首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A hippurate-negative biovariant of Brachyspira pilosicoli (B. pilosicoli hipp-) is occasionally isolated in diarrhoeic pigs in Finland, often concomitantly with hippurate-positive B. pilosicoli or Lawsonia intracellularis. We studied pathogenicity of B. pilosicoli hipp- with special attention paid to avoiding co-infection with other enteric pathogens. Pigs were weaned and moved to barrier facilities at the age of 11 days. At 46 days, 8 pigs were inoculated with B. pilosicoli hipp- strain Br1622, 8 pigs were inoculated with B. pilosicoli type strain P43/6/78 and 7 pigs were sham-inoculated. No signs of spirochaetal diarrhoea were detected; only one pig, inoculated with P43/6/78, had soft faeces from day 9 to 10 post inoculation. The pigs were necropsied between days 7 and 23 after inoculation. Live pigs were culture-negative for Brachyspira spp., but B. pilosicoli hipp- was reisolated from necropsy samples of two pigs. The lesions on large colons were minor and did not significantly differ between the three trial groups. In silver-stained sections, invasive spirochaetes were detected in colonic mucosae of several pigs in all groups. Fluorescent in situ hybridisation for genus Brachyspira, B. pilosicoli and strain Br1622 was negative. However, in situ detection for members of the genus Leptospira was positive for spirochaete-like bacteria in the colonic epithelium of several pigs in both infected groups as well as in the control group. L. intracellularis, Salmonella spp., Yersinia spp. and intestinal parasites were not detected. The failure of B. pilosicoli strains to cause diarrhoea is discussed with respect to infectivity of the challenge strains, absence of certain intestinal pathogens and feed and management factors.  相似文献   

3.

Background

The anaerobic spirochete Brachyspira pilosicoli colonizes the large intestine of various species of birds and mammals, including humans. It causes “intestinal spirochetosis”, a condition characterized by mild colitis, diarrhea and reduced growth. This study aimed to sequence and analyse the bacterial genome to investigate the genetic basis of its specialized ecology and virulence.

Methodology/Principal Findings

The genome of B. pilosicoli 95/1000 was sequenced, assembled and compared with that of the pathogenic Brachyspira hyodysenteriae and a near-complete sequence of Brachyspira murdochii. The B. pilosicoli genome was circular, composed of 2,586,443 bp with a 27.9 mol% G+C content, and encoded 2,338 genes. The three Brachyspira species shared 1,087 genes and showed evidence of extensive genome rearrangements. Despite minor differences in predicted protein functional groups, the species had many similar features including core metabolic pathways. Genes distinguishing B. pilosicoli from B. hyodysenteriae included those for a previously undescribed bacteriophage that may be useful for genetic manipulation, for a glycine reductase complex allowing use of glycine whilst protecting from oxidative stress, and for aconitase and related enzymes in the incomplete TCA cycle, allowing glutamate synthesis and function of the cycle during oxidative stress. B. pilosicoli had substantially fewer methyl-accepting chemotaxis genes than B. hyodysenteriae and hence these species are likely to have different chemotactic responses that may help to explain their different host range and colonization sites. B. pilosicoli lacked the gene for a new putative hemolysin identified in B. hyodysenteriae WA1. Both B. pilosicoli and B. murdochii lacked the rfbBADC gene cluster found on the B. hyodysenteriae plasmid, and hence were predicted to have different lipooligosaccharide structures. Overall, B. pilosicoli 95/1000 had a variety of genes potentially contributing to virulence.

Conclusions/Significance

The availability of the complete genome sequence of B. pilosicoli 95/1000 will facilitate functional genomics studies aimed at elucidating host-pathogen interactions and virulence.  相似文献   

4.

Background

The importance of the wild boar as a reservoir of Lawsonia intracellularis was assessed by investigating the seroprevalence of this pathogen among wild boars in the Republic of Korea. The extent of exposure to L. intracellularis among wild boars (Sus scrofa coreanus) was monitored by a country-wide serological survey using an immunoperoxidase monolayer assay.

