首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lateral-line sensory cells of Xenopus show considerable similarity to central nervous system synapses in their responses to the zinc iodide-osmium tetroxide, and bismuth-iodide cytochemical staining techniques. Both reserpine and FLA-63 cause a reduction in the diameter and electron density of the synaptic bars, and a dramatic loss of synaptic vesicles surrounding the bars. Aminooxy acetic acid and 3-mercaptopropionic acid cause no significant changes in the sensory-cell afferent synaptic apparatus. The results are discussed in the light of the known effects of the drugs. It is concluded that a monoamine rather than an amino acid may act as the afferent transmitter.  相似文献   

2.
The calcium distribution in the ampullary electroreceptor and the type B electrore-ceptor organ (gymnarchomast) of Gymnarchus niloticus (Gymnarchidae) and in the tuberous organ of Apteronotus leptorhynchus (gymnotidae) was studied. Endogenous calcium appeared as electron-dense precipitates when the cutaneous organs were pre-fixed with phosphate-buffered glutaraldehyde and postfixed with osmium tetroxide plus potassium bichromate. Calcium precipitates were localized in both intracellular compartments of sensory cells and afferent nerve fibers. In contrast to sensory cells, small amounts of calcium precipitates were found in the cytoplasm of accessory cells. In sensory cells, electron-dense deposits were apparent mainly in synaptic vesicles near synaptic ribbons, inside vacuoles of the endoplasmic reticulum, and between the layers of the nuclear membrane. Very few deposits were found in mitochondria. Precipitates were also observed within the axons of afferent nerves and between the layers of the myelin sheath. The synaptic cleft was devoid of calcium. Calcium deposits have a specific cellular distribution in electro-receptor organs of teleost fish.  相似文献   

3.
GABAergic modulation of primary gustatory afferent synaptic efficacy   总被引:1,自引:0,他引:1  
Modulation of synaptic transmission at the primary sensory afferent synapse is well documented for the somatosensory and olfactory systems. The present study was undertaken to test whether GABA impacts on transmission of gustatory information at the primary afferent synapse. In goldfish, the vagal gustatory input terminates in a laminated structure, the vagal lobes, whose sensory layers are homologous to the mammalian nucleus of the solitary tract. We relied on immunoreactivity for the GABA-transporter, GAT-1, to determine the distribution of GABAergic synapses in the vagal lobe. Immunocytochemistry showed dense, punctate GAT-1 immunoreactivity coincident with the layers of termination of primary afferent fibers. The laminar nature and polarized dendritic structure of the vagal lobe make it amenable to an in vitro slice preparation to study early synaptic events in the transmission of gustatory input. Electrical stimulation of the gustatory nerves in vitro produces synaptic field potentials (fEPSPs) predominantly mediated by ionotropic glutamate receptors. Bath application of either the GABA(A) receptor agonist muscimol or the GABA(B) receptor agonist baclofen caused a nearly complete suppression of the primary fEPSP. Coapplication of the appropriate GABA(A) or GABA(B) receptor antagonist bicuculline or CGP-55845 significantly reversed the effects of the agonists. These data indicate that GABAergic terminals situated in proximity to primary gustatory afferent terminals can modulate primary afferent input via both GABA(A) and GABA(B) receptors. The mechanism of action of GABA(B) receptors suggests a presynaptic locus of action for that receptor.  相似文献   

4.
A possibility of efferent innervation of gustatory and mechanosensitive afferent fiber endings was studied in frog fungiform papillae with a suction electrode. The amplitude of antidromic impulses in a papillary afferent fiber induced by antidromically stimulating an afferent fiber of glossopharyngeal nerve (GPN) with low voltage pulses was inhibited for 40 s after the parasympathetic efferent fibers of GPN were stimulated orthodromically with high voltage pulses at 30 Hz for 10 s. This implies that electrical positivity of the outer surface of papillary afferent membrane was reduced by the efferent fiber-induced excitatory postsynaptic potential. The inhibition of afferent responses in the papillae was blocked by substance P receptor blocker, L-703,606, indicating that substance P is probably released from the efferent fiber terminals. Slow negative synaptic potential, which corresponded to a slow depolarizing synaptic potential, was extracellularly induced in papillary afferent terminals for 45 s by stimulating the parasympathetic efferent fibers of GPN with high voltage pulses at 30 Hz for 10 s. This synaptic potential was also blocked by L-703,606. These data indicate that papillary afferent fiber endings are innervated by parasympathetic efferent fibers.  相似文献   

