首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Restoration of a high potential (HP) form of cytochrome b-559 (Cyt b-559) from a low potential (LP) form was the primary process in the reconstitution of O2-evolving center during the photoreactivation of Tris-inactivated chloroplasts. In normal chloroplasts, about 0.5 to 0.7 mol of Cyt b-559 was present in the HP form per 400 chlorophyll molecules. However, the HP form was converted to the LP form when the O2-evolving center was inactivated by 0.8 M alkaline Tris-washing (pH 9.1). The inactivation was reversible and both the Cyt b-559 HP form and the O2-evolving activity were restored by incubating the inactivated chloroplasts with weak light, Mn2+, Ca2+ and an electron donor (photoreactivation). The recovery of the HP form preceded the recovery of O2-evolving activity. 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) did not inhibit the recovery of the HP form. Thus, the recovery of Cyt b-559 HP form was the primary reaction in the photoreactivation, which was stimulated by the light-induced redox reaction of the PS-II core center.Abbreviations ASC ascorbate - BSA bovine serum albumin - Chl chlorophyll - Cyt b-559 HP form high potential form of cytochrome b-559 - Cyt b-559 LP form low potential form of cytochrome b-559 - Cyt b-559 VLP form very low potential form of cytochrome b-559 - Cyt f cytochrome f - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCPIP 2,6-dichlorophenol indophenol - Hepes N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid - HQ hydroquinone - SHN chloroplast-preparation medium containing 0.4 M sucrose, 50 mM Hepes-Na (pH 7.8) and 20 mM NaCl - PS-II Photosystem II  相似文献   

2.
The inactivated O2-evolving center of Tris-washed chloroplasts was reactivated by DCPIP-treatment and photoreactivation in the presence of Mn2+, Ca2+, DTT and weak light. Many electron donors (Asc and reduced DCPIP, etc.) were found to be suitable substitutes for DTT. By studying the anaerobic inhibition of the reactivation, the electron acceptors O2, NADP+, etc. were also found to be essential factors in photoreactivation. Weak light stimulated the chloroplast electron transport from the above-mentioned electron donors to the electron acceptor and effected the photoreactivation. More than 280 electrons were transported to NADP+ in the anaerobic photoreactivation of one unit of an O2-evolving center with 400 Chl. Electron transport in the reactivation was inhibited by omitting DTT or Mn2+ ion, and by adding DCMU. The photoreactivated chloroplasts incorporated about 2 Mn by 400 Chl. Omission of DTT in the reactivation caused chloroplasts in the weak light to bind large amounts of excess Mn.Abbreviations Asc ascorbate - Chl chlorophyll - DCPIP 2, 6-dichlorophenol indophenol - DPC diphenyl carbazide - DTT dithiothreitol - Fd ferredoxin - STN a chloroplast preparation medium, containing 0.4 M sucrose, 0.05 M Tris-Cl and 0.01 M NaCl (pH 7.8 and 8.0) - TMPD tetramethyl-p-phenylenediamine  相似文献   

3.
Divalent salt-washing of O2-evolving PS II particles caused total liberation of 33-, 24- and 16-kDa proteins, but the resulting PS II particles retained almost all amounts of Mn present in initial particles. The retained Mn was EPR-silent when the particles were kept in high concentrations of divalent salt. By divalent salt-washing, the activity of diphenylcarbazide (DPC) photooxidation was not affected at all, neither suppressed nor enhanced, while O2 evolution was totally inactivated. These results indicate that Mn can be kept associated with PS II particles even after liberation of the 33-kDa protein, and suggest that the 33-kDa protein is probably not responsible for binding Mn onto membranes, but is possibly responsible for maintaining the function of Mn atoms in the O2-evolving center.  相似文献   

4.
Illumination of chloroplasts in the presence of NH2OH (2 mm) leads to the destruction of all system II activities without affecting system I activity. The system II primary charge separation remains intact when incubated with this agent in the dark with release of one of the system II Mn pools and simultaneous destruction of O2 evolving capacity. The size of the Mn pool associated with the O2 evolving center is calculated to be 4 Mn/O2-evolving center.  相似文献   

