首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beta-amyloid (Abeta) is a major protein component of senile plaques in Alzheimer's disease, and is neurotoxic when aggregated. The size of aggregated Abeta responsible for the observed neurotoxicity and the mechanism of aggregation are still under investigation; however, prevention of Abeta aggregation still holds promise as a means to reduce Abeta neurotoxicity. In research presented here, we show that Hsp20, a novel alpha-crystallin isolated from the bovine erythrocyte parasite Babesia bovis, was able to prevent aggregation of denatured alcohol dehydrogenase when the two proteins are present at near equimolar levels. We then examined the ability of Hsp20 produced as two different fusion proteins to prevent Abeta amyloid formation as indicated by Congo Red binding; we found that not only was Hsp20 able to dramatically reduce Congo Red binding, but it was able to do so at molar ratios of Hsp20 to Abeta of 1 to 1000. Electron microscopy confirmed that Hsp20 does prevent Abeta fibril formation. Hsp20 was also able to significantly reduce Abeta toxicity to both SH-SY5Y and PC12 neuronal cells at similar molar ratios. At high concentrations of Hsp20, the protein no longer displays its aggregation inhibition and toxicity attenuation properties. Size exclusion chromatography indicated that Hsp20 was active at low concentrations in which dimer was present. Loss of activity at high concentrations was associated with the presence of higher oligomers of Hsp20. This work could contribute to the development of a novel aggregation inhibitor for prevention of Abeta toxicity.  相似文献   

2.
Fibrillar inclusions are a characteristic feature of the neuropathology found in the alpha-synucleinopathies such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Familial forms of alpha-synucleinopathies have also been linked with missense mutations or gene multiplications that result in higher protein expression levels. In order to form these fibrils, the protein, alpha-synuclein (alpha-syn), must undergo a process of self-assembly in which its native state is converted from a disordered conformer into a beta-sheet-dominated form. Here, we have developed a novel polypeptide property calculator to locate and quantify relative propensities for beta-strand structure in the sequence of alpha-syn. The output of the algorithm, in the form of a simple x-y plot, was found to correlate very well with the location of the beta-sheet core in alpha-syn fibrils. In particular, the plot features three peaks, the largest of which is completely absent for the nonfibrillogenic protein, beta-syn. We also report similar significant correlations for the Alzheimer's disease-related proteins, Abeta and tau. A substantial region of alpha-syn is capable [corrected] of converting from its disordered conformation into a long [corrected] alpha-helical protein. We have developed the aforementioned algorithm to locate and quantify the alpha-helical hydrophobic moment in the amino acid sequence of alpha-syn. As before, the output of the algorithm, in the form of a simple x-y plot, was found to correlate very well with the location of alpha-helical structure in membrane bilayer-associated alpha-syn.  相似文献   

3.
Increasing evidence indicates that polypeptide aggregation often involves a nucleation and a growth phase, although the relationship between the factors that determine these two phases has not yet been fully clarified. We present here an analysis of several mutations at different sites of the Abeta(1-40) peptide, including those associated with early onset forms of the Alzheimer's disease, which reveals that the effects of specific amino acid substitutions in the sequence of this peptide are strongly modulated by their structural context. Nevertheless, mutations at different positions perturb in a correlated manner the free energies of aggregation as well as the lag times and growth rates. We show that these observations can be rationalized in terms of the intrinsic propensities for aggregation of the Abeta(1-40) sequence, thus suggesting that, in the case of this peptide, the determinants of the thermodynamics and of the nucleation and growth of the aggregates have a similar physicochemical basis.  相似文献   

