首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Improvement of plant type plays an important role in super-high yield breeding in rice (Oryza sativa L.). In the present study, a set of backcross recombinant inbred lines derived from a cross of 9311 and Zhenshan97, both elite indica hybrid parents, were developed to identify quantitative trait loci (QTL) for flag leaf size, panicle and yield traits. Forty-seven QTL for 14 traits were detected in common in the two environmental trials, of which nine genomic regions contained clustered QTL affecting plant type traits and yield traits. Four co-localized QTL on chromosomes 1, 6, 7 and 8 involving QTL for flag leaf size (flag leaf length, width and area) contained the QTL for yield traits such as panicle weight (PW) and secondary branch number (SBN), and in all cases alleles from 9311 increased source leaf size and were associated with increased sink size and yield (SBN and PW). Using a subset of overlapping substitution lines for the QTL region on chromosome 1, the QTL were validated and narrowed into a 990?kbp interval (RM3746?CRM10435) with pleiotropic effects on flag leaf size, PW, SBN and spikelet number per panicle. These QTL clusters with large effects on source leaf size and yield-related traits provide good targets for marker-assisted breeding for plant type improvement and high-yield potential in rice.  相似文献   

2.

Key message

A minor QTL for heading date located on the long arm of rice chromosome 1 was delimitated to a 95.0-kb region using near isogenic lines with sequential segregating regions.

Abstract

Heading date and grain yield are two key factors determining the commercial potential of a rice variety. In this study, rice populations with sequential segregating regions were developed and used for mapping a minor QTL for heading date, qHd1. A total of 18 populations in six advanced generations through BC2F6 to BC2F11 were derived from a single BC2F3 plant of the indica rice cross Zhenshan 97 (ZS97)///ZS97//ZS97/Milyang 46. The QTL was delimitated to a 95.0-kb region flanked by RM12102 and RM12108 in the terminal region of the long arm of chromosome 1. Results also showed that qHd1 was not involved in the photoperiodic response, having an additive effect ranging from 2.4 d to 2.9 d observed in near isogenic lines grown in the paddy field and under the controlled conditions of either short day or long day. The QTL had pleiotropic effects on yield traits, with the ZS97 allele delaying heading and increasing the number of spikelets per panicle, the number of grains per panicle and grain yield per plant. The candidate region contains ten annotated genes including two genes with functional information related to the control of heading date. These results lay a foundation for the cloning of qHd1. In addition, this kind of minor QTLs could be of great significance in rice breeding for allowing minor adjustment of heading date and yield traits.  相似文献   

3.
To facilitate marker-assisted transfer of desirable genes for improvement of yield traits, we used a set of backcross recombinant inbred lines (BRIL) derived from two elite parental lines, ‘Zhenshan97’ and ‘93-11’, to resolve a quantitative trait loci (QTL) cluster for heading date and yield-related traits in rice. Four main-effect QTL (qHD6.1, qHD6.2, qHD7, and qHD8) and four epistatic QTL affecting heading date in the BRIL were detected in two experimental trials. The major QTL (qHD8) was confirmed in three heterogeneous inbred families (HIF) that segregated for this target region, and narrowed down to a 20-kb segment in a large HIF-derived population. qHD8 was found to interact with qHD7 and had a pleiotropic effect responsible for heading date and yield components. To test usability of the identified QTL in rice improvement, we further developed near-isogenic lines (NIL) containing one or more target genes by marker-assisted transfer of ‘93-11’ alleles at qHD8, qHD7, and qHD6.1, and the GS3 gene for grain size into ‘Zhenshan97’. The pyramid line NIL(qHD8 + GS3) had higher yield potential, longer grains, and a more suitable heading date than ‘Zhenshan97’. Comparison of the NIL showed existence of epistasis between alleles at different loci and background effect on qHD8, which are very important for pyramiding of desirable alleles at the target QTL. These results will be particularly useful not only to understand the genetic basis of yield-related traits but also to improve the efficiency of marker-assisted selection for favorable loci in rice breeding programs.  相似文献   

