首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Asia》2022,25(4):101995
Beekeeping with Apis cerana of Korean apiculture is facing with serious colony collapse caused by invasive Sacbrood virus (SBV) disease. This fatal brood disease was the main reason of more than 90% colony lost in Korea leading almost the extinct crisis. Sacbrood virus can infect either larvae or adult honeybees, with a higher sensibility of larvae to the infection. Since SBV has spread to all over the country, efforts have been made to treat and prevent this devastating disease although no effective results have so far been obtained. Several studies have demonstrated that Apis mellifera bee colonies that express an efficient hygienic behavior exhibit a higher resistance to the brood disease. In this study we demonstrated that the differences of hygienic behavior between A. cerana and A. mellifera. A. cerana more efficiently removed the pin-killed brood than A. mellifera. On the other hand, A. mellifera more efficiently removed SBV-infected larvae and SBV-dead brood than A. cerana. However, it remains unclear whether the advantage of hygienic bee could have efficacy against Sacbrood disease on A. cerana colonies.  相似文献   

2.
To understand the olfactory mechanism of honeybee antennae in detecting specific volatile compounds in the atmosphere, antennal proteome differences of drone, worker and queen were compared using 2-DE, mass spectrometry and bioinformatics. Therefore, 107 proteins were altered their expressions in the antennae of drone, worker and queen bees. There were 54, 21 and 32 up-regulated proteins in the antennae of drone, worker and queen, respectively. Proteins upregulated in the drone antennae were involved in fatty acid metabolism, antioxidation, carbohydrate metabolism and energy production, protein folding and cytoskeleton. Proteins upregulated in the antennae of worker and queen bees were related to carbohydrate metabolism and energy production while molecular transporters were upregulated in the queen antennae. Our results explain the role played by the antennae of drone is to aid in perceiving the queen sexual pheromones, in the worker antennae to assist for food search and social communication and in the queen antennae to help pheromone communication with the worker and the drone during the mating flight. This first proteomic study significantly extends our understanding of honeybee olfactory activities and the possible mechanisms played by the antennae in response to various environmental, social, biological and biochemical signals.  相似文献   

3.
Honeybees fixed in small tubes scan an object within the range of the antennae by touching it briefly and frequently. In our experiments the animals were able to scan an object for several minutes with the antennae. After moving the object out of the range of the antennae, the animals showed antennal movements for several minutes that were correlated with the position of the removed object. These changes of antennal movements are called “behavioural plasticity” and are interpreted as a form of motor learning. Bees showed behavioural plasticity only for objects with relatively large surfaces. Plasticity was more pronounced in bees whose compound eyes were occluded. Behavioural plasticity was related to the duration of object presentation. Repeated presentations of the object increased the degree of plasticity. After presentation durations of 30 min the animals showed a significant increase of antennal positions related to the surface of the object and avoidance of areas corresponding to the edges. Behavioural plasticity was compared with reward-dependent learning by conditioning bees to objects. The results of motor learning and reward-dependent conditioning suggest that bees have tactile spatial memory. Accepted: 13 May 1997  相似文献   

4.
5.
Li J  Wu J  Begna Rundassa D  Song F  Zheng A  Fang Y 《PloS one》2010,5(10):e13455
Honeybee (Apis mellifera) exhibits divisions in both morphology and reproduction. The queen is larger in size and fully developed sexually, while the worker bees are smaller in size and nearly infertile. To better understand the specific time and underlying molecular mechanisms of caste differentiation, the proteomic profiles of larvae intended to grow into queen and worker castes were compared at 72 and 120 hours using two dimensional electrophoresis (2-DE), network, enrichment and quantitative PCR analysis. There were significant differences in protein expression between the two larvae castes at 72 and 120 hours, suggesting the queen and the worker larvae have already decided their fate before 72 hours. Specifically, at 72 hours, queen intended larvae over-expressed transketolase, aldehyde reductase, and enolase proteins which are involved in carbohydrate metabolism and energy production, imaginal disc growth factor 4 which is a developmental related protein, long-chain-fatty-acid CoA ligase and proteasome subunit alpha type 5 which metabolize fatty and amino acids, while worker intended larvae over-expressed ATP synthase beta subunit, aldehyde dehydrogenase, thioredoxin peroxidase 1 and peroxiredoxin 2540, lethal (2) 37 and 14-3-3 protein epsilon, fatty acid binding protein, and translational controlled tumor protein. This differential protein expression between the two caste intended larvae was more pronounced at 120 hours, with particular significant differences in proteins associated with carbohydrate metabolism and energy production. Functional enrichment analysis suggests that carbohydrate metabolism and energy production and anti-oxidation proteins play major roles in the formation of caste divergence. The constructed network and validated gene expression identified target proteins for further functional study. This new finding is in contrast to the existing notion that 72 hour old larvae has bipotential and can develop into either queen or worker based on epigenetics and can help us to gain new insight into the time of departure as well as caste trajectory influencing elements at the molecular level.  相似文献   