5.
Accumulating evidence suggests that the plasticity of extrinsic thalamocortical inputs in cortical layer IV may be guided or instructed by earlier plasticity events in the intrinsic, horizontal connections within the extragranular cortical layers. We analyse a rate-based model of the plasticity of a set of extrinsic afferents in the presence of a pre-existing (and fixed) plexus of intrinsic, overall excitatory horizontal connections between a set of target neurons. We determine conditions under which afferent synaptic pattern formation respects this pre-existing lateral structure. We find three broad regimes under which extrinsic afferent plasticity may violate this structure: the initial pattern of extrinsic afferent innervation of the target cells is far from balanced; the gain of the extrinsic afferents greatly exceeds the overall scale of the strength of lateral excitation; the target cell horizontal coupling matrix is sparse. If none of these conditions is satisfied, then extrinsic afferent plasticity respects the pre-existing lateral connectivity, so that afferent synaptic pattern formation conforms to the pattern of lateral excitation.  相似文献   

6.
In slices of rat sensorimotor cortex, extracellular field potentials evoked by electrical stimulation of the white matter were recorded at various cortical depths. In order to determine the nature of the various components, experiments were performed in 3 situations: in a control perfusion medium, in a solution in which calcium ions have been replaced by magnesium ions to block synaptic transmission, and in cortices in which the pyramidal neurons of layer V had been previously induced to degenerate.In the control situation, the response at or near the surface was a positive-negative wave. From a depth of about 150 μm downwards, the evoked response consisted usually of 6 successive components, 3 positive-going, P11, P3 and P6 and 3 negative-going, N2, N4 and N5. P1 and N4 were apparent in superficial layers only. The amplitude of the remaining waves variable in the cortex but all diminished near the white matter.The early part of the surface positive wave arises from a non-synaptic activation of superficial elements, probably apical dendrites. The late part of the surface positive wave and the negative wave are due to the synaptic activation of neurons located probably in layer III.The large negative wave N2 represents principally the antidromic activation of cell bodies and possibly of proximal dendrites of neurons situated in layers III, IV and V, through the compound action potentials of afferent and efferent fibers may contribute to a reduced part to its generation.The late components N4 to P6 are post-synaptic responses. The negative component N5, the amplitude of which is largest in layers III and IV, represents excitatory responses of neurons located at various depths in the cortex. The nature of the positive component P6 is less clear, although the underlying mechanism might be inhibitory synaptic potentials.  相似文献   

7.
Wan YH  Jian Z  Wang WT  Xu H  Hu SJ  Ju G 《Neuro-Signals》2006,15(2):74-90
Short-term plasticity (STP) is an important element of information processing in neuronal networks. As the first synaptic relay between primary afferent fibers (PAFs) and central neurons, primary afferent synapses in spinal dorsal horn (DH) are essential to the initial processing of somatosensory information. In this research, we examined the STP between Adelta-PAFs and spinal DH neurons by patch-clamp recording. Our results showed that depression dominated the STP at primary afferent synapses. The curves of STP had no significant changes in the presence of bicuculline, CTZ or AP-5. Lowering extracellular Ca(2+) concentration ([Ca(2+)](o)) from 2.4 to 0.8 mM reduced the depression of synaptic responses at all stimulus rates, while raising [Ca(2+)](o) from 2.4 to 4.0 mM increased the synaptic depression. Increasing the bath temperature from 24 to 32 degrees C clearly reduced the depression of all responses. These results indicate that the observed STP is of presynaptic origin and depends on transmitter release. By fitting the experimental data recorded under different conditions, a model of STP was used to quantitatively characterize the observed STP and to analyze the possible mechanisms underlying the effects of [Ca(2+)](o) and temperature. Furthermore, using a model neuron receiving synaptic inputs, we found that with this form of STP, postsynaptic DH neurons could detect rate changes in both rapidly- and slowly-firing afferents with equal sensitivity. The present study links the intrinsic STP properties of primary afferent synapses with their role in processing neural information, and provides a basis for further research on the STP in spinal DH and its biological function under in vivo conditions.  相似文献   