4.
In our previous studies, one putative QTL affecting number of spikelets per panicle (SPP) was identified in the pericentromeric region of rice chromosome 7 using a recombinant inbred population. In order to define the QTL (qSPP7), RI50, a recombinant inbred line with 70% of genetic background same as the female parent of Zhenshan 97, was selected to produce near-isogenic lines for the target region in the present study. In a BC2F2 population consisting of 190 plants, the frequency distribution of SPP was shown to be discontinuous and followed the expected Mendelian ratios (1:2:1 by progeny test) for single locus segregation. qSPP7 was mapped to a 0.4 cM region between SSR marker RM3859 and RFLP marker C39 based on tests of the BC2F2 population and its progeny. Its additive and dominant effects on SPP were 51.1 and 24.9 spikelets, respectively. Of great interest, the QTL region also had effects on grain yield per plant (YD), 1,000 grain weight (GW), tillers per plant (TPP) and seed setting ratio (SR). Significant correlations were observed between SPP and YD (r = 0.66) and between SPP and SR (r = −0.29) in the progeny test. 1082 extremely small panicle plants of a BC3F2 population containing 8,400 individuals were further used to fine map the QTL. It turns out that qSPP7 co-segregated with two markers, RM5436 and RM5499 spanning a physical distance of 912.4 kb. Overall results suggested that recombination suppression occurred in the region and positional cloning strategy is infeasible for qSPP7 isolation. The higher grain yield of Minghui 63 homozygote as compared to the heterozygote suggested that Minghui 63 homozygote at qSPP7 in hybrid rice could further improve its yield. Y. Z. Xing and W. J. Tang contributed equally to this work.  相似文献   

5.
Advanced backcross QTL analysis was used to identify quantitative trait loci (QTL) for agronomic performance in a population of BC2F3:5 introgression lines created from the cross of a Colombian large red-seeded commercial cultivar, ICA Cerinza, and a wild common bean accession, G24404. A total of 157 lines were evaluated for phenological traits, plant architecture, seed weight, yield and yield components in replicated trials in three environments in Colombia and genotyped with microsatellite, SCAR, and phaseolin markers that were used to create a genetic map that covered all 11 linkage groups of the common bean genome with markers spaced at an average distance of every 10.4 cM. Segregation distortion was most significant in regions orthologous for a seed coat color locus (R-C) on linkage group b08 and two domestication syndrome genes, one on linkage group b01 at the determinacy (fin) locus and the other on linkage group b02 at the seed-shattering (st) locus. Composite interval mapping analysis identified a total of 41 significant QTL for the eight traits measured of which five for seed weight, two for days to flowering, and one for yield were consistent across two or more environments. QTL were located on every linkage group with b06 showing the greatest number of independent loci. A total of 13 QTL for plant height, yield and yield components along with a single QTL for seed size showed positive alleles from the wild parent while the remaining QTL showed positive alleles from the cultivated parent. Some QTL co-localized with regions that had previously been described to be important for these traits. Compensation was observed between greater pod and seed production and smaller seed size and may have resulted from QTL for these traits being linked or pleiotropic. Although wild beans have been used before to transfer biotic stress resistance traits, this study is the first to attempt to simultaneously obtain a higher yield potential from wild beans and to analyze this trait with single-copy markers. The wild accession was notable for being from a unique center of diversity and for contributing positive alleles for yield and other traits to the introgression lines showing the potential that advanced backcrossing has in common bean improvement.  相似文献   

