首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Coordinated arm and leg movements imply neural interactions between the rhythmic generators of the upper and lower extremities. In ten healthy subjects in the lying position, activity of the muscles of the upper and lower extremities was recorded during separate and joint cyclic movements of the arms and legs with different phase relationships between the movements of the limbs and under various conditions of the motor task. Antiphase active arm movements were characterized by higher muscle activity than during the inphase mode. The muscle activity during passive arm movements imposed by the experimentalist was significantly lower than muscle activity during passive arm movements imposed by the other arm. When loading one arm, the muscle activity in the other, passively moving, arm increased independently from the synergy of arm movements. During a motor task implementing joint antiphase movements of both upper and lower extremities, compared to a motor task implementing their joint in-phase movements, we observed a significant increase in activity in the biceps brahii muscle, the tibialis anterior muscle, and the biceps femoris muscle. Loading of arms in these motor tasks has been accompanied by increased activity in some leg muscles. An increase in the frequency of rhythmic movements resulted in a significant growth of the muscle activity of the arms and legs during their cooperative movements with a greater rate of rise in the flexor muscle activity of the arms and legs during joint antiphase movements. Thus, both the spatial organization of movements and the type of afferent influences are significant factors of interlimb interactions, which, in turn, determine the type of neural interconnections that are involved in movement regulation.  相似文献   

4.
5.
The purpose of the study was to evaluate the electromyographic (EMG) activity of muscles in curl-up exercises depending on the position of the upper and lower extremities. From the perspective of biomechanics, different positions of the extremities result in shifting the center of gravity and changing muscular loads in abdominal strength exercises. The subjects of the research were 3 healthy students (body mass 53-56 kg and height 163-165 cm) with no history of low back pain or abdominal surgery. Subjects completed 18 trials for each of the 9 exercises (static curl-up with 3 positions of the upper and 3 position of the lower extremities). The same experiment with the same subjects was conducted on the next day. The EMG activity of rectus abdominis (RA), erector spinae (ES), and quadriceps femoris-long head (rectus femoris [RF]) was examined during the exercises. The surface electrical activity was recorded for the right and left sides of each muscle. The raw data for each muscle were rectified and integrated. The statistical analysis showed that changing the position of upper extremities in the examined exercises affects the EMG activity of RA and ES but does not significantly affect the EMG activity of RF. Additionally, it was found that curl-up exercises with the upper extremities extended behind the head and the lower extremities flexed at 90° in the hip and knee joints involve RA with the greatest intensity, whereas curl-up exercises with the upper extremities extended along the trunk and the lower extremities flexed at 90° in the hip and knee joints involve RA with the lowest intensity.  相似文献   

6.
The common pattern of muscle activation and specifics of interlimb neuronal connections during the performance of rhythmic separate and simultaneous arm and leg movements in the lying position in healthy subjects, which reflected functionally significant interlimb neuronal interactions, were shown. The study was designed to investigate these mutual influences of the upper and lower limbs during the performance of similar motor tasks by stroke patients. Sixteen poststroke patients with different degrees of hemiparesis performed active and passive arm movements simultaneously with stepping leg movements or without them while lying supine. It was demonstrated that the patients had a disordered common pattern of distribution of muscle activity when they performed voluntary cyclic movements with both arms. Passive movements of both paretic and nonparetic arms led to different degrees of activation of their muscles, depending on the degree of paresis: in patients with mild paresis, muscle activation was similar to that in healthy subjects; in patients with severe paresis, it was insignificant. The loading of the nonparetic arm resulted in an increase in the activity in the paretic arm shoulder flexor muscles in patients with mild paresis (which was typical of healthy subjects), while loading did not influence significantly patients with severe paresis. The combination of cyclic arm movements and stepping leg movements in diagonal synergy decreased the activity in the proximal muscles of both arms, irrespective of the degree of paresis, as it was observed in healthy subjects. Simultaneous arm and leg movements did not change the muscle activity in nonparetic legs in either groups of patients, but the activity in the paretic leg muscles even decreased. The results obtained revealed important features of poststroke motor disturbances, which caused changes in interlimb interactions and largely depended on the degree of paresis. The data could be useful for developing new methods for the performance of rehabilitative procedures in poststroke patients.  相似文献   