8.
Parameters of the electrical activity of the isolated vestibulocerebellar complex of the frog were studied under in vitro conditions. In the region of the vestibular nucleus (nc. VIII), in the presence of stimulation of the stato-acoustic nerve (n. VIII), responses from efferent vestibular neurones and from unidentified (probably vestibulospinal) neurones were recorded. The latent periods of their excitatory postsynaptic potentials (EPSPs, 1.4-2.2 ms) were indicative of mono- and disynaptic connection. Inhibitory postsynaptic potentials (IPSPs) were also observed. Stimulation of the auricular lobe of the cerebellum evoked monosynaptic IPSPs, an EPSP-IPSP complex or pure EPSPs in nc. VIII, the latter probably by way of collaterals to the cerebellum. The inhibitory character of the effect of efferents from the cerebellum to the neurones of nc. VIII was demonstrated in the focal synaptic potential and in spontaneous and evoked unit activity. If n. VIII was stimulated, both focal and unit extra- and intracellular responses characteristic of activation of the Purkinje cells by mossy (MF) or climbing (CF) afferent fibres were recorded in the cerebellar cortex. The electrophysiological picture indicates that both synaptic transmission and the functional manifestations of the individual neurones are preserved in the tested preparation.  相似文献   

9.
Effects of dalargin, a synthetic leu-enkephalin analogue and its antagonist naloxone on synaptic transmission in afferent synapses of ray electroreceptors were investigated using an isolated preparation of Lorenzini ampullae from Black sea rays. It was shown that dalargin (10–6–10–10 mole liter) both decreased background activity and evoked activity of an afferent fiber in a dose-dependent manner. Naloxone (10–5 mole/liter) also inhibited afferent impulsation and completely blocked responses of the Lorenzini ampullae to dalargin application. L-glutamate-induced excitatory responses were reduced in the presence of dalargin. It is suggested that the modulatory action of dalargin on glutamatergic synaptic transmission in the Lorenzini ampullae is exerted via specific opiate receptors.Translated from Neirofiziologiya, Vol. 25, No. 1, pp. 18–21, January–February, 1993.  相似文献   

10.
The caudal mesenteric sympathetic ganglion of cats was isolated and perfused, and responses of the preganglionic trunks of the ganglion to electrical stimulation of the central end of the hypogastric nerve were studied. Stimulation of the nerve with single square pulses gives rise to early and late responses. Early responses appear after various latent periods and are the result of excitation of transit fibers of groups A, B, and C, whereas the appearance of late responses is associated with the synaptic transmission of excitation in the sympathetic ganglion from afferent sympathetic neurons at the first level (from the pelvic organs to the caudal ganglion) to afferent sympathetic neurons of the second level (from the caudal ganglion and above). Early responses are not blocked, but late responses are blocked by perfusion of the ganglion with azamethonium bromide and magnesium salts, and also by tetanization of the hypogastric nerve at 10–50 Hz. Other facts indicating the synaptic relaying of visceral sympatho-sympathetic afferent pathways in the ganglion are also described.Institute of Physiology, Academy of Sciences of the Belorussian SSR, Minsk. Translated from Neirofiziologiya, Vol. 2, No. 5, pp. 507–514, September–October, 1970.  相似文献   