6.
Validation and dissection of a QTL region for leaf traits in rice which has been reported in a number of independent studies were conducted. Three sets of near isogenic lines (NILs) were originated from a residual heterozygous line derived the indica cross Zhenshan 97B/Milyang 46. They were overlapping and totally covered a 4.2-Mb heterogenous region extending from RM4923 to RM402 on the short arm of rice chromosome 6. Each NIL set consisted of 10 maternal lines and 10 paternal lines. They were measured for the length, width, perimeter and area of the top three leaves and the number of spikelets per panicle, number of grains per panicle and grain weight per panicle. In NIL sets 6-4 and 6-7, differing in intervals RM4923-RM225 and RM19410-RM6119, respectively, significant variations with the enhancing alleles from the female parent ZS97 were shown for the length, perimeter and area except for the area of the third leaf from top in 6-4, but the effects were lower in 6-4 than in 6-7. No significant effects were detected for the three traits in the remaining NIL set. It was shown that flag leaf length (FLL) is the primary target of the QTLs detected. Two QTLs for FLL linked in repulsion phase were resolved, of which qFLL6.2 located in the 1.19-Mb interval RM3414-RM6917 had a major effect with the enhancing allele from Zhenshan 97B, and qFLL6.1 located in the 946.8-kb interval RM19350-RM19410 had a smaller effect with the enhancing allele from Milyang 46. The two QTLs also exerted pleiotropic effects on the yield traits.  相似文献   

7.
多效性基因Ghd7调控水稻剑叶面积   总被引:2,自引:0,他引:2  
Tan C  Weng XY  Yan WH  Bai XF  Xing YZ 《遗传》2012,34(7):901-906
光合作用是植物的唯一能量来源,剑叶是水稻开花后进行光合作用的主要部位。Ghd7是一个多效性产量基因,能显著提高水稻产量。为了研究Ghd7对水稻剑叶形态的遗传效应,文章利用一个包含190个家系的BC2F2群体对水稻剑叶长度(FLL)、剑叶宽(FLW)和剑叶面积(FLA)进行QTL定位分析。在BC2F2群体,FLL、FLW和FLA性状表型值均显示为双峰分布,符合孟德尔单基因分离比,并均与每穗实粒数呈现显著正相关。在第7染色体上RM3859和C39分子标记间定位到FLL、FLW和FLA的QTL,分别解释变异的73.3%、62.3%和71.8%,均与Ghd7共分离。以珍汕97为轮回亲本,特青和明恢63分别为供体亲本,获得两个Ghd7近等基因系NIL(MH63)和NIL(TQ),FLL、FLW和FLA表型值均比珍汕97显著提高。另外,超表达Ghd7的合江19转基因植株的FLL、FLW和FLA表型值分别比合江19增加了8.9 cm、0.5 cm和17.8 cm2。这些结果表明Ghd7对调控剑叶面积起重要作用。  相似文献   

8.
Development of quantitative trait loci (QTL) near isogenic lines is a crucial step to QTL isolation using the strategy of map-based cloning. In this study, a recombinant inbred line (RIL) population derived from two indica rice varieties, Zhenshan 97 and HR5, was employed to map QTL for spikelets per panicle (SPP). One major QTL (qSPP7) and three minor QTL (qSPP1, qSPP2 and qSPP3) were identified on chromosomes 7, 1, 2 and 3, respectively. Four sets of near isogenic lines (NILs) BC4F2 targeted for the four QTL were developed by following a standard procedure of consecutive backcross, respectively. These QTL were not only validated in corresponding NILs, but also explained amounts of phenotypic variation with much larger LOD scores compared with those identified in RILs. SPP in the four QTL-NILs expressed bimodal or discontinuous distributions and followed the expected segregation ratio of single Mendelian factor by progeny test. Finally, qSPP1, qSPP2, qSPP3 and qSPP7 were respectively mapped to a locus, 0.5 cM from MRG2746, 0.6 cM from MRG2762, 0.8 cM from RM49 and 0.7 cM from MRG4436, as co-dominant markers on the basis of progeny tests. These results indicate no matter how small effect minor QTL is, QTL may still express the characteristics of single Mendelian factor in NILs and isolation of minor QTL will be possible using high quality NILs. Pyramiding these QTL into a variety will largely enhance rice grain yield.  相似文献   