7.
Previously, in healthy subjects the common pattern of muscle activation and specifics of interlimb neuron connections during performance of rhythmic separate and simultaneous movements of arms and legs in the lying position, which reflect functional meaningful of interlimb interactions, were shown. The aim of this research was to investigate such mutual influences of upper and lower limbs during the execution of similar motor tasks by patients with stroke. In sixteen poststroke patients with different stage of hemiparesis arms movements together with or without legs movements were performed, while lying supine. It was demonstrated that the common pattern of muscle activity distribution under the execution of voluntary cyclic movements by both arms was disordered. Passive rhythmic movements of each arm caused the phased EMG activity in shoulder muscles in patients with mild hemiparesis, but no activation was observed in patients with severe paresis. The loading of nonparetic arm resulted in an increasing of activity in shoulder flexor muscles of paretic arm in patients with weak paresis (which was typical for healthy subjects), while it not exerted essential influences in patients with severe paresis. Under connecting the cyclic movements of arms with stepping movements of legs in diagonal synergy the activity in proximal muscles of both arms was decreased irrespective of the paresis degree, as it was seeing in healthy subjects. Simultaneous arms and legs movements did not change the muscle activity in non-paretic leg in both groups of patients, but in some muscles of paretic leg the activity even decreased. The results obtained revealed important features of poststroke motor disturbances, which caused the changes of interlimb interaction and in great degree depended on the level of paresis. The data of investigation can be of a great importance for developing the new methods for rehabilitative procedure in patients with stroke.  相似文献   

8.
When continuation of exercise calls for a will, the cerebral metabolic ratio of O2 to (glucose + lactate) decreases, with the largest reduction (30-50%) at exhaustion. Because a larger effort is required to exercise with the arms than with the legs, we tested the hypothesis that the reduction in the cerebral metabolic ratio would become more pronounced during arm cranking than during leg exercise. The cerebral arterial-venous differences for blood-gas variables, glucose, and lactate were evaluated in two groups of eight subjects during exhaustive arm cranking and leg exercise. During leg exercise, exhaustion was elicited after 25 +/- 6 (SE) min, and the cerebral metabolic ratio was reduced from 5.6 +/- 0.2 to 3.5 +/- 0.2 after 10 min and to 3.3 +/- 0.3 at exhaustion (P < 0.05). Arm cranking lasted for 35 +/- 4 min and likewise decreased the cerebral metabolic ratio after 10 min (from 6.7 +/- 0.4 to 5.0 +/- 0.3), but the nadir at exhaustion was only 4.7 +/- 0.4, i.e., higher than during leg exercise (P < 0.05). The results demonstrate that exercise decreases the cerebral metabolic ratio when a conscious effort is required, irrespective of the muscle groups engaged. However, the comparatively small reduction in the cerebral metabolic ratio during arm cranking suggests that it is influenced by the exercise paradigm.  相似文献   

9.
10.
11.
12.
13.
14.
The purpose of this study was to identify multijoint lower extremity kinematic and kinetic synergies in weightlifting and compare these synergies between joints and across different external loads. Subjects completed sets of the clean exercise at loads equal to 65, 75, and 85% of their estimated 1-RM. Functional data analysis was used to extract principal component functions (PCF's) for hip, knee, and ankle joint angles and moments of force during the pull phase of the clean at all loads. The PCF scores were then compared between joints and across loads to determine how much of each PCF was present at each joint and how it differed across loads. The analyses extracted two kinematic and four kinetic PCF's. The statistical comparisons indicated that all kinematic and two of the four kinetic PCF's did not differ across load, but scaled according to joint function. The PCF's captured a set of joint- and load-specific synergies that quantified biomechanical function of the lower extremity during Olympic weightlifting and revealed important technical characteristics that should be considered in sports training and future research.  相似文献   

15.
Routine screening of lung transplant recipients and hospital patients for respiratory virus infections allowed to identify human rhinovirus (HRV) in the upper and lower respiratory tracts, including immunocompromised hosts chronically infected with the same strain over weeks or months. Phylogenetic analysis of 144 HRV-positive samples showed no apparent correlation between a given viral genotype or species and their ability to invade the lower respiratory tract or lead to protracted infection. By contrast, protracted infections were found almost exclusively in immunocompromised patients, thus suggesting that host factors rather than the virus genotype modulate disease outcome, in particular the immune response. Complete genome sequencing of five chronic cases to study rhinovirus genome adaptation showed that the calculated mutation frequency was in the range observed during acute human infections. Analysis of mutation hot spot regions between specimens collected at different times or in different body sites revealed that non-synonymous changes were mostly concentrated in the viral capsid genes VP1, VP2 and VP3, independent of the HRV type. In an immunosuppressed lung transplant recipient infected with the same HRV strain for more than two years, both classical and ultra-deep sequencing of samples collected at different time points in the upper and lower respiratory tracts showed that these virus populations were phylogenetically indistinguishable over the course of infection, except for the last month. Specific signatures were found in the last two lower respiratory tract populations, including changes in the 5'UTR polypyrimidine tract and the VP2 immunogenic site 2. These results highlight for the first time the ability of a given rhinovirus to evolve in the course of a natural infection in immunocompromised patients and complement data obtained from previous experimental inoculation studies in immunocompetent volunteers.  相似文献   