11.
We present a simple computational model to study the interplay of activity-dependent and intrinsic processes thought to be involved in the formation of topographic neural projections. Our model consists of two input layers which project to one target layer. The connections between layers are described by a set of synaptic weights. These weights develop according to three interacting developmental rules: (i) an intrinsic fibre-target interaction which generates chemospecific adhesion between afferent fibres and target cells; (ii) an intrinsic fibre-fibre interaction which generates mutual selective adhesion between the afferent fibres; and (iii) an activity-dependent fibre-fibre interaction which implements Hebbian learning. Additionally, constraints are imposed to keep synaptic weights finite. The model is applied to a set of eleven experiments on the regeneration of the retinotectal projection in goldfish. We find that the model is able to reproduce the outcome of an unprecedented range of experiments with the same set of model parameters, including details of the size of receptive and projective fields. We expect this mathematical framework to be a useful tool for the analysis of developmental processes in general. <br>  相似文献   

12.
The effect of hypoxia and application of manganese, cobalt, and magnesium ions on electrical responses of the frog olfactory bulb to adequate stimulation and to direct electrical stimulation of the olfactory nerve were studied. The slow potential evoked by adequate stimulation and the associated inhibition of the afferent input of the olfactory bulb were found to be much more resistant to inhibition of synaptic transmission by all methods used than the postsynaptic components of the orthodromic response and associated postsynaptic inhibition. A slow potential was recorded even when synaptic transmission in the olfactory bulb was completely blocked by magnesium ions. It is concluded that the slow potential of the olfactory bulb and inhibition of its afferent input are nonsynaptic in nature. It is postulated that the slow potential reflects mainly depolarization of glial cells in the glomerular layer of the bulb evoked by accumulation of potassium ions. The possible mechanisms of inhibition of the afferent input are discussed.  相似文献   

13.
Electrical stimulation of the afferent components in one cardiopulmonary nerve (the left vagosympathetic complex at a level immediately caudal to the origin of the left recurrent laryngeal nerve) in acutely decentralized thoracic autonomic ganglionic preparations altered cardiac chronotropism and inotropism in 17 of 44 dogs. Since these neural preparations were acutely decentralized, the effects were mediated presumably via intrathoracic autonomic reflexes. The lack of consistency of these reflexly generated cardiac responses presumably were due in part to anatomical variation of afferent axons in the afferent nerve stimulated. As stimulation of the afferent components in the same neural structure caudal to the heart (where cardiopulmonary afferent axons are not present) failed to elicit cardiac responses in any dog, it is presumed that when cardiac responses were elicited by the more cranially located stimulations, these were due to activation of afferent axons arising from the heart and (or) lungs. When cardiac responses were elicited, intramyocardial pressures in the right ventricular conus as well as the ventral and lateral walls of the left ventricle were augmented. Either bradycardia or tachycardia was elicited. Following hexamethonium administration no responses were produced, demonstrating that nicotonic cholinergic synaptic mechanisms were involved in these intrathoracic cardiopulmonary-cardiac reflexes. In six of the animals, when atropine was administered before hexamethonium, reflexly generated responses were attenuated. The same thing occurred when morphine was administered in four animals. In contrast, in four animals following administration of phentolamine, the reflexly generated changes were enhanced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The vestibular system is responsible for transforming head motion into precise eye, head, and body movements that rapidly stabilize gaze and posture. How do central excitatory synapses mediate behavioral outputs accurately matched to sensory inputs over a wide dynamic range? Here we demonstrate that vestibular afferent synapses in vitro express frequency-independent transmission that spans their in vivo dynamic range (5-150 spikes/s). As a result, the synaptic charge transfer per unit time is linearly related to vestibular afferent activity in both projection and intrinsic neurons of the vestibular nuclei. Neither postsynaptic glutamate receptor desensitization nor saturation affect the relative amplitude or frequency-independence of steady-state transmission. Finally, we show that vestibular nucleus neurons can transduce synaptic inputs into linear changes in firing rate output without relying on one-to-one calyceal transmission. These data provide a physiological basis for the remarkable linearity of vestibular reflexes.  相似文献   