9.
A backcross breeding strategy was used to identify quantitative trait loci (QTLs) associated with 14 traits in a BC2F2 population derived from a cross between MR219, an indica rice cultivar and an accession of Oryza rufipogon (IRGC 105491). A total of 261 lines were genotyped with 96 microsatellite markers and evaluated for plant morphology, yield components and growth period. The genetic linkage map generated for this population with an average interval size of 16.2?cM, spanning 1,553.4?cM (Kosambi) of the rice genome. Thirty-eight QTLs were identified with composite interval mapping (CIM), whereas simple interval mapping (SIM) resulted in 47 QTLs (LOD >3.0). The O. rufipogon allele was favourable for 59% of QTLs detected through CIM. Of 261 BC2F2 families, 26 advanced backcross breeding lines (BC2F5) were used for QTL validation. These lines were selected on the basis of the yield traits potentiality in BC2F3 and BC2F4 generations. The field trial was conducted at three different locations in Malaysia using randomized complete block design with three replications. Trait based marker analysis was done for QTL determination. Twenty-five QTLs were detected in BC2F5 generation whereas 29 QTLs were detected in BC2F2 generation of the same population. Two QTLs (qPL-1 and qSPL-7) were not considered for validation due to their low R 2 values and two QTLs (qPSS-3-2 and qGW-3-2) were not detected in the BC2F5 population. Fifteen QTLs showed the beneficial effect to enhance the trait value of the breeding lines. QTL validation aided to select the promising lines for further utilization.  相似文献   

10.
Glycine soja, the wild progenitor of soybean, is a potential source of useful genetic variation in soybean improvement. The objective of our study was to map quantitative trait loci (QTL) from G. soja that could improve the crop. Five populations of BC2F4-derived lines were developed using the Glycine max cultivar IA2008 as a recurrent parent and the G. soja plant introduction (PI) 468916 as a donor parent. There were between 57 and 112 BC2F4-derived lines in each population and a total of 468 lines for the five populations. The lines were evaluated with simple sequence repeat markers and in field tests for yield, maturity, plant height, and lodging. The field testing was done over 2 years and at two locations each year. Marker data were analyzed for linkage and combined with field data to identify QTL. Using an experimentwise significance threshold of P=0.05, four yield QTL were identified across environments on linkage groups C2, E, K, and M. For these yield QTL, the IA2008 marker allele was associated with significantly greater yield than the marker allele from G. soja. In addition, one lodging QTL, four maturity QTL, and five QTL for plant height were identified across environments. Of the 14 QTL identified, eight mapped to regions where QTL with similar effects were previously mapped. Many regions carrying the yield QTL were also significant for other traits, such as plant height and lodging. When the significance threshold was reduced and the data were analyzed with simple linear regression, four QTL with a positive allele for yield from G. soja were mapped. One epistatic interaction between two genetic regions was identified for yield using an experimentwise significance threshold of P=0.05. Additional research is needed to establish whether multiple trait associations are the result of pleiotropy or genetic linkage and to retest QTL with a positive effect from G. soja.Communicated by H.C. Becker  相似文献   

11.
In order to identify quantitative trait loci (QTLs) for leaf senescence and related traits in rice (Oryza sativa L.), we developed two backcross populations, indica/japonica// japonica and indica/japonica//indica, using IR36 as the indica parent and Nekken-2 as the japonica parent. The QTLs were mapped using a set of simple sequence-repeat markers (SSRs) in the BC1F1 population. Senescence was characterized in these plants by measuring the leaf chlorophyll content 25 days after flowering (DAF), the reduction in chlorophyll content (the difference between the chlorophyll content at flowering and at 25 DAF), and the number of late-discoloring leaves per panicle at 25 DAF in five plants from each BC1F2 line. These plants were moved into a temperature-controlled growth cabinet at the time of flowering and allowed to mature under identical conditions. Eleven QTLs were detected in the two populations. The major of QTLs for senescence were found on the short arm of chromosome 6 and on the long arm of chromosome 9. Of these, one QTL on chromosome 6 and two on chromosome 9 were verified by confirming the effects of the genotypes on the phenotypes of the BC1F3 lines. The japonica parent was found to contribute to late senescence at all but one QTL. Based on a comparison of the effects of heterozygotes and homozygotes on the phenotypic values of each QTL genotype, we concluded that the differential senescence observed in the indica-japonica hybrid was not due to over-dominance; rather, it was the result of partial-dominance genes that were donated from either of the parents.  相似文献   

