria, an increase in sarcoplasmic reticulum, and no appreciable change in the pattern of myofilaments. Gap junctions between hypertrophic muscle cells are virtually absent. Intramuscular nerve fibres and vesicle-containing varicosities appear as common in the hypertrophic muscle as in controls. There is no infiltration of the muscle by connective tissue and no significant occurrence of muscle cell death.  相似文献   

11.
Summary The adrenergic and cholinergic innervation to the rat iris has been studied at a light and electron microscopic level. Catecholamine fluorescence histochemistry showed adrenergic nerves to be present in both the dilatator and the constrictor pupillae regions. At a fine structural level the terminal innervation of the iris was studied and criteria for the differentiation between presumptive adrenergic and presumptive cholinergic axon terminals were examined. To aid this examination presumptive adrenergic axons were either labelled with the false adrenergic transmitter, 5-hydroxydopamine, or chemical sympathectomy performed using 6-hydroxydopamine. The value of using acetylcholinesterase staining as a marker for cholinergic nerve terminals was also studied.Results showed a mixed adrenergic/cholinergic innervation to the dilatator pupillae. In the constrictor pupillae an exclusively cholinergic innervation was found although adrenergic and cholinergic nerves were found supplying the blood vessels and at the dilatator-constrictor interface. These findings are discussed with regard to innervation-function relationships in the iris.  相似文献   

12.
Summary The moderator band in the heart of the ox and goat contains bundles of Purkinje fibers and nerve fibers separated by connective tissue. The axons are mostly unmyelinated and embedded in the cytoplasm of Schwann cells.Small bundles of axons run close to the Purkinje fibers. The axons dilate into varicosities 0.5 to 1.6 in diameter (mean 0.95 ), containing three types of vesicles: 1) agranular vesicles with a diameter of 400–500 Å, 2) large dense-cored vesicles with a diameter of 800–1200 Å, 3) small dense-cored vesicles with a diameter of 500 Å. Most varicosities contain agranular vesicles together with a few large dense-cored vesicles.The gap between the varicosities and the nearest Purkinje fiber is unusually wide and normally varies between 0.3 and 0.8 . No intimate nerve-Purkinje fiber contacts, with a cleft of 200 Å, were observed.  相似文献   

13.
Summary The epithelium regenerating after a surface lesion of the cornea forms a new basement membrane. This process begins 6–8 days after the lesion when the wound is completely covered, and epithelial cells have ceased to migrate. Only that part of the epithelial cells facing the stroma is involved. First, tufts of fine filamentous structures (about 30 Å thick) appear on the internal side of the plasma membrane, and apparently penetrate it reaching the extracellular space where they form a loose network. This then differentiates into two discrete layers, a very thin discontinuous one, restricted to areas with tufts, very close to the plasma membrane (juxtamembranous layer), and a thick continuous layer, the basement membrane proper, parallel to and much further away from the plasma membrane. The basement membrane appears to be the product of cytoplasmic secretion by epithelial cells, and there is no evidence for connective tissue cells taking part in this process.Supported by the Deutsche Forschungsgemeinschaft.  相似文献   

14.
Summary Nematocytes (stinging cells) of hydra tentacles are anchored to the basement membrane by peculiar complex junctions in which a flattened tongue of an epithelial cell is interposed between the nematocyte and the basement membrane. In this paper we describe the arrangement of these junctions with emphasis on how they are related to the architecture of the epithelial cell. Each epithelial cell, called a battery cell, harbors 10–20 nematocytes and bears muscle processes that extend along the basement membrane. The epithelial cell component of the complex junction is usually a lateral extension of a muscle process. All nematocytes within a battery cell make junctions with muscle processes of the same (resident) epithelial battery cell despite the presence of numerous muscle processes from adjacent (foreign) cells. Some nematocytes make junctions with several resident processes, spanning the foreign processes to do so. Most junctions reside near the proximal ends of the muscle processes. New findings are reported on the substructure of the junctions. They are composed of aggregates of smaller elements, and the cytoskeleton within the complexes has a pronounced longitudinal organization. These observations are consistent with a suggestion that the complex junctions develop by aggregation of smaller junctional units originating elsewhere on the cells.  相似文献   

15.
Resting membrane potential of both innervated and denervated rat diaphragm muscle fibers was investigated when the concentration of potential-producing ions was changed in the external fluid and following treatment with furosemide. It was found that equilibrium potential ( ) equalled resting potential level in innervated muscle for Cl, but shifts to more positive values compared with resting membrane potential following section of the nerve. Furosemide retards development of post-denervation depolarization of the muscle membrane. It is deduced that trophic influences originating from the motor nerve activates the furosemide-sensitive Cl influx system, leading to raised intracellular concentration of Cl, a shift in (ECl) and depolarization of the muscle membrane.S. V. Kurashov Medical Institute, Minsitry of Health of the RSFSR, Kazan'. Translated from Neirofiziologiya, Vol. 19, No. 6, pp. 766–771, November–December, 1987.  相似文献   

