首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acquired resistance to tamoxifen (TAM) is a serious therapeutic problem in breast cancer patients. In this study, we found that the expressions of anti-oxidant proteins (gamma-glutamylcysteine ligase heavy chain (gamma-GCL h), heme oxygenase-1, thioredoxin and peroxiredoxin1) in TAM-resistant MCF-7 (TAMR-MCF-7) cells were higher than control MCF-7 cells. Molecular analyses using antioxidant response element (ARE)-containing reporters and gel-shift supported the critical role of NF-E2-related factor2 (Nrf2)/ARE in the overexpression of antioxidant proteins in TAMR-MCF-7 cells. Intracellular peroxide production was significantly decreased in TAMR-MCF-7 cells and TAM resistance was partially reversed by Nrf2 siRNA. The basal phosphorylation of extracellular signal-regulated kinase (ERK) and p38 kinase were increased in the TAMR-MCF-7 cells and the inhibition of ERK significantly decreased the activity of minimal ARE reporter and gamma-GCL h protein expression in TAMR-MCF-7 cells. However, exposure of TAMR-MCF-7 cells to 17-beta-estradiol or ICI-182,780 did not significantly change gamma-GCL h expression. These results suggest that the persistent activation of Nrf2/ARE is critical for the enhanced expression of anti-oxidant proteins in TAM-resistant breast cancer cells and the pathway of ERK, but not of estrogen receptor signaling are involved in the up-regulation of Nrf2/ARE.  相似文献   

2.
3.
IGF-1 induces Pin1 expression in promoting cell cycle S-phase entry.   总被引:3,自引:0,他引:3  
Insulin-like growth factor I (IGF-1) is a well-established mitogen to many different cell types and is implicated in progression of a number of human cancers, notably breast cancer. The prolyl isomerase Pin1 plays an important role in cell cycle regulation through its specific interaction with proteins that are phosphorylated at Ser/Thr-Pro motifs. Pin1 knockout mice appear to have relatively normal development yet the Pin1(-/-)mouse embryo fibroblast (MEF) cells are defective in re-entering cell cycle in response to serum stimulation after G0 arrest. Here, we report that Pin1(-/-) MEF cells display a delayed cell cycle S-phase entry in response to IGF stimulation and that IGF-1 induces Pin1 protein expression which correlates with the induction of cyclin D1 and RB phosphorylation in human breast cancer cells. The induction of Pin1 by IGF-1 is mediated via the phosphatidylinositol 3-kinase as well as the MAP kinase pathways. Treatment of PI3K inhibitor LY294002 and the MAP kinase inhibitor PD098059, but not p38 inhibitor SB203580, effectively blocks IGF-1-induced upregulation of Pin1, cyclin D1 and RB phosphorylation. Furthermore, we found that Cyclin D1 expression and RB phosphorylation are dramatically decreased in Pin1(-/-) MEF cells. Reintroducing a recombinant adenovirus encoding Pin1 into Pin1(-/-) MEF cells restores the expression of cyclin D1 and RB phosphorylation. Thus, these data suggest that the mitogenic function of IGF-1 is at least partially linked to the induction of Pin1, which in turn stimulates cyclin D1 expression and RB phosphorylation, therefore contributing to G0/G1-S transition.  相似文献   

4.
E2F1 is responsible for the regulation of FOXM1 expression, which plays a key role in epirubicin resistance. Here, we examined the role and regulation of E2F1 in response to epirubicin in cancer cells. We first showed that E2F1 plays a key role in promoting FOXM1 expression, cell survival, and epirubicin resistance as its depletion by siRNA attenuated FOXM1 induction and cell viability in response to epirubicin. We also found that the p38-MAPK activity mirrors the expression patterns of E2F1 and FOXM1 in both epirubicin-sensitive and -resistant MCF-7 breast cancer cells, suggesting that p38 has a role in regulating E2F1 expression and epirubicin resistance. Consistently, studies using pharmacologic inhibitors, siRNA knockdown, and knockout mouse embryonic fibroblasts (MEF) revealed that p38 mediates the E2F1 induction by epirubicin and that the induction of E2F1 by p38 is, in turn, mediated through its downstream kinase MK2 [mitogen-activated protein kinase (MAPK)-activated protein kinase 2; MAPKAPK2]. In agreement, in vitro phosphorylation assays showed that MK2 can directly phosphorylate E2F1 at Ser-364. Transfection assays also showed that E2F1 phosphorylation at Ser-364 participates in its induction by epirubicin but also suggests that other phosphorylation events are also involved. In addition, the p38-MK2 axis can also limit c-jun-NH(2)-kinase (JNK) induction by epirubicin and, notably, JNK represses FOXM1 expression. Collectively, these findings underscore the importance of p38-MK2 signaling in the control of E2F1 and FOXM1 expression as well as epirubicin sensitivity. Mol Cancer Res; 10(9); 1189-202. ?2012 AACR.  相似文献   