6.
The Geometric Framework approach in nutritional ecology postulates that animals attempt to balance the consumption of different nutrients rather than simply maximizing energetic gain. The intake target with respect to each nutrient maximizes fitness in a specific dimension and any difference between individuals in intake target therefore represents alternative behavioral and fitness maximization strategies. Nutritional interactions are a central component of all social groups and any inter-individual variation in intake target should therefore have a significant influence on social dynamics. Using the honeybee colony as an experimental model, we quantified differences in the carbohydrate intake target of individual foragers using a capillary feeder (CAFE) assay. Our results show that the bees did not simply maximize their net energetic gain, but combined sugar and water in their diet in a way that brought them to an intake target equivalent to a 33% sucrose solution. Although the mean intake target with respect to the nutrients sucrose and water was the same under different food choice regimens, there was significant inter-individual variation in intake target and the manner in which individuals reached this target, a variation which suggests different levels of tolerance to nutrient imbalance. We discuss our results in the context of how colony performance may be influenced by the different nutrient balancing strategies of individual members and how such nutritional constraints could have contributed to the evolution of sociality.  相似文献   

7.
Summary Honeybee embryos were stained with a monoclonal antibody raised against the Drosophila engrailed protein. The antibody was found to label rows of nuclei in the transverse grooves that form the earliest external sign of metameric germ band organization. These grooves demarcate metameric units about seven cell rows wide, of which about three rows with reduced apical cell surfaces account for the grooves. The en stripes appear in the grooves as soon as these form and grow from one to about four cells in width and thus completely overlap the groove. During the rudimentary germ band retraction, the grooves shift slightly backwards relative to both the en stripes and the trachdeal pits. The spatio-temporal pattern by which the series of grooves and stripes arises is quite striking. Both become visible first in the gnathal and thoracic regions, then in the pregnathal parts of the head and in the abdomen. The stripes arise essentially in an antero-posterior sequence. In addition, the earliest stripes to form display a pattern of alternating intensities whereas the later stripes, those in the abdomen, arise with approximately equal strength. The latter trait was earlier observed in the grasshopper, while the former is known from Drosophila where, however, the strong stripes correspond to the weak stripes in the honeybee.  相似文献   

8.
Through the use of proboscis-extension reflex conditioning, we demonstrate that honey bees (Apis mellifera L.) bred for hygienic behavior (a behavioral mechanism of disease resistance) are able to discriminate between odors of healthy and diseased brood at a lower stimulus level than bees from a non-hygienic line. Electroantennogram recordings confirmed that hygienic bees exhibit increased olfactory sensitivity to low concentrations of the odor of chalkbrood infected pupae (a fungal disease caused by Ascosphaera apis). Three-week-old hygienic bees were able to discriminate between the brood odors significantly better than three-week old non-hygienic bees. However, the differential performance in brood odor discrimination was primarily genetically based, not a direct result of age, experience, or the temporary behavioral state of the bee. Lower stimulus thresholds for both the olfactory and behavioral responses of hygienic bees may facilitate their ability to detect, uncap and remove diseased brood rapidly from the nest. In contrast, non-hygienic bees, possessing higher response thresholds, may not be able to detect diseased brood as easily. Our results provide an example of how physiological and behavioral differences between the hygienic and non-hygienic honey bee lines, operating at the level of the individual, could produce colony-specific behavioral phenotypes.  相似文献   

9.
Honeybees (Apis mellifera L.) have an extreme polyandrous mating system. Worker offspring of 19 naturally mated queens was genotyped with DNA microsatellites, to estimate male reproductive success of 16 drone producing colonies. This allowed for estimating the male mating success on both the colony level and the level of individual drones. The experiment was conducted in a closed population on an isolated island to exclude interferences of drones from unknown colonies. Although all colonies had produced similar numbers of drones, differences among the colonies in male mating success exceeded one order of magnitude. These differences were enhanced by the siring success of individual drones within the offspring of mated queens. The siring success of individual drones was correlated with the mating frequency at the colony level. Thus more successful colonies not only produced drones with a higher chance of mating, but also with a significantly higher proportion of offspring sired than drones from less successful colonies. Although the life cycle of honeybee colonies is very female centred, the male reproductive success appears to be a major driver of natural selection in honeybees.  相似文献   