4.
Although soluble oligomeric and protofibrillar assemblies of Abeta-amyloid peptide cause synaptotoxicity and potentially contribute to Alzheimer's disease (AD), the role of mature Abeta-fibrils in the amyloid plaques remains controversial. A widely held view in the field suggests that the fibrillization reaction proceeds 'forward' in a near-irreversible manner from the monomeric Abeta peptide through toxic protofibrillar intermediates, which subsequently mature into biologically inert amyloid fibrils that are found in plaques. Here, we show that natural lipids destabilize and rapidly resolubilize mature Abeta amyloid fibers. Interestingly, the equilibrium is not reversed toward monomeric Abeta but rather toward soluble amyloid protofibrils. We characterized these 'backward' Abeta protofibrils generated from mature Abeta fibers and compared them with previously identified 'forward' Abeta protofibrils obtained from the aggregation of fresh Abeta monomers. We find that backward protofibrils are biochemically and biophysically very similar to forward protofibrils: they consist of a wide range of molecular masses, are toxic to primary neurons and cause memory impairment and tau phosphorylation in mouse. In addition, they diffuse rapidly through the brain into areas relevant to AD. Our findings imply that amyloid plaques are potentially major sources of soluble toxic Abeta-aggregates that could readily be activated by exposure to biological lipids.  相似文献   

5.
The lack of understanding of amyloid fibril formation at the molecular level is a major obstacle in devising strategies to interfere with the pathologies linked to peptide or protein aggregation. In particular, little is known on the role of intermediates and fibril elongation pathways as well as their dependence on the intrinsic tendency of a polypeptide chain to self-assembly by β-sheet formation (β-aggregation propensity). Here, coarse-grained simulations of an amphipathic polypeptide show that a decrease in the β-aggregation propensity results in a larger heterogeneity of elongation pathways, despite the essentially identical structure of the final fibril. Protofibrillar intermediates that are thinner, shorter and less structured than the final fibril accumulate along some of these pathways. Moreover, the templated formation of an additional protofilament on the lateral surface of a protofibril is sometimes observed as a collective transition. Conversely, for a polypeptide model with a high β-aggregation propensity, elongation proceeds without protofibrillar intermediates. Therefore, changes in intrinsic β-aggregation propensity modulate the relative accessibility of parallel routes of aggregation.  相似文献   

6.
Alzheimer''s disease is characterized by the presence of extraneuronal amyloid plaques composed of amyloid-beta (Aβ) fibrillar aggregates in the brains of patients. In mouse models, it has previously been shown that atorvastatin (Ator), a cholesterol-lowering drug, has some reducing effect on the production of cerebral Aβ. A meta-analysis on humans showed moderate effects in the short term but no improvement in the Alzheimer''s Disease Assessment Scale—Cognitive Subscale behavioral test. Here, we explore a potential direct effect of Ator on Aβ42 aggregation. Using NMR-based monomer consumption assays and CD spectroscopy, we observed a promoting effect of Ator in its original form (Ator-calcium) on Aβ42 aggregation, as expected because of the presence of calcium ions. The effect was reversed when applying a CaCO3-based calcium ion scavenging method, which was validated by the aforementioned methods as well as thioflavin-T fluorescence assays and transmission electron microscopy. We found that the aggregation was inhibited significantly when the concentration of calcium-free Ator exceeded that of Aβ by at least a factor of 2. The 1H–15N heteronuclear single quantum correlation and saturation-transfer difference NMR data suggest that calcium-free Ator exerts its effect through interaction with the 16KLVF19 binding site on the Aβ peptide via its aromatic rings as well as hydroxyl and methyl groups. On the other hand, molecular dynamics simulations confirmed that the increasing concentration of Ator is necessary for the inhibition of the conformational transition of Aβ from an α-helix-dominant to a β-sheet-dominant structure.  相似文献   