5.
In resting cells, eIF4E-binding protein 1 (4E-BP1) binds to the eukaryotic initiation factor-4E (eIF-4E), preventing formation of a functional eIF-4F complex essential for cap-dependent initiation of translation. Phosphorylation of 4E-BP1 dissociates it from eIF-4E, relieving the translation block. Studies suggested that insulin- or growth factor-induced 4E-BP1 phosphorylation is mediated by phosphatidylinositol 3-kinase (PI3-kinase) and its downstream protein kinase, Akt. In the present study we demonstrated that UVB induced 4E-BP1 phosphorylation at multiple sites, Thr-36, Thr-45, Ser-64, and Thr-69, leading to dissociation of 4E-BP1 from eIF-4E. UVB-induced phosphorylation of 4E-BP1 was blocked by p38 kinase inhibitors, PD169316 and SB202190, and MSK1 inhibitor, H89, but not by mitogen-activated protein kinase kinase inhibitors, PD98059 or U0126. The PI3-kinase inhibitor, wortmannin, did not block UVB-induced 4E-BP1 phosphorylation, but blocked both UVB- and insulin-induced activation of PI3-kinase and phosphorylation of Akt. 4E-BP1 phosphorylation was blocked in JB6 Cl 41 cells expressing a dominant negative p38 kinase or dominant negative MSK1, but not in cells expressing dominant negative ERK2, JNK1, or PI3-kinase p85 subunit. Our results suggest that UVB induces phosphorylation of 4E-BP1, leading to the functional dissociation of 4E-BP1 from eIF-4E. The p38/MSK1 pathway, but not PI3-kinase or Akt, is required for mediating the UVB-induced 4E-BP1 phosphorylation.  相似文献   

6.
Although the significance of vascular endothelial growth factor (VEGF) and its receptors in angiogenesis is well established, the signal transduction cascades activated by VEGF and their involvement in mediating the mitogenic response of endothelial cells to VEGF are incompletely characterized. Here we demonstrate that VEGF activates mitogen-activated protein (MAP) kinases, including the extracellular signal-regulated protein kinase (ERK) and p38 MAP kinase, phosphatidylinositol 3-kinase (PI 3-kinase), and p70 S6 kinase in human umbilical vein endothelial cells (HUVEC). The activation of these enzymes was assayed by kinase phosphorylation and by kinase activity towards substrates. Studies with PI 3-kinase inhibitors revealed that activation of p70 S6 kinase was mediated by PI 3-kinase. Selective inhibition of ERK, PI 3-kinase, and p70 S6 kinase with the inhibitors PD098059, LY294002, and rapamycin, respectively, inhibited VEGF-stimulated HUVEC proliferation. In marked contrast, the p38 MAP kinase inhibitor SB203580 not only failed to inhibit but actually enhanced HUVEC proliferation; this effect was associated with the phosphorylation of Rb protein. Rb phosphorylation resulted from a decrease in the level of the cdk inhibitor p27KiP1. These results indicate that the activities of ERK, PI 3-kinase, and p70 S6 kinase are essential for VEGF-induced HUVEC proliferation. p38 MAP kinase suppresses endothelial cell proliferation by regulating cell-cycle progression.  相似文献   

7.
8.
Vascular endothelial growth factor (VEGF) utilizes a phosphoinositide 3-kinase (PI 3-kinase)/Akt signaling pathway to protect endothelial cells from apoptotic death. Here we show that PI 3-kinase/Akt signaling promotes endothelial cell survival by inhibiting p38 mitogen-activated protein kinase (MAPK)-dependent apoptosis. Blockade of the PI 3-kinase or Akt pathways in conjunction with serum withdrawal stimulates p38-dependent apoptosis. Blockade of PI 3-kinase/Akt also led to enhanced VEGF activation of p38 and apoptosis. In this context, the pro-apoptotic effect of VEGF is attenuated by the p38 MAPK inhibitor SB203580. VEGF stimulation of endothelial cells or infection with an adenovirus expressing constitutively active Akt causes MEKK3 phosphorylation, which is associated with decreased MEKK3 kinase activity and down-regulation of MKK3/6 and p38 MAPK activation. Conversely, activation-deficient Akt decreases VEGF-stimulated MEKK3 phosphorylation and increases MKK/p38 activation. Activation of MKK3/6 is not dependent on Rac activation since dominant negative Rac does not decrease p38 activation triggered by inhibition of PI 3-kinase. Thus, cross-talk between the Akt and p38 MAPK pathways may regulate the level of cytoprotection versus apoptosis and is a new mechanism to explain the cytoprotective actions of Akt.  相似文献   