5.
The latent O2-evolving center in chloroplasts isolated from spruce [Picea abies (L.) Karst.] seedlings grown in the dark was readily activated by pre-illuminating the chloroplast suspension with weak white light. The photoactivation depended on pH with the optimum at pH 7–8, and was strongly stimulated by ascorbic acid. The optimal stimulation was also obtained at pH 7–8. The temperature dependence of the photoactivation suggested the involvement of some dark reaction in the activation process.  相似文献   

6.
An O2-evolving Photosystem II subchloroplast preparation was obtained from spinach chloroplasts, using low concentrations of digitonin and Triton X-100. The preparation showed an O2 evolution activity equivalent to 20% of the uncoupled rate of fresh broken chloroplasts, but had no significant Photosystem-I-dependent O2 uptake activity. The preparation showed a chlorophyll ab ratio of 1.9 and a P-700chlorophyll ratio of 12400. Absorption spectra at room temperature and fluorescence emission spectra of chlorophyll at 77 K suggested a significant decrease in Photosystem I antenna chlorophylls in the O2-evolving Photosystem II preparation.  相似文献   

7.
An O2-evolving Photosystem (PS) II preparation was isolated from maize by a Triton X-100 procedure (Kuwabara, T. and Murata, N. (1982) Plant Cell Physiol. 23, 533–539). A highly active O2-evolving preparation was obtained which evolved O2 at 76% the rate of fresh chloroplasts (H2O → 2,6-dichloro-p-benzoquinone) and was very sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea. There was no detectable PS I activity in the preparation (2,3,5,6-tetramethyl-p-phenylenediamine → methyl viologen). When analyzed by lithium dodecyl sulfate (LDS) polyacrylamide gel electrophoresis the O2-evolving preparation was shown to be highly depleted in CP I, CF1, and devoid of cytochromes f and b-563 (the absence of which was confirmed by difference spectroscopy). The preparation was enriched in the PS II reaction center polypeptides I and II, the 34 kDa polypeptide (Metz, J., Wong, J. and Bishop, N.I. (1980) FEBS Lett. 114, 61–66), the Coomassie blue-stainable 32 kDa polypeptide (Kuwabara, T. and Murata, N. (1979) Biochim. Biophys. Acta 581, 228–236), LHCP-associated polypeptides and cytochrome b-559. Polypeptides of unknown function at 40.5, 25, 24, 22, 16.6 and 14 kDa were also present in the O2-evolving preparation. Triton X-114 phase partitioning (Bricker, T.M. and Sherman, L.A. (1982) FEBS Lett. 149, 197–202) indicated that the majority of these polypeptides were intrinsic. Only the polypeptides at 32, 25, 24 and 14 kDa were extrinsic. When examined by the octylglucoside procedure of Camm and Green (Camm, E.L. and Green, B.R. (1980) Plant Physiol. 66, 428–432) the PS II O2-evolving preparation was shown to contain the chlorophyll-proteins CP 27, CP 29, CP II1, D, and CP a-1 and CP a-2. Chlorophyll-proteins associated with PS I were highly depleted. The visible absorption spectra indicated an enrichment of chlorophyll b and carotenoids in the preparation. The 77 K fluorescence emission spectrum (excitation wavelength = 435 nm) exhibits a strong F-686 with little F-695 shoulder and a broad, low-intensity F-735 emission.  相似文献   

8.
Marie-José Delrieu 《BBA》1984,767(2):304-313
Treatments such as trypsinization (50 μg/ml per mg Chl for 1 h), osmotic shock of the chloroplasts or mild heating altered the oxygen evolution in such a way that the properties of the Photosystem II were simplified. After these treatments, the damping of the oscillation pattern of O2 yields induced by a flash series remained the same, irrespective of the level of inhibition induced by the treatment. This damping did not decrease with increasing flash energy, as observed in untreated chloroplasts. The light saturation curve of the S2 → S3 transition of the O2 evolving system no more exhibited the slow-increasing phase at high flash energy observed under normal conditions. The kinetic properties of the O2-evolving system were also simplified. After the treatments cited above, deactivation of S2 and S3 were identical and accelerated with respect to untreated chloroplasts. Turnover kinetics of the transitions S1 → S2 and S2 → S3 were also similar and simpler without a lag for S2 → S3. These results indicate that the treatments mentioned above disconnect one donor from the O2-evolving complex. This donor, under normal conditions, contributes to the increase of the quantum yield of the transition S2 → S3 at high flash energy. This donor is here denoted by D. Our results are in agreement with the following working hypothesis: the large miss, observed on the S2 → S3 transition without any contribution of the donor D, may be due to the fact that the system needs a conformation change of the O2-evolving complex in the S2 state, so that the main donor Y can oxidize the second H2O molecule in the water-splitting complex. In the inactive state corresponding to the absence of a conformation change, the donor D, being different in configuration, is likely to oxidize the S2 state into an S3 state at high light intensity.  相似文献   