Results

In this study, antibodies to L. intracellularis were observed in 165 of 716 clinically healthy wild boars tested. The overall apparent prevalence calculated directly from the sample and the true prevalence calculated based on the accuracy of the test method were 23.0% (95% confidence interval: 20.0-26.3%) and 25.6% (95% confidence interval: 23.9-27.2%), respectively. Serologically positive animals were found in all the tested provinces.

Conclusions

Our results confirm that L. intracellularis is present in the wild boar population worldwide, even in Far East Asia. Despite the high seroprevalence shown in wild boars, further studies are warranted to evaluate their potential as a reservoir species because seroprevalence does not prove ongoing infection nor shedding of the bacteria in amounts sufficient to infect other animals. It should also be determined whether the wild boar, like the domestic pig, is a natural host of L. intracellularis.  相似文献   

5.

Background

Brachyspira species are fastidious anaerobic microorganisms, that infect the colon of various animals. The genus contains both important pathogens of livestock as well as commensals. Two species are known to infect humans: B. aalborgi and B. pilosicoli. There is some evidence suggesting that the veterinary pathogenic B. pilosicoli is a potential zoonotic agent, however, since diagnosis in humans is based on histopathology of colon biopsies, species identification is not routinely performed in human materials.

Methods

The study population comprised 57 patients with microscopic evidence of Brachyspira infection and 26 patients with no histopathological evidence of Brachyspira infection. Concomitant faecal samples were available from three infected patients. Based on publically available 16S rDNA gene sequences of all Brachyspira species, species-specific primer sets were designed. DNA was extracted and tested by real-time PCR and 16S rDNA was sequenced.

Results

Sensitivity and specificity for identification of Brachyspira species in colon biopsies was 100% and 87.7% respectively. Sequencing revealed B. pilosicoli in 15.4% of patients, B. aalborgi in 76.9% and a third species, tentatively named “Brachyspira hominis”, in 26.2%. Ten patients (12.3%) had a double and two (3.1%) a triple infection. The presence of Brachyspira pilosicoli was significantly associated with inflammatory changes in the colon-biopsy (p = 0.028).

Conclusions

This newly designed PCR allows for sub-differentiation of Brachyspira species in patient material and thus allows large-scaled surveillance studies to elucidate the pathogenicity of human Brachyspira infections. One-third of affected patients appeared to be infected with a novel species.  相似文献   

6.
The nucleotide sequence of the Brachyspira hyodysenteriae ftnA gene, encoding a putative ferritin protein (FtnA), was determined. Analysis of the sequence predicted that this gene encoded a protein of 180 amino acids. RT-PCR and Western blot showed that the ftnA gene was expressed in B. hyodysenteriae, and evidence suggests that FtnA stores iron rather than haem. ftnA was delivered as DNA and recombinant protein vaccines in a mouse model of B. hyodysenteriae infection. Vaccine efficacy was monitored by caecal pathology and quantification of B. hyodysenteriae numbers in the caeca of infected mice by real-time PCR.  相似文献   

7.
Diet has been implicated as a major factor impacting clinical disease expression of swine dysentery and Brachyspira hyodysenteriae colonization. However, the impact of diet on novel pathogenic strongly beta-hemolytic Brachyspira spp. including “B. hampsonii” has yet to be investigated. In recent years, distillers dried grains with solubles (DDGS), a source of insoluble dietary fiber, has been increasingly included in diets of swine. A randomized complete block experiment was used to examine the effect of increased dietary fiber through the feeding of DDGS on the incidence of Brachyspira-associated colitis in pigs. One hundred 4-week-old pigs were divided into five groups based upon inocula (negative control, Brachyspira intermedia, Brachyspira pilosicoli, B. hyodysenteriae or “B. hampsonii”) and fed one of two diets containing no (diet 1) or 30% (diet 2) DDGS. The average days to first positive culture and days post inoculation to the onset of clinical dysentery in the B. hyodysenteriae groups was significantly shorter for diet 2 when compared to diet 1 (P = 0.04 and P = 0.0009, respectively). A similar difference in the average days to first positive culture and days post inoculation to the onset of clinical dysentery was found when comparing the “B. hampsonii” groups. In this study, pigs receiving 30% DDGS shed on average one day prior to and developed swine dysentery nearly twice as fast as pigs receiving 0% DDGS. Accordingly, these data suggest a reduction in insoluble fiber through reducing or eliminating DDGS in swine rations should be considered an integral part of any effective disease elimination strategy for swine dysentery.  相似文献   