12.
Grain yield is the most important and complex trait in maize. In this study, a total of 258 F9 recombinant inbred lines (RIL), derived from a cross between dent corn inbred Dan232 and popcorn inbred N04, were evaluated for eight grain yield components under four environments. Quantitative trait loci (QTL) and their epistatic interactions were detected for all traits under each environment and in combined analysis. Meta-analysis was used to integrate genetic maps and detected QTL across three generations (RIL, F2:3 and BC2F2) derived from the same cross. In total, 103 QTL, 42 pairs of epistatic interactions and 16 meta-QTL (mQTL) were detected. Twelve out of 13 QTL with contributions (R 2) over 15% were consistently detected in 3–4 environments (or in combined analysis) and integrated in mQTL. Only q100GW-7-1 was detected in all four environments and in combined analysis. 100qGW-1-1 had the largest R 2 (19.3–24.6%) in three environments and in combined analysis. In contrast, 35 QTL for 6 grain yield components were detected in the BC2F2 and F2:3 generations, no common QTL across three generations were located in the same marker intervals. Only 100 grain weight (100GW) QTL on chromosome 5 were located in adjacent marker intervals. Four common QTL were detected across the RIL and F2:3 generations, and two between the RIL and BC2F2 generations. Each of five important mQTL (mQTL7-1, mQTL10-2, mQTL4-1, mQTL5-1 and mQTL1-3) included 7–12 QTL associated with 2–6 traits. In conclusion, we found evidence of strong influence of genetic structure and environment on QTL detection, high consistency of major QTL across environments and generations, and remarkable QTL co-location for grain yield components. Fine mapping for five major QTL (q100GW-1-1, q100GW-7-1, qGWP-4-1, qERN-4-1 and qKR-4-1) and construction of single chromosome segment lines for genetic regions of five mQTL merit further studies and could be put into use in marker-assisted breeding.  相似文献   

13.
Plant breeders have focused on improving plant architecture as an effective means to increase crop yield. Here, we identify the main-effect quantitative trait loci (QTLs) for plant shape-related traits in rice (Oryza sativa) and find candidate genes by applying whole genome re-sequencing of two parental cultivars using next-generation sequencing. To identify QTLs influencing plant shape, we analyzed six traits: plant height, tiller number, panicle diameter, panicle length, flag leaf length, and flag leaf width. We performed QTL analysis with 178 F7 recombinant in-bred lines (RILs) from a cross of japonica rice line ‘SNUSG1’ and indica rice line ‘Milyang23’. Using 131 molecular markers, including 28 insertion/deletion markers, we identified 11 main- and 16 minor-effect QTLs for the six traits with a threshold LOD value > 2.8. Our sequence analysis identified fifty-four candidate genes for the main-effect QTLs. By further comparison of coding sequences and meta-expression profiles between japonica and indica rice varieties, we finally chose 15 strong candidate genes for the 11 main-effect QTLs. Our study shows that the whole-genome sequence data substantially enhanced the efficiency of polymorphic marker development for QTL fine-mapping and the identification of possible candidate genes. This yields useful genetic resources for breeding high-yielding rice cultivars with improved plant architecture.  相似文献   