10.
To study the relationship between the individual and social thermoregulatory behaviour, we used honeybee workers and American cockroaches. Single insects or groups of 10-20 individuals were placed in a temperature gradient chamber, and their thermal preference was recorded for 48 h under natural summer photoperiod. Single bees showed diurnal changes in selected ambient temperature, which culminated at 14:00 reaching 34+/-2 degrees C, and then slowly decreased, reaching a nocturnal minimum of 28+/-2 degrees C at 04:00. In contrast, the zenith of temperature selected by groups of bees (31+/-1 degrees C) was reached at 04:00 and the nadir (29+/-2 degrees C) was recorded at 14:00. Groups of bees clustered together during the night time, and dispersed during intense day time activity. Such changes were absent in groups of cockroaches. Cockroaches selected an ambient temperature of 30+/-1 degrees C both during day and night. In conclusion, there is a striking analogy in the diurnal thermal behaviour between a colony of bees and mammals. During their nychthemeral rest phase, both of them select higher temperatures than during the activity phase and, simultaneously, they reduce their overall surface area of heat loss to conserve metabolic heat. Therefore, the colony behaves as a homeothermic superorganism. In contrast, a single bee, isolated from the colony, utilizes a heterothermic strategy to save energy for a morning warm up.  相似文献   

11.
We previously demonstrated that six genes involved in ecdysteroid signaling are expressed preferentially in Kenyon-cell subtypes in the mushroom bodies of the honeybee (Apis mellifera L.). To further examine the possible involvement of ecdysteroid signaling in honeybee brain function, we isolated a cDNA for the A isoform of the ecdysone receptor gene homolog AmEcR-A and analyzed its expression in the brain. In situ hybridization revealed that AmEcR-A is expressed selectively in the small-type Kenyon cells of the mushroom bodies in the worker and queen brain, like AmE74 and AmHR38, suggesting a possible association of these gene products. Analysis of AmEcR-A expression in queen and worker abdomens demonstrated that AmEcR-A is strongly expressed in nurse cells of the queen ovary, suggesting that ecdysteroid and ecdysteroid signaling have roles in oogenesis. Our present results further support the possible involvement of ecdysteroid signaling in brain function, as well as in regulating queen reproductive physiology in the adult honeybee.  相似文献   

12.
Empty-spiracle class homeodomain proteins have similar roles in anterior and head development in many animal species. We have identified a honeybee empty-spiracles gene and examined its expression in honeybee ovaries and embryos. The expression of honeybee empty-spiracles in embryos is similar to that reported for Drosophila and Tribolium, implying broad conservation of the role of this gene in insect embryogenesis. We also identify expression in somatic and germ-line cells of the ovary, not previously seen in other insect species.  相似文献   

13.
14.
Summary Honeybee nurses (8 days old) were injected with 14C-phenylalanine. These bees then dispensed the 14C-labelled protein-rich products of their hypopharyngeal glands to the queen and the brood, and also to young drones and workers of all age classes. In small colonies containing 400–800 bees, nearly one-quarter of the radioactivity which could not be recovered in the nurses was fed by them in a protein-bound form to other members of the worker caste. During one night, one nurse fed an average of 4–5 foragers with proteinaceous food. The role of nurses in the work allotment system of honeybee colonies therefore needs a new, extended definition. Nurses are largely responsible for preparing nutrients from pollen, which is difficult to digest. They then distribute the nutritionally valuable protein produced by their hypopharyngeal glands to practically all hive mates.Dedicated to Professor Dr. O. Kepka on the occasion of his 65th birthday  相似文献   

15.
王浆蛋白是蜂王浆生物功能的物质基础,是由王浆蛋白基因家族(mrjps)编码合成的。但部分家族成员如MRJP7在王浆中的含量极少甚至检测不到。基因功能与其在生物体内的时空表达特性相关,为探究mrjp7的生物学功能,本研究利用荧光定量PCR技术对mrjp7在不同发育时期的工蜂和成年工蜂、雄蜂和蜂王的不同组织部位的表达进行定量检测。结果显示mrjp7在成年雄蜂体内的表达水平最低,成年蜂王次之,且在它们的各不同组织部位之间的表达量差异较小。该基因在工蜂幼虫和蛹期的表达同样较低,但在羽化后9日龄前后的哺育蜂王浆腺和头部特异性高表达,这与哺育蜂分泌蜂王浆哺育幼虫和蜂王的功能是相适应的,该结果在转录水平上证实了mrjp7的营养功能,为进一步的研究和应用打下了理论基础。  相似文献   