9.
《FEBS letters》1985,183(2):245-250
The distribution of photosystem (PS) II centers between appressed and non-appressed domains of the thylakoid membranes has been investigated, using immunogold labeling, in C. reinhardtii and in spinach. We have used antibodies directed against the two main intrinsic subunits of the PS II center and against two extrinsic subunits of the O2-evolving site. 90% of the two intrinsic PS II antigens are located in the appressed membranes, in a density 3–3.5-fold higher than in the non-appressed regions. The same distribution is observed for the two extrinsic antigens. This result suggests that the O2-evolving system is associated with the PS II center, both in appressed and in non-appressed regions of the thylakoid membrane.  相似文献   

10.
Bicarbonate-dependent O2-evolving activity in dark-grown cotyledonsof Picea abies was measured with an oxygen electrode with differentpreillumination times. The activity showed a slight linear increasewith increasing preillumination time. On the other hand, O2-evolvingactivity (Hill activity) of chloroplasts prepared from preilluminateddark-grown cotyledons exhibited a characteristic change of asteep rise followed by a gradual increase with increasing preilluminationtime. The results obtained were discussed in connection withthe light activation of the latent, inactive O2-evolving centerin dark-grown cotyledons. (Received December 8, 1978; )  相似文献   

11.
Brief saturating light flashes were used to probe the mechanism of inactivation of O2 evolution by Tris in chloroplasts. Maximum inactivation with a single flash and an oscillation with period of four on subsequent flashes was observed. Analyses of the oscillations suggested that only the charge-collecting O2-evolving catalyst of photosystem II (S2-state) was a target of inactivation by Tris. This conclusion was supported by the following observations: (a) hydroxylamine preequilibration caused a three-flash delay in the inactivation pattern; (b) the lifetimes of the Tris-inactivable and S2-states were similar; and (c) reagents accelerating S2 deactivation decreased the lifetime of the inactivable state. Inactivation proved to be moderated by F, the precursor of Signal IIs, as shown by a one flash delay with chloroplasts having high abundance of F. Evidence was obtained for cooperativity effects in inactivation and NH3 was shown to be a competitive inhibitor of the Tris-induced inactivation. S2-dependent inactivation was inhibited by glutaraldehyde fixation of chloroplasts, possibly suggesting that inactivation proceeds via conformational changes of the S2-state.  相似文献   

12.
Michael Seibert  Jean Lavorel 《BBA》1983,723(2):160-168
Patterns of O2 evolution resulting from sequences of short flashes are reported for Photosystem (PS) II preparations isolated from spinach and containing an active, O2-evolving system. The results can be interpreted in terms of the S-state model developed to explain the process of photosynthetic water splitting in chloroplasts and algae. The PS II samples display damped, oscillating patterns of O2 evolution with a period of four flashes. Unlike chloroplasts, the flash yields of the preparations decay with increasing flash number due to the limited plastoquinone acceptor pool on the reducing side of PS II. The optimal pH for O2 evolution in this system (pH 5.5–6.5) is more acidic than in chloroplasts (pH 6.5–8.0). The O2-evolution, inactivation half-time of dark-adapted preparations was 91 min (on the rate electrode) at room temperature. Dark-inactivation half-times of 14 h were observed if the samples were aged off the electrode at room temperature. Under our conditions (experimental conditions can influence flash-sequence results), deactivation of S3 was first order with a half-time of 105 s while that of S2 was biphasic. The half-times for the first-order rapid phase were 17 s (one preflash) and 23 s (two preflashes). The longer S2 phase deactivated very slowly (the minimum half-time observed was 265 s). These results indicate that deactivation from S3 → S2 → S1, thought to be the dominant pathway in chloroplasts, is not the case for PS II preparations. Finally, it was demonstrated that the ratio of S1 to S0 can be set by previously developed techniques, that S0 is formed mostly from activated S3 (S4), and that both S0 and S1 are stable in the dark.  相似文献   