15.
Rabang CF  Bartlett EL 《PloS one》2011,6(12):e29375
Acoustic stimuli are often represented in the early auditory pathway as patterns of neural activity synchronized to time-varying features. This phase-locking predominates until the level of the medial geniculate body (MGB), where previous studies have identified two main, largely segregated response types: Stimulus-synchronized responses faithfully preserve the temporal coding from its afferent inputs, and Non-synchronized responses, which are not phase locked to the inputs, represent changes in temporal modulation by a rate code. The cellular mechanisms underlying this transformation from phase-locked to rate code are not well understood. We use a computational model of a MGB thalamocortical neuron to test the hypothesis that these response classes arise from inferior colliculus (IC) excitatory afferents with divergent properties similar to those observed in brain slice studies. Large-conductance inputs exhibiting synaptic depression preserved input synchrony as short as 12.5 ms interclick intervals, while maintaining low firing rates and low-pass filtering responses. By contrast, small-conductance inputs with Mixed plasticity (depression of AMPA-receptor component and facilitation of NMDA-receptor component) desynchronized afferent inputs, generated a click-rate dependent increase in firing rate, and high-pass filtered the inputs. Synaptic inputs with facilitation often permitted band-pass synchrony along with band-pass rate tuning. These responses could be tuned by changes in membrane potential, strength of the NMDA component, and characteristics of synaptic plasticity. These results demonstrate how the same synchronized input spike trains from the inferior colliculus can be transformed into different representations of temporal modulation by divergent synaptic properties.  相似文献   

16.
Elimination of most granule, basket, and stellate interneurons in the rat cerebellum was achieved by repeated doses of low level x-irradiation applied during the first two weeks of postnatal life. Electrical stimulation of the brain stem and peripheral limbs was employed to investigate the properties of afferent cerebellar pathways and the nature of the reorganized neuronal synaptic circuitry in the degranulated cerebellum of the adult. Direct contacts of mossy fibers on Purkinje cells were indicated by short latency, single spike responses: 1.9 msec from the lateral reticular nucleus of brain stem and 5.4 msec from ipsilateral forlimb. These were shorter than in normal rats by 0.9 and 2.1 msec, respectively. The topography of projections from peripheral stimulation was approximately normal. Mossy fiber responses followed stimulation at up to 20/sec, whereas climbing fiber pathways fatigued at 10/sec. The latency of climbing fiber input to peripheral limb stimulation in x-irradiated cerebellum was 23 ± 8 (SD) msec. In x-irradiated rats, the climbing fiber pathways evoked highly variable extracellular burst responses and intracellular EPSPs of different, discrete sizes. These variable responses suggest that multiple climbing fibers contact single Purkinje cells. We conclude that each type of afferent retains identifying characteristics of transmission. However, rules for synaptic specification appear to break down so that: (1) abnormal classes of neurons develop synaptic connections, i.e., mossy fibers to Purkinje cells; (2) incorrect numbers of neurons share postsynaptic targets, i.e., more than one climbing fiber to a Purkinje cell; and (3) inhibitory synaptic actions may be carried out in the absence of the major inhibitory interneurons, i.e., Purkinje cell collaterals may be effective in lieu of basket and stellate cells.  相似文献   

17.
Elimination of most granule, basket, and stellate interneurons in the rat cerebellum was achieved by repeated doses of low level x-irradiation applied during the first two weeks of postnatal life. Electrical stimulation of the brain stem and peripheral limbs was employed to investigate the properties of afferent cerebellar pathways and the nature of the reorganized neuronal synaptic circuitry in the degranulated cerebellum of the adult. Direct contacts of mossy fibers on Purkinje cells were indicated by short latency, single spike responses: 1.9 msec from the lateral reticular nucleus of brain stem and 5.4 msec from ipsilpateral forelimb. These were shorter than in normal rats by 0.9 and 2.1 msec, respectively. The topography of projections from peripheral stimulation was approximately normal. Mossy fiber responses followed stimulation at up to 20/sec, whereas climbing fiber pathways fatigued at 10/sec. The latency of climbing fiber input to peripheral limb stimulation in x-irradiated cerebellum was 23 +/- 8 (SD) msec. In x-irradiated rats, the climbing fiber pathways evoked highly variable extracellular burst responses and intracellular EPSPs of different, discrete sizes. These variable responses suggest that multiple climbing fibers contact single Purkinje cells. We conclude that each type of afferent retains identifying characteristics of transmission. However, rules for synaptic specification appear to break down so that: (1) abnormal classes of neurons develop synaptic connections, i.e., mossy fibers to Purkinje cells; (2) incorrect numbers of neurons share postsynaptic targets, i.e., more than one climbing fiber to a Purkinje cell; and (3) inhibitory synaptic actions may be carried out in the absence of the major inhibitory interneurons, i.e., Purkinje cell collaterals may be effective in lieu of basket and stellate cells.  相似文献   