14.
Fusarium head blight (FHB) is a major disease of barley (Hordeum vulgare L.) that results in reduced grain yield and quality through the accumulation of the mycotoxin deoxynivalenol (DON). Coincident QTL for FHB severity, DON concentration, and heading date (HD) map to a region of chromosome 2(2H) designated Qrgz-2H-8. It is unclear whether disease resistance at this locus is due to a pleiotropic effect of late HD by delaying the host exposure to the pathogen or a tightly linked resistance gene. The objectives of this study were to develop a set of near isogenic lines (NILs) for the Qrgz-2H-8 region and to genetically dissect the QTL region containing the coincident traits. Two NIL populations were developed consisting of F2- and F4-derived recombinants from a cross between a BC5 line carrying the donor parent (Chevron) alleles in the Qrgz-2H-8 region and the recurrent parent M69. Analysis of field and marker data from these NILs revealed that the Chevron alleles conditioning FHB resistance, late HD, and low DON concentration were successfully introgressed into the BC5 parent line and were segregating among NILs. QTL analysis of the F4-derived population showed that the HD QTL is adjacent to the FHB QTL. Furthermore, a single NIL was identified that was similar to the resistant BC5 parent for FHB severity and the early flowering parent M69 for HD. These results indicate that the relationship between FHB and HD at the Qrgz-2H-8 region is likely due to tight linkage rather than pleiotropy.  相似文献   

15.
Investigations to identify quantitative trait loci (QTLs) governing cooking quality traits including amylose content, gel consistency and gelatinization temperature (expressed by the alkali spread value) were conducted using a set of 241 RIL populations derived from an elite hybrid cross of “Zhenshan 97” × “Minghui 63” and their reciprocal backcrosses BC1F1 and BC2F1 populations in two environments. QTLs and QTL × environment interactions were analyzed by using the genetic model with endosperm and maternal effects and environmental interaction effects on quantitative traits of seed in cereal crops. The results suggested that a total of seven QTLs were associated with cooking quality of rice, which were subsequently mapped to chromosomes 1, 4 and 6. Six of these QTLs were also found to have environmental interaction effects.  相似文献   

16.
Appropriate plant height is crucial for lodging resistance to improve the rice crop yield. The application of semi-dwarf 1 led to the green revolution in the 1960s, by predominantly increasing the rice yield. However, the frequent use of single sd1 gene sources may cause genetic vulnerability to pests and diseases. Identifying useful novel semi-dwarf genes is important for the genetic manipulation of plant architecture in practical rice breeding. In this study, introgression lines derived from two parents contrasting in plant height, Zhenshan 97 and Pokkali were employed to locate a gene with a large effect on plant height by the bulk segregant analysis method. A major gene, ph1, was mapped to a region closely linked to sd1 on chromosome 1; the additive effects of ph1 were more than 50 cm on the plant height and 2 days on the heading date in a BC4F2 population and its progeny. ph1 was then fine mapped to BAC AP003227. Gene annotation indicated that LOC_OS01g65990 encoding a chitin-inducible gibberellin-responsive protein (CIGR), which belongs to the GRAS family, might be the right candidate gene of ph1. Co-segregation analysis of the candidate gene-derived marker finally confirmed its identity as the candidate gene. A higher expression level of the CIGR was detected in all the tested tissues in tall plants compared to those of short plants, especially in the young leaf sheath containing elongating tissues, which indicated its importance role in regulating plant height. ph1 showed a tremendous genetic effect on plant height, which is distinct from sd1 and could be a new resource for breeding semi-dwarf varieties.  相似文献   

17.
 Quantitative trait loci (QTL) controlling the regeneration ability of rice seed callus were detected using 245 RFLP markers and 98 BC1F5 lines derived from two varieties, ‘Nipponbare’ and ‘Kasalath’. Regeneration ability was evaluated by two indices: average number of regenerated shoots per callus (NRS) and regeneration rate (RR). The BC1F5 lines showed continuous segregation for both indices. Five putative QTL for NRS (tentatively named qRg1, qRg2, qRg4a, qRg4b and qRg4c) located on chromosomes 1, 2 and 4 were detected. Digenic interaction among these detected QTL was not significant (P<0.01). Among the five QTL detected, four ‘Kasalath’ alleles and one ‘Nipponbare’ allele increased NRS. According to an estimate based on the nearest marker loci, the five QTL accounted for 38.5% of the total phenotypic variation of the BC1F5 lines. For RR, four putative QTL were detected on chromosomes 2 and 4, and all of these were in the same chromosomal regions as the NRS QTL. The four RR QTL accounted for 32.6% of the total phenotypic variation. Received: 7 November 1996 / Accepted: 25 April 1997  相似文献   