13.
In isolated barley chloroplasts, the presence of 2 millimolar ZnSO4 inhibits the electron transport activity of photosystem II, as measured by photoreduction of dichlorophenolindophenol, O2 evolution, and chlorophyll a fluorescence. The inhibition of photosystem II activity can be restored by the addition of the electron donor hydroxylamine or diphenylcarbazide, but not by benzidine and MnCl2. These observations suggest that Zn inhibits electron flow at the oxidizing side of photosystem II at a site prior to the electron donating site(s) of hydroxylamine and diphenylcarbazide. No inhibition of photosystem I-dependent electron transport by 3 millimolar ZnSO4 is observed. However, with concentrations of ZnSO4 above 5 millimolar, photosystem I activity is partially inactivated. Washing Zn2+-treated chloroplasts partially restores the O2-evolving activity.  相似文献   

14.
《BBA》1986,850(2):324-332
The structure of the Mn complex in the oxygen-evolving system and its mechanistic relation to photosynthetic oxygen evolution are poorly understood, though many studies have established that membrane-bound Mn plays an active role. Recently established procedures for isolating oxygen-evolving subchloroplast Photosystem II (PS II) preparations and the discovery of a light-induced multiline EPR signal attributable to the S2 state of the O2-evolving complex have facilitated the preparation of samples well characterized in the S1 and S2 states. We have used extended X-ray absorption fine structure (EXAFS) spectroscopy to probe the ligand environment of Mn in PS II particles from spinach, and in this report we present our results. The essential feature of the EXAFS results are that at least two Mn atoms per PS II reaction center occur as a binuclear species with a metal-metal distance of approx. 2.7 Å, with low Z atoms, N or O, at a distance of approx. 1.75 Å and at approx. 1.98 Å, which are characteristic of bridging and terminal ligands. These results agree well with those derived from whole chloroplasts that provided the first evidence for a binuclear manganese complex (Kirby, J.A., Robertson, A.S., Smith, J.P., Thompson, A.C., Cooper, S.R. and Klein, M.P. (1981) J. Am. Chem. Soc. 103, 5529–5537).  相似文献   

15.
Relative optical cross sections for flash-induced O2- and N2-productionwith water and 1 mM NH2OH as electron donors to PSII, respectively,as well as that for PSI-mediated O2-uptake have been measuredin tobacco chloroplasts by mass spectrometry. In the wild typetobacco these three reactions are driven by three populationsof photosynthetic units different with respect to the antennasize. The antenna size of O2-evolving units is twice as largecompared to the N2-evolving one, but both of these have thesame spectral characteristics in the far red region. In contrastto the wild type, the antenna sizes of O2- and N2-evolving unitsin the chlorophyll b-deficient tobacco mutant Su/su var. Aureaare the same as the sizes of the N2-evolying units in the wildtype chloroplasts. Taking into account the data of Thielen andVan Gorkom [Biochim. Biophys. Acta (1981) 635:111] on a strongdifference in the relative amounts of PSIIß and PSIIßin the mutant compared with the wild type (the ratio about 1: 3 and 3 : 1 , respectively) it is concluded that mainly thestroma-exposed PSIIß units are competent to N2-evolution. (Received November 11, 1993; Accepted April 25, 1994)  相似文献   

16.
《BBA》1985,807(1):64-73
Photosystem II (PS II) particles retaining a high rate of O2 evolution were prepared from a thermophilic cyanobacterium, Synechococcus vulcanus Copeland, and the composition and properties of their peripheral proteins were investigated. The following results were obtained. (1) The O2-evolving PS II particles of S. vulcanus contained only one peripheral protein with a molecular mass of 34000 which corresponded to the 33 kDa protein in higher plant PS II particles, but no other peripheral proteins corresponding to the 24 and 16 kDa proteins of higher plant PS II particles. (2) The cyanobacterial peripheral 34 kDa protein was removed from the particles by 1 M CaCl2-washing concomitant with total inactivation of O2 evolution, and the inactivated O2 evolution was reconstituted to 75% of the original activity by rebinding of this protein back to the washed particles. (3) The cyanobacterial peripheral 34 kDa protein rebound to CaCl2-washed spinach PS II particles and restored O2 evolution to an appreciable extent (28%). (4) The spinach peripheral 33 kDa protein rebound to CaCl2-washed PS II particles of S. vulcanus and partially restored O2 evolution (60%). These results suggested that the peripheral 34 kDa protein of S. vulcanus possesses the determinants for both binding and activity reconstitution identical with those of the peripheral 33 kDa protein of spinach.  相似文献   