8.
Single-chain antibodies (scFv) specific to Brachyspira hyodysenteriae were isolated from a phagemid library. Recombinant Bhlp 29.7 protein was used for scFv selection and individual clones were tested by ELISA and immunofluorescent test; four unique clones were isolated. One of selected clones was able to bind specifically B. hyodysenteriae in ELISA and immunofluorescence test. This is the first report of species-specific recombinant antibodies against B. hyodysenteriae.  相似文献   

9.
The cj0183 and cj0588 genes identified in the Campylobacter jejuni NCTC 11168 genome encode proteins with amino acid sequences predicted to be homologous to other bacterial hemolysins. The Cj0183 protein exhibits homology to Brachyspira hyodysenteriae TlyC protein, whereas the cj0588 gene product is homologous to TlyA proteins Brachyspira hyodysenteriae, Helicobacter pylori, and Mycobacterium tuberculosis, which play a crucial role in bacterial virulence. The aim of our work was to examine the hemolytic activity and determine the role of cj0183- and cj0588-encoded proteins on the adherence of chosen C. jejuni strains to the Caco-2 cell line by constructing deletion mutants in the mentioned genes. We found out there is no difference in hemolytic activity between both mutants in gene cj0183 and cj0588 and the wild strains. However, Cj0588 protein but not Cj0183 is involved in adherence to the Caco-2 cells.  相似文献   

10.
The large abundance of free-ranging wild boars (Sus scrofa) and a trend towards animal friendly outdoor management of domestic pigs lead to an increasing probability of disease transmission between those animal populations. In 2001, an active monitoring was started for classical swine fever (CSF), Aujeszky’s disease (AD) and porcine brucellosis (PB) in wild boars in Switzerland. The objective of this programme was to document the serological status of wild boars regarding the selected pathogens. To continue this serosurveillance, 1,060 wild boar samples were collected during two regular hunting seasons in 2004–2005. Furthermore, in a pilot study, 61 outdoor pigs from 14 farms located in areas with high wild boar densities were sampled in 2004 and serologically tested for AD and PB. All wild boar samples were negative for CSF. Seroprevalence for AD was 2.83% (95% CI 1.91–4.02%). Seroprevalence for PB was 13.5% (95% CI 10.7–16.7%) for the Rose Bengal test and 11.05% (95% CI 8.82–13.61%) for the indirect ELISA. There was no serological evidence for AD in domestic pigs. All tested animals from 13 piggeries were seronegative for PB, but three pigs from the same farm showed doubtful results. Further investigations on the farm did not indicate the presence of PB in the herd. These findings urge the need for better diagnostic tools to obtain reliable results concerning PB prevalence. Since contact and following transmission of infectious agents between infected wild boars and outdoor pigs might occur in the future, it is advisable to include outdoor pigs in areas at risk in routine surveillance programmes.  相似文献   