7.
The effects of oligopeptides on the secondary structures of Abeta and NAC, a fragment of alpha-synuclein protein, were studied by circular dichroism (CD) spectra. The effects of oligopeptides on the amyloid fibril formation were also studied by fluorescence spectra due to thioflavine-T. The oligopeptides were composed of a fragment of Abeta or NAC and were interposed by acidic or basic amino acid residues. The peptide, Ac-ELVFFAKK-NH2, which involved a fragment Leu-Val-Phe-Phe-Ala at Abeta(17-21), had no effect on the secondary structures of Abeta(1-28) in 60% or 90% trifluoroethanol (TFE) solutions at both pH 3.2 and pH 7.2. However, it showed pronounced effects on the secondary structure of Abeta(1-28) at pH 5.4. The Ac-ELVFFAKK-NH2 reduced the alpha-helical content, while it increased the beta-sheet content of Abeta(1-28). In phosphate buffer solutions at pH 7.0, Ac-ELVFFAKK-NH2 had little effect on the secondary structures of Abeta(1-28). However, it accelerated amyloid fibril formation when monitored by fluorescence spectra due to thioflavine-T. On the other hand, LPFFD, a peptide known as a beta-sheet breaker, caused neither an appreciable extent of change in the secondary structure nor amyloid fibril formation in the same buffer solution. The peptide, Ac-ETVK-NH2, which involved a fragment Thr-Val at NAC(21-22), had no effect on the secondary structure of NAC in 90% TFE and in isotonic phosphate buffer. However, Ac-ETVK-NH2 in water with small amounts of NaN3 and hexafluoroisopropanol greatly increased the beta-sheet content of NAC after standing the solution for more than 1 week. Interestingly, in this solution. Ac-ETVK-NH2, accelerated the fibril formation of NAC. It was concluded that an oligopeptide that involves a fragment of amyloidogenic proteins could be a trigger for the formation of amyloid plaques of the proteins even when it had little effect on the secondary structures of the proteins as monitored by CD spectra for a short incubation time.  相似文献   

8.
Senile systemic amyloidosis (SSA) is caused by amyloid deposits of wild-type transthyretin in various organs. Amyloid deposits from SSA contain large amounts of the C-terminal fragments starting near amino acid residue 50 as well as full-length transthyretin. Although a number of previous studies suggest the importance of the C-terminal fragments in the pathogenesis of SSA, little is known about the structure and aggregation properties of the C-terminal fragments of transthyretin. To understand the role of C-terminal fragments in SSA, we examined the effects of the truncation of the N-terminal portions on the structure and aggregation properties of wild-type transthyretin. The deletion mutant lacking 50 N-terminal residues was largely unfolded in terms of secondary and tertiary structure, leading to self-assembly into spherical aggregations under nearly physiological conditions. By contrast, the deletion mutant lacking 37 N-terminal residues did not have a strong tendency to aggregate, although it also adopted a largely unfolded conformation. These results suggest that global unfolding of transthyretin by proteolysis near amino acid residue 50 is an important step of self-assembly into aggregations in SSA.  相似文献   

9.
We have used solution state NMR spectroscopy to characterize the secondary structure and backbone dynamics of the proteins beta- and gamma-synuclein in their detergent micelle-bound conformations. Comparison of the results with those previously obtained for the Parkinson's disease-linked protein alpha-synuclein shows that structural differences between the three homologous synuclein family members are directly related to variations in their primary amino acid sequences. An 11-residue deletion in the lipid-binding domain of beta-synuclein leads to the destabilization of an entire segment of the micelle-bound helical structure containing the deletion site. The acidic C-terminal tail region of gamma-synuclein, which displays extensive sequence divergence, is more highly disordered than the corresponding regions in the other two family members. The observed structural differences are likely to mediate functional variations between the three proteins, with differences between alpha- and beta-synuclein expected to revolve around their lipid interactions, while differences in gamma-synuclein function are expected to result from different protein-protein interactions mediated by its unique C-terminal tail.  相似文献   