17.
The inactivation of O2-evolving centers by NH2OH extraction was shown to be reversible. This reversal required light and manganese. This light-induced restoration of active O2-evolving centers was analyzed using three green algae and the blue-green alga, Anacystis nidulans. The following results were obtained: [List: see text]  相似文献   

18.
Membranes and PS II particles retaining high rates of O2-evolving activity have been isolated from the transformable cyanobacterium, Synechocystis sp. PCC6803. Membranes from cells grown under red light exhibit rates of O2-evolution ranging from 500–700 mole O2/mg chl/h. PS II particles are prepared by a simple procedure involving DEAE column chromatography of detergent extracts obtained by simultaneous treatment of membranes with octylglucoside and dodecylmaltoside. The isolated PS II fraction is enriched in polypeptides immunologically cross-reactive with polypeptides present in core reaction center preparations of spinach, exhibits 77 K fluorescence emission maxima at 685 and 696 nm, but not emission and absorption due to phycobilines and is capable of rates of O2-evolution exceeding 1000 mole O2/mg chl/h.Abbreviations DM dodecyl--D-maltoside - OG octyl--D-glucoside  相似文献   

19.
During photoreactivation of the O2-evolving center in Tris-inactivated/Mn-depletedthylakoids, a slow O2-consumption occurred. This O2-consumptionbecame detectable when the O2-evolving activity of thylakoidswas inactivated by Tris-treatment and decreased as photoreactivationproceeded. The O2-consumption and photoreactivation similarlyrequired Mn2+ at µM levels in addition to PSII electrondonors and shared severa common characteristics. Stimulationof O2-consumption and photoreactivation by these cofactors werealways accompanied by enhancement in chlorophyll fluorescenceinduction, suggesting the involvement of a Mehler-type reactionin photoreactivation. Although the electron transport due tothis O2-consumption was rapid enough to oxidize 4 Mn2+ ionsto reconstitute the tetranuclear Mn-cluster in each O2-evolvingcenter in a few seconds, actual recovery of O2-evolving activityoccurred more slowly in a few minutes. It was inferred thatphotoreactivation in Tris-inactivated thylakoids is not a simplephotooxidation of Mn22+ but involves more complicated processeswhich are coupled to the Mehlertype electron transport fromPSII to oxygen via PSI. (Received July 11, 1994; Accepted August 23, 1996)  相似文献   

20.
Lead ions are particularly dangerous to the photosynthetic apparatus, but little is known about the effects of trace metals, including Pb, on regulation of chloroplast redistribution. In this study a new effect of lead on chloroplast distribution patterns and movements was demonstrated in mesophyll cells of a small-sized aquatic angiosperm Lemna trisulca L. (star duckweed). An analysis of confocal microscopy images of L. trisulca fronds treated with lead (15 μM Pb2+, 24 h) in darkness or in weak white light revealed an enhanced accumulation of chloroplasts in the profile position along the anticlinal cell walls, in comparison to untreated plants. The rearrangement of chloroplasts in their response to lead ions in darkness was similar to the avoidance response of chloroplasts in plants treated with strong white light. Transmission electron microscopy X-ray microanalysis showed that intracellular chloroplast arrangement was independent of the location of Pb deposits, suggesting that lead causes redistribution of chloroplasts, which looks like a light-induced avoidance response, but is not a real avoidance response to the metal. Furthermore, a similar redistribution of chloroplasts in L. trisulca cells in darkness was observed also under the influence of exogenously applied hydrogen peroxide (H2O2). In addition, we detected an enhanced accumulation of endogenous H2O2 after treatment of plants with lead. Interestingly, H2O2-specific scavenger catalase partly abolished the Pb-induced chloroplast response. These results suggest that H2O2 can be involved in the avoidance-like movement of chloroplasts induced by lead. Analysis of photometric measurements revealed also strong inhibition (but not complete) of blue-light-induced chloroplast movements by lead. This inhibition may result from disturbances in the actin cytoskeleton, as we observed fragmentation and disappearance of actin filaments around chloroplasts. Results of this study show that the mechanisms of the toxic effect of lead on chloroplasts can include disturbances in their movement and distribution pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号