11.
AIMS: To develop an assay to simultaneously detect Lawsonia intracellularis, Brachyspira hyodysenteriae and Brachyspira pilosicoli in pig faeces. METHODS AND RESULTS: A multiplex-polymerase chain reaction (M-PCR) was designed to amplify a 655-base pair (bp) portion of the L. intracellularis 16S rRNA gene, a 354-bp portion of the B. hyodysenteriae NADH oxidase gene, and a 823-bp portion of the B. pilosicoli 16S rRNA gene. Specificity was assessed using 80 strains of Brachyspira spp. and 30 other enteric bacteria. Bacterial DNA was extracted from faeces using the QIAamp DNA Stool Mini Kit. The M-PCR was tested in parallel with culture and/or PCR on 192 faecal samples from eight piggeries. Faeces also were seeded with known cell concentrations of the three pathogenic species, and the limits of detection of the M-PCR tested. The M-PCR was specific, with limits of detection of 10(2)-10(3) cells of the respective species per gram of faeces. CONCLUSIONS: The M-PCR is a rapid, sensitive and specific test for detecting three important enteric bacterial pathogens of pigs. SIGNIFICANCE AND IMPACT OF THE STUDY: The availability of a new diagnostic M-PCR will allow rapid detection and control of three key porcine enteric pathogens.  相似文献   

12.
The intestinal spirochete Brachyspira hyodysenteriae is an important pathogen in swine, causing mucohemorrhagic colitis in a disease known as swine dysentery. Based on the detection of significant linkage disequilibrium in multilocus sequence data, the species is considered to be clonal. An analysis of the genome sequence of Western Australian B. hyodysenteriae strain WA1 has been published, and in the current study 19 further strains from countries around the world were sequenced with Illumina technology. The genomes were assembled and aligned to over 97.5% of the reference WA1 genome at a percentage sequence identity better than 80%. Strain regions not aligned to the reference ranged between 0.2 and 2.5%. Clustering of the strain genes found on average 2,354 (88%) core genes, 255 (8.6%) ancillary genes and 77 (2.9%) unique genes per strain. Depending on the strain the proportion of genes with 100% sequence identity to WA1 ranged from 85% to 20%. The result is a global comparative genomic analysis of B. hyodysenteriae genomes revealing potential differential phenotypic markers for numerous strains. Despite the differences found, the genomes were less varied than those of the related pathogenic species Brachyspira pilosicoli, and the analysis supports the clonal nature of the species. From this study, a public genome resource has been created that will serve as a repository for further genetic and phenotypic studies of these important porcine bacteria. This is the first intra-species B. hyodysenteriae comparative genomic analysis.  相似文献   

13.
《Anaerobe》1999,5(5):539-546
Brachyspira (Serpulina) hyodysenteriae cells consume oxygen during growth under a 1%O2:99%N2atmosphere. A major mechanism of O2metabolism by this anaerobic spirochete is the enzyme NADH oxidase (EC 1.6.99.3). In these investigations, the NADH oxidase gene (nox) of B. hyodysenteriae strain B204 was cloned, expressed in Escherichia coli, and sequenced. By direct cloning of aHind III-digested DNA fragment which hybridized with a nox DNA probe and by amplification of B204 DNA through the use of inverse PCR techniques, overlapping portions of the nox gene were identified and sequenced. The nox gene and flanking chromosome regions (1.7 kb total) were then amplified and cloned into plasmid pCRII. Lysates of E. coli cells transformed with this recombinant plasmid expressed NADH oxidase activity (1.1 μmol NADH oxidized/min/mg protein) and contained a protein reacting with swine antiserum raised against purified B. hyodysenteriae NADH oxidase. The nox ORF (1.3 kb) encodes a protein with a predicted molecular mass of 50 158 kDa. The B. hyodysenteriae NADH oxidase shares significant (46%) amino acid sequence identity and common functional domains with the NADH oxidases of Enterococcus faecalis and Streptococcus mutans, suggesting a common evolutionary origin for these proteins. Cloning of the B. hyodysenteriae nox gene is an important step towards the goal of generating B. hyodysenteriae mutant strains lacking NADH oxidase and for investigating the significance of NADH oxidase in the physiology and pathogenesis of this anaerobic spirochete.  相似文献   