18.
We report here the second advanced backcross quantitative trait locus (AB-QTL) analysis carried out in winter wheat. Seven agronomic traits were studied in a BC2F1population derived from a cross between the German winter wheat variety Flair and the synthetic wheat line XX86 developed in Japan. We selected 111 BC2F1 lines and genotyped these with 197 microsatellite markers. Field data for seven agronomic traits were collected from corresponding BC2F3 families that were grown at up to six locations in Germany. QTL analyses for yield and yield components were performed using single-marker regression and interval mapping. A total of 57 putative QTLs derived from XX86 were detected, of which 24 (42.1%) were found to have a positive effect from the synthetic wheat XX86. These favourable QTLs were mainly associated with thousand-grain weight and grain weight per ear. Many QTLs for correlated traits were mapped in similar chromosomal regions. The AB-QTL data obtained in the present study are discussed and compared with results from previous QTL analyses.  相似文献   

19.
We report the fine mapping of the previously described quantitative trait loci (QTL) for grain weight QTgw.ipk-7D associated with microsatellite marker Xgwm1002-7D by using introgression lines (ILs) carrying introgressions of the synthetic wheat W-7984 in the genetic background of the German winter wheat variety ‘Prinz’. The BC4F3 ILs had a 10% increased thousand grain weight compared to the control group and the recurrent parent ‘Prinz’, and 84.7% of the phenotypic variance could be explained by the segregation of marker Xgwm1002-7D, suggesting the presence of a gene modulating grain weight, which was preliminarily designated gw1. It was possible to delimit the QTL QTgw.ipk-7D to the interval Xgwm295–Xgwm1002, which is located in the most telomeric bin 7DS4-0.61-1.00 in the physical map of wheat chromosome arm 7DS. Furthermore, our data suggest the presence of a novel plant height-reducing locus Rht on chromosome arm 7DS of ‘Prinz’. Larger grain and increased plant height may reflect the pleiotropic action of one gene or may be caused by two linked genes. In general, our data support the concept of using nearly isogenic ILs for validating and dissecting QTLs into single Mendelian genes and open the gateway for map-based cloning of a grain-weight QTL in wheat.  相似文献   

20.
Normal maize germplasm could be used to improve the grain yield of popcorn inbreds. Our first objective was to locate genetic factors associated with trait variation and make first assessment on the efficiency of advanced backcross quantitative trait locus (AB-QTL) analysis for the identification and transfer of favorable QTL alleles for grain yield components from the dent corn inbred. A second objective was to compare the detection of QTL in the BC2F2 population with results using F2:3 lines of the same parents. Two hundred and twenty selected BC2F2 families developed from a cross between Dan232 and an elite popcorn inbred N04 were evaluated for six grain yield components under two environments, and genotyped by means of 170 SSR markers. Using composite interval mapping (CIM), a total of 19 significant QTL were detected. Eighteen QTL had favorable alleles contributed by the dent corn parent Dan232. Sixteen of these favorable QTL alleles were not in the same or near marker intervals with QTL for popping characteristics. Six QTL were also detected in the F2:3 population. Improved N04 could be developed from 210 and 208 families with higher grain weight per plant and/or 100-grain weight, respectively, and 35 families with the same or higher popping expansion volume than N04. In addition, near isogenic lines containing detected QTL (QTL-NILs) for grain weight per plant and/or 100-grain weight could be obtained from 12 families. Our study demonstrated that the AB-QTL method can be applied to identify and manipulate favorable QTL alleles from normal corn inbreds and combine QTL detection and popcorn breeding efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号