首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Enteric bacteria have evolved an impressive array of mechanisms that allow the cell to grow at widely different external osmotic pressures. These serve two linked functions; firstly, they allow the cell to maintain a relatively constant turgor pressure which is essential for cell growth; and secondly they permit changes in cytoplasmic composition such that the accumulation of intracellular osmolytes required to restore turgor pressure does not impair enzyme function. The primary event in turgor regulation is the controlled accumulation of potassium and its counterion glutamate. At high external osmolarities the cytoplasmic levels of potassium glutamate can impair enzyme function. Rapid growth is therefore dependent upon secondary responses, principally the accumulation of compatible solutes, betaine (N-trimethylglycine), proline and trehalose. The accumulation of these solutes is achieved by the controlled activity of transport systems and enzymes in response to changes in external osmotic pressure. It has been proposed that the accumulation of potassium glutamate during turgor regulation acts as a signal for the activation of these systems [1,2]. This brief review will examine the evidence that control over the balance of cytoplasmic osmolytes is achieved by sensing of the intracellular potassium (and glutamate) concentration.  相似文献   

5.
Abstract Enteric bacteria have evolved an impressive array of mechanisms that allow the cell to grow at widely different external osmotic pressures. These serve two linked functions; firstly, they allow the cell to maintain in relatively constant turgor pressure which is essential for cell growth; and secondly they permit changes in cytoplasmic composition such that the accumulation of intracellular osmolytes required to restore turgor pressure does not impair enzyme function. The primary event in turgor regulation is the controlled accumulation of potassium and its counterion glutamate. At high external osmolarities the cytoplasmic levels of potassium glutamate can impair enzyme function. Rapid growth is therefore dependent upon secondary responses, principally the accumulation of compatible solutes, betaine ( N -trimethylglycine), proline and trehalose. The accumulation of these solutes is achieved by the controlled activity of transport systems and enzymes in response to changes in external osmotic pressure. It has been proposed that the accumulation of potassium glutamate during turgor regulation acts as a signal for the activation of these systems [1,2]. This brief review will examine the evidence that control over the balance of cytoplasmic osmolytes is achieved by sensing of the intracellular potassium (and glutamate) concentration.  相似文献   

6.
7.
8.
9.
10.
11.
12.
The differentiating bacterium Streptomyces coelicolor harbours some 66 sigma factors, which support its complex life cycle. sigma(B), a functional homologue of sigma(S) from Escherichia coli, controls both osmoprotection and differentiation in S. coelicolor A3(2). Microarray analysis revealed sigma(B)-dependent induction of more than 280 genes by 0.2 M KCl. These genes encode several sigma factors, oxidative defence proteins, chaperones, systems to provide osmolytes, cysteine, mycothiol, and gas vesicle. sigma(B) controlled induction of itself and its two paralogues (sigma(L) and sigma(M)) in a hierarchical order of sigma(B)-->sigma(L)-->sigma(M), as revealed by S1 mapping and Western blot analyses. The phenotype of each sigma mutant suggested a sequential action in morphological differentiation; sigma(B) in forming aerial mycelium, sigma(L) in forming spores and sigma(M) for efficient sporulation. sigma(B) was also responsible for the increase in cysteine and mycothiol, the major thiol buffer in actinomycetes, upon osmotic shock, revealing an overlap between protections against osmotic and oxidative stresses. Proteins in sigB mutant were more oxidized (carbonylated) than the wild type. These results support a hypothesis that sigma(B) serves as a master regulator that triggers other related sigma factors in a cascade, and thus regulates differentiation and osmotic and oxidative response in S. coelicolor.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号