9.
10.
11.
12.
13.
14.
15.
We previously demonstrated that Mycobacterium tuberculosis (M. tbc)-induced interleukin (IL)-12 expression is negatively regulated by the phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK) 1/2 pathways in human monocyte-derived macrophages (MDMs). To extend these studies, we examined the nature of the involvement of toll-like receptors (TLRs) and intracellular signalling pathways downstream from PI3K in M. tbc-induced IL-23 expression in human MDMs. M. tbc-induced Akt activation and IL-23 expression were essentially dependent on TLR2. Blockade of the mammalian targets of rapamycin (mTOR)/70 kDa ribosomal S6 kinase 1 (S6K1) pathway by the specific inhibitor rapamycin greatly enhanced M. tbc-induced IL-12/IL-23 p40 (p40) and IL-23 p19 (p19) mRNA and IL-23 protein expression. In sharp contrast, p38 mitogen-activated protein kinase (MAPK) inhibition abrogated the p40 and p19 mRNA and IL-23 protein expression induced by M. tbc. Furthermore, the inhibition of PI3K-Akt, but not ERK 1/2 pathway, attenuated M. tbc-induced S6K1 phosphorylation, whereas PI3K inhibition enhanced p38 phosphorylation and apoptosis signal-regulating kinase 1 activity during exposure to M. tbc. Although the negative or positive regulation of IL-23 was not reversed by neutralization of IL-10, it was significantly modulated by blocking TLR2. Collectively, these findings provide new insight into the homeostatic mechanism controlling type 1 immune responses during mycobacterial infection involving the intracellular network of PI3K, S6K1, ERK 1/2 and p38 MAPK pathways in a TLR2-dependent manner.  相似文献   

16.
We previously reported that p38 mitogen-activated protein (MAP) kinase plays a part in sphingosine 1-phosphate-stimulated heat shock protein 27 (HSP27) induction in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) is involved in the induction of HSP27 in these cells. Sphingosine 1-phosphate time dependently induced the phosphorylation of Akt. Akt inhibitor, 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, reduced the HSP27 induction stimulated by sphingosine 1-phosphate. The sphingosine 1-phosphate-induced phosphorylation of GSK-3beta was suppressed by Akt inhibitor. The sphingosine 1-phosphate-induced HSP27 levels were attenuated by LY294002 or wortmannin, PI3K inhibitors. Furthermore, LY294002 or Akt inhibitor did not affect the sphingosine 1-phosphate-induced phosphorylation of p38 MAP kinase and SB203580, a p38 MAP kinase inhibitor, had little effect on the phosphorylation of Akt. These results suggest that PI3K/Akt plays a part in the sphingosine 1-phosphate-stimulated induction of HSP27, maybe independently of p38 MAP kinase, in osteoblasts.  相似文献   

17.
Numerous studies have demonstrated the neuroprotective effects of estrogen in experimental cerebral ischemia. To investigate molecular mechanisms of estrogen neuroprotection in global ischemia, immunoblotting, immunohistochemistry and Nissel-staining analysis were used. Our results showed that chronic pretreatment with beta-estradiol 3-benzoate (E2) enhanced Akt1 activation and reduced the activation of mixed-lineage kinase 3 (MLK3), mitogen-activated protein kinase kinase 4/7 (MKK4/7), and c-Jun N-terminal kinase 1/2 (JNK1/2) in the hippocampal CA1 subfield during reperfusion after 15 min of global ischemia. In addition, E2 reduced downstream JNK nuclear and non-nuclear components, c-Jun and Bcl-2 phosphorylation and Fas ligand protein expression induced by ischemia/reperfusion. Administration of phosphoinositide 3-kinase (PI3K) inhibitor LY 294,002 prevented both activation of Akt1 and inhibition of MLK3, MKK4/7 and JNK1/2. The interaction between ERalpha and the p85 subunit of PI3K was also examined. E2 and antiestrogen ICI 182,780 promoted and prevented this interaction, respectively. Furthermore, ICI 182,780 blocked both the activation of Akt1 and the inhibition of MLK3, MKK4/7 and JNK1/2. Photomicrographs of cresyl violet-stained brain sections showed that E2 reduced CA1 neuron loss after 5 days of reperfusion, which was abolished by ICI 182,780 and LY 294,002. Our data indicate that in response to estrogen, ERalpha interacts with PI3K to activate Akt1, which may inhibit the MLK3-MKK4/7-JNK1/2 pathway to protect hippocampal CA1 neurons against global cerebral ischemia in male rats.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号