16.
During gait rehabilitation, therapists or robotic devices often supply physical assistance to a patient's lower limbs to aid stepping. The expensive equipment and intensive manual labor required for these therapies limit their availability to patients. One alternative solution is to design devices where patients could use their upper limbs to provide physical assistance to their lower limbs (i.e., self-assistance). To explore potential neural effects of coupling upper and lower limbs, we investigated neuromuscular recruitment during self-driven and externally driven lower limb motion. Healthy subjects exercised on a recumbent stepper using different combinations of upper and lower limb exertions. The recumbent stepper mechanically coupled the upper and lower limbs, allowing users to drive the stepping motion with upper and/or lower limbs. We instructed subjects to step with 1) active upper and lower limbs at an easy resistance level (active arms and legs); 2) active upper limbs and relaxed lower limbs at easy, medium, and hard resistance levels (self-driven); and 3) relaxed upper and lower limbs while another person drove the stepping motion (externally driven). We recorded surface electromyography (EMG) from six lower limb muscles. Self-driven EMG amplitudes were always higher than externally driven EMG amplitudes (P < 0.05). As resistance and upper limb exertion increased, self-driven EMG amplitudes also increased. EMG bursts during self-driven and active arms and legs stepping occurred at similar times. These results indicate that active upper limb movement increases neuromuscular activation of the lower limbs during cyclic stepping motions. Neurologically impaired humans that actively engage their upper limbs during gait rehabilitation may increase neuromuscular activation and enhance activity-dependent plasticity.  相似文献   

17.
18.
The objective of this pilot study was to determine the effect of 6 different abdominal exercises on the electrical activity of the upper rectus abdominis (URA) and lower rectus abdominis (LRA). Eight healthy, adult volunteers completed 6 random abdominal exercises: curl up, Sissel ball curl up, Ab Trainer curl up, leg lowering, Sissel ball roll out, and reverse curl up. Action potentials were recorded and analyzed from the URA and the LRA using surface electromyography (EMG) during a 2-second concentric contraction. The average normalized data were compared between the URA and the LRA in order to determine the behavior of the different muscle sites and between exercises in order to determine which exercises elicited the highest EMG activity. There were no significant differences (p > 0.05) between the EMG activity of the URA and LRA during any exercise. There were no significant interactions between subject and muscle site or between exercise and muscle site. Significant differences were found among the 6 exercises performed, and due to the interaction between subject and exercise performed. Both the URA and the LRA recorded significantly higher mean amplitudes during the Sissel ball curl up than during all other exercises. In addition, the curl up, Sissel ball curl up, and Ab Trainer curl up had significantly higher normalized EMG activity in both muscle sites than the reverse curl up, the leg lowering exercise, and the Sissel ball roll out. The curl up and the Ab Trainer curl up exercises were not significantly different in terms of their normalized EMG activities for both the URA and the LRA.  相似文献   

19.
This study quantified how body borne load impacts hip and knee biomechanics during anticipated and unanticipated single-leg cutting maneuvers. Fifteen male military personnel performed a series of single-leg cutting maneuvers with three different load configurations (light, ~6 kg, medium, ~20 kg, and heavy, ~40 kg). Subject-based means of the specific lower limb biomechanical variables were submitted to repeated measures ANOVA to test the main and interaction effects of body borne load and movement type. With body borne load, stance time (P<0.001) increased, while larger hip (P=0.027) and knee flexion (P=0.004), and hip adduction (P<0.001) moments, and decreased hip (P=0.002) and knee flexion (P<0.001), and hip adduction (P=0.003) postures were evident. Further, the hip (P<0.001) and ankle (P=0.024) increased energy absorption, while the knee (P=0.020) increased energy generation with body borne load. During the unanticipated maneuvers, the hip (P=0.009) and knee (P=0.032) increased energy generation, and peak hip flexion moment (P=0.002) increased relative to the anticipated movements. With the body borne load, participants adopted biomechanical patterns that decreased their locomotive ability including larger moments and reduced flexion postures of the lower limb. During the single-leg cut, participants used greater energy absorption from the large, proximal muscles of the hip and greater energy generation from the knee with the addition of load. Participant?s performance when carrying a range of loads was not compromised by anticipation, as they did not exhibit the hip and knee kinetic and kinematic adaptations previously demonstrated when reacting to an unplanned stimulus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号