10.
Protein aggregation is a ubiquitous phenomenon significant to all aspects of science. Notably, the formation of protein aggregates is frequently encountered in biochemical research and biopharmaceutical industry. Formation of protein aggregates is generally regarded to be associated with partially folded intermediate species that are susceptible to self-association due to the exposure of hydrophobic core. Evidence supports the concept that the formation of aggregates in vitro is a generic property of proteins. In human etiology, more than 20 different devastating human diseases have been reported to be associated with protein aggregation. Although protein aggregation diseases have been the center of intense research, much remains to be learned regarding the underlying molecular mechanisms. In this review, the general background information on protein aggregation is first provided. Next, we summarize the properties, characteristics and causes of protein aggregates. Finally, from the perspectives of epidemiology, pathogenesis, existing mechanisms, relevant hypotheses, and current as well as potential therapeutic approaches, two examples of protein aggregation diseases, Alzheimer's disease and cataract, are briefly discussed. Importantly, while a variety of molecules have been suggested, the effective therapeutic drugs for curing the diseases involving protein aggregation have yet to be identified. We believe that a better understanding of the mechanisms of protein aggregation process and an extensive investigation into the drug penetration, efficacy, and side effects will certainly aid in developing the successful pharmacological agents for these diseases.  相似文献   

11.
The aggregation of Aβ peptide into amyloid fibrils in the brain is associated with Alzheimer's disease (AD). Inhibition of Aβ aggregation seemed a potential treatment for AD. It was previously shown that a short fragment of Aβ peptide (KLVFF, 16‐20) bound Aβ inhibited its aggregation. In this work, using KLVFF peptide, we synthesized two peptide families and then evaluated their inhibitory capacities by conventional assays such as thioflavin T (ThT) fluorescence spectroscopy, turbidity measurement, and the 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium (MTS). The effect of peptide terminal groups on its inhibitory activity was first studied. Subsequently, the influence of halogenated amino acids on peptide anti‐aggregation properties was investigated. We found that iodinated peptide with amine in the N and amide in the C termini, respectively, was the best inhibitor of Aβ fibers formation. Halogenated peptides seemed to decrease the number of Aβ fibrils; however, they did not reduce Aβ cytotoxicity. The data obtained in this work seemed promising in developing potential peptide drugs for treatment of AD.  相似文献   

12.
Oxidative stress has been implicated in the pathogenesis and progression of several tauopathies, including Alzheimer''s disease. The deposition of fibrillar inclusions made of tau protein is one of the pathological hallmarks of these disorders. Although it is becoming increasingly evident that the specific fibril structure may vary from one tauopathy to another and it is recognized that different types of isoforms (three-repeat and four-repeat tau) can be selectively deposited, little is known about the role oxidation may play in aggregation. Four-repeat tau contains two cysteines that can form an intramolecular disulfide bond, resulting in a structurally restrained compact monomer. There is discrepancy as to whether this monomer can aggregate or not. Using isolated four-repeat tau monomers (htau40) with intramolecular disulfide bonds, we demonstrate that these proteins form fibrils. The fibrils are less stable than fibrils formed under reducing conditions but are highly effective in seeding oxidized tau monomers. Conversely, a strong seeding barrier prevents incorporation of reduced tau monomers, tau mimics in which the cysteines have been replaced by alanines or serines, and three-repeat tau (htau23), a single-cysteine isoform. The barrier also holds true when seed and monomer types are reversed, indicating that oxidized and reduced tau are incompatible with each other. Surprisingly, fibrils composed of compact tau disaggregate upon reduction, highlighting the importance of the intramolecular disulfide bond for fibril stability. The findings uncover a novel binary redox switch that controls the aggregation and disaggregation of these fibrils and extend the conformational spectrum of tau aggregates.  相似文献   