16.
Distribution of total creatine (free creatine + phosphocreatine) between two subcellular macrocompartments – mitochondrial matrix space and cytoplasm – in heart and skeletal muscle cells was reinvestigated by using a permeabilized cell technique. Isolated cardiomyocytes were treated with saponin (50 g/ml for 30 min or 600 g/ml for 1 min) to open the outer cellular membrane and release the metabolites from cytoplasm (cytoplasmic fraction, CF). All mitochondrial population in permeabilized cells remained intact: the outer membrane was impermeable for exogenous cytochrome c, the acceptor control index of respiration exceeded 10, the mitochondrial creatine kinase reaction was fully coupled to the adenine nucleotide translocator. Metabolites were released from mitochondrial fraction (MF) by 2–5% Triton X100. Total cellular pool of free creatine + phosphocreatine (69.6 ± 2.1 nmoles per mg of protein) was found exclusively in CF and was practically absent in MF. When fibers were prepared from perfused rat hearts, cellular distribution of creatine was not dependent on functional state of the heart and only slightly modified by ischemia. It is concluded that there is no stable pool of creatine or phosphocreatine in the mitochondrial matrix in the intact muscle cells, and the total creatine pool is localized in only one macrocompartment – cytoplasm.  相似文献   

17.
Summary The surface structure of the iris in the rat eye was studied by light and electron microscopy.The anterior surface of the rat iris is covered with a discontinuous layer of large, polygonal endothelial cells with microvilli on their surface. Crypts and holes between adjacent endothelial cells extend into the stroma and form there a complicated network of interconnected spaces occupying about one half or more of the volume of the pupillary part of the stroma. The crypts are occasionally partly covered with endothelial cells. The posterior surface is covered with a continuous layer of polyhedronal epithelial cells. These are covered with many folds and processes, partly masked by an amorphous coat. The sphincter pupillae and dilatator muscles are possible to recognize on the scanning electron micrographs as well as blood vessels and nerve fibers in the iris stroma.The endothelial cells show many structural similarities with the endothelial cells on the cornea, probably reflecting their common origin. The results obtained, especially those from the scanning electron microscopic studies, are discussed and interpreted in relation to previous studies. The advantages in using different light and electron microscopic techniques are stressed.Supported by grants from Magnus Bergwall's Stiftelse and the Swedish Medical Research Council (B71-12X-2543-03).  相似文献   

18.
Summary The endothelia of Tubifex tubifex Müller consist of myoendothelial cells, chloragocytes, or podocytes. The latter seem to occur only as windows on the ventral vessel which has an endothelium of myoendothelial cells elsewhere. The podocytes are large cells, with several processes on the inner side which ramify into several pedicels. These are aligned upon the outside of the basement membrane which lines the inside of the endothelium. The gaps between adjacent pedicels are about 40 nm wide. In capillaries fenestrated endothelia occur with irregular spacings measuring up to 0.4–1 m. A diaphragm in podocytes or capillary fenestrations do not seem to exist. The basement membrane is the only continuous layer lining the blood vessels and capillaries of Tubifex with a rather uniform diameter in the range of 50 nm. It is the only permeability barrier between blood and coelomic fluid.  相似文献   

19.
Summary Following observation of conical groups of stiff, but motile cilia on the tentacles of the branchial crown of Sabella pavonina, these were examined with the electron microscope. The bundles consist of about 40 unenclosed standard cilia supported by one or two primary sense cells with centrally directed axons of 0.1–0.2 diameter. Axons in the distal portions of the branchial crown occur in small bundles surrounded by a basement membrane. More centrally, glial elements appear and the nerves are surrounded by a collagenous sheath. The branchial nerve trunk shows similarities in organisation to other previously investigated annelid central nervous tissue in that the whole nerve is surrounded by a fibrous sheath central to which there is a layer of glial cells with processes penetrating a central neuropile. The 0.1–0.2 axons commonly occur in glial-enveloped groups of < 40 whilst other axons of larger and mixed diameter are found together.Each tentacle has two branchial nerves on the oral side, and each nerve gives rise to two small 75-axon branches running to each pinnule. The branchial nerves fuse to form the branchial nerve trunk running to the supra-oesophageal ganglia.Sections of the branchial nerves of the branchial crown at progressively more central levels show that the branchial nerve trunk contains enough axons of 0.1–0.2 diameter to account for all the sensory cells on the tentacles. This is taken as evidence for the sensory cells having axons terminating within the central nervous system and that there is no peripheral confluence or fusion of these afferent axons.  相似文献   

20.
Summary Neuromuscular junctions and close membrane apposition between body wall muscle cells of Ascaris lumbricoides (var. suum) have been examined with the light and electron microscopes. It was found that the body wall muscle cells send out elongate processes from their basal, myofibril containing portion to terminate on dorsal and ventral nerves. When observed with the aid of the electron microscope the neuromuscular junctions were seen to consist of several muscle cell processes in apposition to a single axon. The intersynaptic cleft was approximately 350–500 Å wide. Both the axolemma and sarcolemma were triple layered membranes which were 75–80 Å thick. Electron dense patches were observed at intervals on the apposed membranes which were due to increased thickness of the inner membrane leaflets of axolemma and sarcolemma. Muscle cell membranes, at the level of the neuromuscular junction, were in close apposition resulting in an apparently five-layered membrane complex which was 170–210 Å thick. The sarcolemmata in these regions were separated by 10–50 Å. Presynaptic axons contained mitochondria, microtubules which were 180–270 Å in diameter, and two, morphologically distinct types and sizes of synaptic vesicles. One was 200–600 Å in diameter, with a single, triple-layered membrane bounding a center of low electron density. The other was 600–1200 Å in diameter, with a single, triple-layered membrane bounding a central, electron dense granule of 500–800 Å size.The functional significances of the close membrane appositions between body wall muscle cells and of the two types of synaptic vesicles found at the neuromuscular junctions of Ascaris lumbricoides were discussed with respect to their possible role in neuromuscular physiology.Supported by U.S.P.H.S. Grant No. NB-01528 and Research Career Development Award No. 9-K3-NB-15255. — The author wishes to express his grateful appreciation for the excellent technical assistance given by Miss Gabrielle Rouiller during the course of this investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号