18.
Unit responses of the first (SI) somatosensory area of the cortex to stimulation of the second somatosensory area (SII), the ventral posterior thalamic nucleus, and the contralateral forelimb, and also unit responses in SII evoked by stimulation of SI, the ventral posterior thalamic nucleus, and the contralateral forelimb were investigated in experiments on cats immobilized with D-tubocurarine or Myo-Relaxin (succinylcholine). The results showed a substantially higher percentage of neurons in SII than in SI which responded to an afferent stimulus by excitation brought about through two or more synaptic relays in the cortex. In response to cortical stimulation antidromic and orthodromic responses appeared in SI and SII neurons, confirming the presence of two-way cortico-cortical connections. In both SI and SII intracellular recording revealed in most cases PSPs of similar character and intensity, evoked by stimulation of the cortex and nucleus in the same neuron. Latent periods of orthodromic spike responses to stimulation of nucleus and cortex in 50.5% of SI neurons and 37.1% of SII neurons differed by less than 1.0 msec. In 19.6% of SI and 41.4% of SII neurons the latent period of response to cortical stimulation was 1.6–4.7 msec shorter than the latent period of the response evoked in the same neuron by stimulation of the nucleus. It is concluded from these results that impulses from SI play an important role in the afferent activation of SII neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 351–357, July–August, 1976.  相似文献   

19.
张晶  黄仲荪 《生理学报》1990,42(6):540-546
本实验在67只家兔身上分别观察了电解损毁孤束核(NTS)前后刺激腹迷走神经和内脏大神经中枢端对血压的影响,以及刺激这两种神经中枢端对 NTS 神经元放电活动的影响。结果表明:来自腹迷走神经和内脏大神经的感觉冲动不仅都可以投射至 NTS,而且这两种传入冲动在 NTS 还存在着会聚现象。一种传入神经的阈下刺激(背景刺激)可以削弱另一传入神经的血压效应,一种传入神经的(背景刺激)可以抑制另一种神经元引起的 NTS 神经元电活动。本文对这两种传入冲动之间存在的相互作用关系的可能机制及意义进行了讨论。  相似文献   

20.
A complete mathematical model of the periodic myoelectrical activity of a functional unit of the small intestine is presented. Based on real morphological and electrophysiological data, the model assumes that: the functional unit is an electromyogenic syncytium; the kinetics of L-type Ca2+, T-type Ca2+, Ca2+-activated K+, voltage dependent K+and Cl-channels determine the electrical activity of the functional unit; the enteric nervous system is satisfactorily represented by an efferent cholinergic neuron that provides an excitatory input to the functional unit through receptor-linked L-type Ca2+channels and by an afferent pathway composed of the primary and secondary sensory neurons; the dynamics of propagation of the wave of depolarization along the unmyelinated nerve axons satisfy the Hodgkin-Huxley model; the electrical activity of the neural soma reflects the interaction of N-type Ca2+channels, Ca2+-activated K+and voltage dependent Na+, K+and Cl-channels; the smooth muscle syncytium of the locus is a null-dimensional contractile system. With the proposed model the dynamics of active force generation are determined entirely by the concentration of cytosolic calcium. The model describes: the mechanical excitation of the free nerve endings of the mechanoreceptor of the receptive field of the pathway; the electrical processes of the propagation of excitation along the afferent and efferent neural circuits; the chemical mechanisms of nerve-pulse transmission at the synaptic zones; the slow wave and bursting type electrical activity; cytosolic calcium concentration; the dynamics of active force generation. Numerical simulations have shown that the model can display different electrical patterns and mechanical responses of the locus. The results show good qualitative and quantitative agreement with the results of experiments conducted on the small intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号