14.
Aims: To identify bacilli, lactic acid bacteria and bifidobacteria that inhibit the growth of Brachyspira hyodysenteriae. Methods and Results: A total of 80 isolates were obtained from various porcine intestinal compartments using selective conditions and grouped into 15 similarity clusters based on whole‐cell protein profiles. Random amplified polymorphic DNA PCR patterns identified 24 genotypes. 16S rDNA sequencing assigned all genotypes, except eight aerobes, to established species (Bacillus subtilis, Enterococcus faecium, Lactobacillus salivarius, Lactobacillus mucosae, Lactobacillus reuteri, Lactobacillus amylovorus, Bifidobacterium thermophilum). According to their minimum inhibitory concentrations, four strains (Ent. faecium, Lact. reuteri, Lact. amylovorus, Bif. thermophilum) were susceptible to all clinically relevant antibiotics. Two lactobacilli showing multiresistance harboured the erm(B) determinant. A cross‐section of eight representative strains was examined for growth suppression of two strains of Brach. hyodysenteriae, the aetiological agent of swine dysentery, and compared with intestinal strains derived from other animal sources. The Brachyspira strains were inhibited by strains of Lact. salivarius, Bif. thermophilum, Ent. faecium and B. subtilis. Conclusions: Three porcine strains of Ent. faecium, Bif. thermophilum and B. subtilis were found to be suitable as probiotic candidates because of their well‐established identity, antibiotic susceptibility and antagonistic activity. Significance and Impact of the Study: For the first time, antagonistic activity of well‐characterized porcine strains against Brach. hyodysenteriae is presented. These findings suggest that certain intestinal strains might have a potential as probiotic feed additives for prevention of swine dysentery.  相似文献   

15.
Aims: Aim of the study is to evaluate the use of recombinant Bhlp29.7 in immunoblotting with sera as a means to detect pig herds infected with Brachyspira hyodysenteriae. Methods and Results: Sera samples from 789 sows and rectal swabs from 838 pigs of various categories on 22 farms of different size (median 450 animals), production type and history of swine dysentery (SD) were examined. Sera from 378 sows from farms with previous SD history were examined via immunoblotting. Specific antibodies were detected in 79 of these (20·9%). Examination of 411 serum samples from sows and gilts taken on 11 farms without previous history of SD detected specific antibodies in 13 sows and gilts (3·2%). These 13, however, had come from farms where the presence of B. hyodysenteriae was confirmed or SD status was not known. Seroprevalence in herds with previous SD history ranged from 2·5 to 35·7%. B. hyodysenteriae was confirmed on six (27·3%) of 22 monitored farms. Conclusions: Immunoblotting using recombinant antigen Bhlp29.7 in conjunction with culturing B. hyodysenteriae proved to be a valuable tool for detecting swine herds latently infected with B. hyodysenteriae. Significance and Impact of the Study: The use of immunoblotting with recombinant Bhlp29.7 should prove to be a useful adjunct to detecting herds with SD, and hence, it will assist in controlling this important disease.  相似文献   

16.
17.
The presence of nitrogen–Fixing cyanobacterial endophytes, such as Richelia intracellularis Schmidit commonly observed within several species of Rhizosolenia, in nitrogen-limited oceanic waters has obvious implications both for the host organism(s) and for the entire planktonic assemblage. Recently, epi-fluorescent examination of pllankton samples collected off Oahu, Hawaii, in september 1982 revealed R. intracellularis within the diatoms Hemiaulus membranaceus Cleve and H. hauckii Grunow as well as its expected presence within Rhizosolennia spp. Richelia intracellularis coccurred with within Hemiaulus spp. at frequenccies (ca.80%)comparable to those noted for Rhizosolenia spp. Standard bright field or phaseconrast microsocopy could not reliably distinguish the cyanobacteria within Hemiaulus spp. If this association is common, the occurrence of R.intracellularis (and its significance in the nitrogen dynamics of the ocean)may have been greatly underestimated in previous studies.  相似文献   