13.
Although Alzheimer's disease (AD) is characterized by the extracellular deposition of fibrillar aggregates of beta‐amyloid (Aβ), transient oligomeric species of Aβ are increasingly implicated in the pathogenesis of AD. Natively unfolded monomeric Aβ can misfold and progressively assemble into fibrillar aggregates, following a well‐established “on pathway” seeded‐nucleation mechanism. Here, we show that three simple saccharides, mannose, sucrose, and raffinose, alter Aβ aggregation kinetics and morphology. The saccharides inhibit formation of Aβ fibrils but promote formation of various oligomeric aggregate species through different “off pathway” aggregation mechanisms at 37°C but not at 60°C. The various oligomeric Aβ aggregates formed when coincubated with the different saccharides are morphologically distinct but all are toxic toward SH‐SY5Y human neuroblastoma cells, increasing the level of toxicity and greatly prolonging toxicity compared with Aβ alone. As a wide variety of anti‐Aβ aggregation strategies are being actively pursued as potential therapeutics for AD, these studies suggest that care must be taken to ensure that the therapeutic agents also block toxic oligomeric Aβ assembly as well as inhibit fibril formation. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

14.
Abeta40 and Abeta42 are the major forms of amyloid beta peptides (Abeta) in the brain. Although Abeta42 differs from Abeta40 by only two residues, Abeta42 is much more prone to aggregation and more toxic to neurons than Abeta40. To probe whether dynamics contribute to such dramatic difference in function, backbone ps-ns dynamics of native Abeta monomers were characterized by 15N spin relaxation at 273.3 K and 800 MHz. Abeta42 aggregates much faster than Abeta40 in the NMR tube. The effect of Abeta aggregation was removed from the relaxation measurement by interleaved data collection. R1, R2 and nuclear Overhauser enhancement (NOE) values are similar in Abeta40 and Abeta42, except at the C terminus, indicating Abeta42 and Abeta40 monomers have identical global motions. Comparisons of the spectral density function J(0.87omegaH) and order parameters (S2) indicate that the Abeta42 C terminus is more rigid than the Abeta40 C terminus. At 280.4 K and 287.6 K, the Abeta42 C terminus remains more rigid than the Abeta40 C terminus, suggesting such a dynamical difference is likely present at the physiological temperature. The Abeta42 monomer likely has less configurational entropy due to restricted motion in the C terminus and may pay a smaller entropic price to form fibrils than the Abeta40 monomer. We hypothesize that the entropic difference between Abeta40 and Abeta42 monomers might partly account for the fact that Abeta42 is the major Abeta species in parenchymal senile plaques in most Alzheimer's diseased brains in spite of the predominance of Abeta40 in plasma. The increased rigidity of the Abeta42 C terminus is likely due to its pre-ordering for beta-conformation present in soluble oligomers and fibrils. The Abeta42 C terminus may therefore serve as an internal seed for aggregation.  相似文献   

15.
Raimon Sabate 《朊病毒》2014,8(3):233-239
The conformational diseases, linked to protein aggregation into amyloid conformations, range from non-infectious neurodegenerative disorders, such as Alzheimer''s disease (AD), to highly infectious ones, such as human transmissible spongiform encephalopathies (TSEs). They are commonly known as prion diseases. However, since all amyloids could be considered prions (from those involved in cell-to-cell transmission to those responsible for real neuronal invasion), it is necessary to find an underlying cause of the different capacity to infect that each of the proteins prone to form amyloids has. As proposed here, both the intrinsic cytotoxicity and the number of nuclei of aggregation per cell could be key factors in this transmission capacity of each amyloid.  相似文献   

16.
Amyloid-β oligomers (Aβo) are the most pathologically relevant Aβ species in Alzheimer's disease (AD), because they induce early synaptic dysfunction that leads to learning and memory impairments. In contrast, increasing VEGF (Vascular Endothelial Growth Factor) brain levels have been shown to improve learning and memory processes, and to alleviate Aβ-mediated synapse dysfunction. Here, we designed a new peptide, the blocking peptide (BP), which is derived from an Aβo-targeted domain of the VEGF protein, and investigated its effect on Aβ-associated toxicity. Using a combination of biochemical, 3D and ultrastructural imaging, and electrophysiological approaches, we demonstrated that BP strongly interacts with Aβo and blocks Aβ fibrillar aggregation process, leading to the formation of Aβ amorphous aggregates. BP further impedes the formation of structured Aβo and prevents their pathogenic binding to synapses. Importantly, acute BP treatment successfully rescues long-term potentiation (LTP) in the APP/PS1 mouse model of AD, at an age when LTP is highly impaired in hippocampal slices. Moreover, BP is also able to block the interaction between Aβo and VEGF, which suggests a dual mechanism aimed at both trapping Aβo and releasing VEGF to alleviate Aβo-induced synaptic damage. Our findings provide evidence for a neutralizing effect of the BP on Aβ aggregation process and pathogenic action, highlighting a potential new therapeutic strategy.  相似文献   

17.
Human alpha-synuclein is a small soluble protein abundantly expressed in neurons. It represents the principal constituent of Lewy bodies, the main neuropathological characteristic of Parkinson's disease. The fragment corresponding to the region 61-95 of the protein, originally termed NAC (non-amyloid-beta component), has been found in amyloid plaques associated with Alzheimer's disease, and several reports suggest that this region represents the critical determinant of the fibrillation process of alpha-synuclein. To better understand the aggregation process of alpha-synuclein and the role exerted by the biological membranes, we studied the structure and the topology of the NAC region in the presence of SDS micelles, as membrane-mimetic environment. To overcome the low solubility of this fragment, we analyzed a recombinant polypeptide corresponding to the sequence 57-102 of alpha-synuclein, which includes some charged amino acids flanking the NAC region. Three distinct helices are present, separated by two flexible stretches. The first two helices are located closer to the micelle surface, whereas the last one seems to penetrate more deeply into the micelle. On the basis of the structural and topological results presented, a possible pathway for the aggregation process is suggested. The structural information described in this work may help to identify the appropriate target to reduce the formation of pathological alpha-synuclein aggregation.  相似文献   

18.
Haass C 《The EMBO journal》2004,23(3):483-488
In 1959, Dave Brubeck and Paul Desmond revolutionized modern jazz music by composing their unforgettable Take Five in 5/4, one of the most defiant time signatures in all music. Of similar revolutionary importance for biomedical and basic biochemical research is the identification of the minimal set of genes required to obtain a deadly time bomb ticking in all of us: Alzheimer's disease. It now appears that one needs to Take Five genes to produce a deadly peptide by a proteolytic mechanism, which paradoxically is otherwise of pivotal importance for development and cell fate decisions.  相似文献   

19.
Ever since Rudolf Virchow in 1858 publicly announced his apprehension of neuroglia being a true connective substance, this concept has been evolving to encompass a heterogeneous population of cells with various forms and functions. We briefly compare the 19th–20th century perspectives on neuroglia with the up-to-date view of these cells as an integral, and possibly integrating, component of brain metabolism and signalling in heath and disease. We conclude that the unifying property of otherwise diverse functions of various neuroglial cell sub-types is to maintain brain homoeostasis at different levels, from whole organ to molecular.  相似文献   

20.
gamma-Secretase is an intramembrane cleaving protease involved in Alzheimer's disease. gamma-Secretase occurs as a high molecular weight complex composed of presenilin (PS1/2), nicastrin (NCT), anterior pharynx-defective phenotype 1 and PS enhancer 2. Little is known about the cellular mechanisms of gamma-secretase assembly. Here we demonstrate that the cytoplasmic tail of PS1 fulfills several functions required for complex formation, retention of unincorporated PS1 and gamma-secretase activity. The very C-terminus interacts with the transmembrane domain of NCT and may penetrate into the membrane. Deletion of the last amino acid is sufficient to completely block gamma-secretase assembly and release of PS1 from the endoplasmic reticulum (ER). This suggests that unincorporated PS1 is actively retained within the ER. We identified a hydrophobic stretch of amino acids within the cytoplasmic tail of PS1 distinct from the NCT-binding site, which is required to retain unincorporated PS1 within the ER. Deletion of the retention signal results in the release of PS1 from the ER and the assembly of a nonfunctional gamma-secretase complex, suggesting that at least a part of the retention motif may also be required for the function of PS1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号