18.
For areas at risk for African swine fever (ASF) introduction from neighboring regions, it is important for epidemic control to know how wild boar (Sus scrofa) dispersion dynamics could be used to combat the spread of ASF. In this regard, long-term information based on population genetic data makes an important contribution. We selected our study area as Rhineland-Palatinate, Germany, because it had a high density of wild boars and was threatened by ASF via infected wild boars from neighboring Belgium. On an area of around 20,000 km2, we collected almost 1,200 blood samples from 22 wild boar hunting grounds. The study area included a network of potential barriers to movement, including roads and rivers. We assessed genetic differentiation based on microsatellite data. We used 2 spatial (Bayesian Analysis of Population Structure [BAPS] and TESS) and 1 non-spatial (STRUCTURE) Bayesian model-based approaches to analyze the data. Each of the algorithms detected 4 clusters with different cluster compositions in different areas and identified the highest degrees of differentiation between hunting grounds east and west of the Rhine River, between Pfalz and Eifel-Hunsrück, and to a lesser degree between Westerwald and Taunus and between Eifel and Hunsrück. Thus, genetic evidence suggests barriers of different strength that might be helpful in a setup of complex and expensive measures against the spread of animal diseases such as ASF. The described approach could also provide valuable information for other threatened regions to contain ASF. © 2021 The Authors. The Journal of Wildlife Management published by Wiley Periodicals LLC on behalf of The Wildlife Society.  相似文献   

19.
Yersiniosis is strongly associated with the consumption of pork contaminated with enteropathogenic Yersinia enterocolitica, which is harbored by domestic pigs without showing clinical signs of disease. In contrast to data on Y. enterocolitica isolated from conventionally reared swine, investigations into the occurrence of Y. enterocolitica in wild boars in Germany are rare. The objectives of the study were to get knowledge about these bacteria and their occurrence in wild boars hunted in northern Germany by isolation of the bacteria from the tonsils, identification of the bioserotypes, determination of selected virulence factors, macrorestriction analysis, multilocus sequence typing (MLST), and testing of antimicrobial susceptibility. Altogether, tonsils from 17.1% of 111 tested wild boars were positive for Y. enterocolitica by culture methods. All but two isolates belonged to biotype (BT) 1A, with the majority of isolates bearing a ystB nucleotide sequence which was revealed to have 85% identity to internal regions of Y. enterocolitica heat-stable enterotoxin type B genes. The remaining Y. enterocolitica isolates were identified to be BT 1B and did not carry the virulence plasmid. However, two BT 1A isolates carried the ail gene. Macrorestriction analysis and results from MLST showed a high degree of genetic diversity of the isolates, although the region where the samples were taken was restricted to Lower Saxony, Germany, and wild boars were shot during one hunting season. In conclusion, most Y. enterocolitica isolates from wild boars investigated in this study belonged to biotype 1A. Enteropathogenic Y. enterocolitica bioserotypes 4/O:3 and 2/O:9, usually harbored by commercially raised pigs in Europe, could not be identified.  相似文献   

20.
Wild boar (Sus scrofa L.) were introduced in the island of Cyprus in 1990, when five animals were imported from Greece for game farming. In 1994, wild boars were illegally released in Lemesos (Limassol) Forest and in 1996 in the Troodos National Forest Park. Soon the population increased and dispersed throughout the park. In 1997, the government of Cyprus decided to eradicate wild boar because of the danger of transmitting diseases to livestock and to prevent possible environmental destruction. To control the wild boar, hunting was permitted and game wardens were instructed to eliminate the free-ranging animals. In 2004, no animals were observed in localities where they had been seen before. Surveys in September 2004 (Troodos National Park) and January/February 2005 (Troodos Forest, Pafos Forest, and Lemesos Forest) revealed no signs of recent wild boar presence. The reasons for the possible failure of wild boar to establish in Cyprus are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号