16.
We previously studied a conditioning paradigm to associate the proboscis extension reflex (PER) with monochromatic light (conditioned stimulus; CS) in harnessed honeybees. Here, we established a novel conditioning paradigm to associate the PER with a motion cue generated using graphics interchange format (GIF) animations with a speed of 12 mm/s speed and a frame rate of 25 Hz as the CS, which were projected onto a screen consisting of a translucent circular cone that largely covered the visual field of the harnessed bee using two liquid crystal projectors. The acquisition rate reached a plateau at approximately 40% after seven trials, indicating that the bees were successfully conditioned with the motion cue. We demonstrated four properties of the conditioning paradigm. First, the acquisition rate was enhanced by antennae deprivation, suggesting that sensory input from the antennae interferes with the visual associative learning. Second, bees conditioned with a backward-direction motion cue did not respond to the forward-direction, suggesting that bees can discriminate the two directions in this paradigm. Third, the bees can retain memory for motion cue direction for 48 h. Finally, the acquisition rate did not differ significantly between foragers and nurse bees. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Terrestrial organisms need to limit evaporation from their bodies in order to maintain a homeostatic water balance. Owing to a large surface to volume ratio, arthropods are particularly susceptible to desiccation and have evolved behavioural and physiological mechanisms to conserve water. In social insects, water balance is also affected by the interactions between nestmates and by the architecture of the nest. For honeybees, humidity is particularly important for the brood because it affects the hatching success of eggs and because, unlike ants, honeybees cannot relocate their brood to parts of the nest with more favourable humidity. To advance the understanding of the water economy in honeybee nests, we investigated whether workers exhibit a hygropreference when exposed to a gradient of 24-90% relative humidity (RH) and whether the expression of this preference and their behaviour is affected by the presence of brood. The results show that young honeybee workers in the absence of brood exhibit a weak hygropreference for approximately 75% RH. When brood is present the expression of this preference is further weakened, suggesting that workers tend to the brood by distributing evenly in the gradient. In addition, fanning behaviour is shown to be triggered by an increase in humidity above the preferred level but not by a decrease. Our results suggest that humidity in honeybee colonies is actively controlled by workers.  相似文献   

18.
Deformed wing virus (DWV) infected semen was used for artificial insemination of DWV-free virgin queens. High titres of DWV could subsequently be detected not only in the spermatheca, but also in the ovaries, demonstrating venereal transmission of DWV in honey bees. Subsequent vertical transmission of the virus to the progeny of DWV infected queens was also demonstrated. Neither transmission route is 100% effective. Whether venereal transmission of DWV occurs during natural mating remains to be determined. The implications for the use, sale and transport of semen samples for artificial insemination are discussed.  相似文献   

19.
Susceptibility to lung diseases, such as lung cancer and chronic obstructive pulmonary disease, is largely influenced by the metabolic capacity of lung tissues. This capacity is partly determined by the expression profile of the cytochromes P450 (CYPs), a superfamily of enzymes that have relevant catalytic properties toward exogenous and endogenous compounds. Using quantitative real-time RT-PCR, we conducted a comprehensive analysis of the expression profile of the 57 human CYP genes in non-tumoral (bronchial mucosa and pulmonary parenchyma) and tumoral lung tissues of 18 patients with non-small cell lung cancer. This study highlights (i) inter-individual variations in lung expression for some CYPs, (ii) different CYP expression patterns between bronchial mucosa and pulmonary parenchyma, that indicate distinctive susceptibility of these tissues toward the deleterious effects of inhaled chemical toxicants and carcinogens, (iii) high intertumoral variability, that could have major implications on lung tumor response to anti-cancer drugs.  相似文献   

20.
Despite their similar genetic makeup, honeybee (A. mellifera) queens and workers show alternative morphologies driven by nutritional difference during the larval stage. Although much research have been done to investigate the causes of honeybee caste polymorphism, information at subcellular protein levels is limited. We analyzed queen- and worker-destined larvae mitochondrial proteome at three early developmental stages using combinations of differential centrifugation, two-dimensional electrophoresis, mass spectrometry, bioinformatics, and quantitative real time PCR. In total, 67, 69, and 97 protein spots were reproducibly identified as mitochondrial proteins at 72, 96, and 120 h, respectively. There were significant qualitative and quantitative protein expression differences between the two castes at three developmental stages. In general, the queen-destined larvae up-regulated large proportions of proteins at all of the developmental stages and, in particular, 95% at 72 h. An overwhelming majority of the queen larvae up-regulated proteins were physiometabolic-enriched proteins (metabolism of carbohydrate and energy, amino acid, and fatty acid) and involved in protein folding, and this was further verified by functional enrichment and biological interaction network analyses as a direct link with metabolic rates and cellular responses to hormones. Although wide-ranging mitochondrial proteomes participate to shape the metabolic, physiologic, and anatomic differences between the two castes at 72 h, physiometabolic-enriched proteins were found as the major modulators of the profound marking of this caste differentiation. Owing to nutritional difference, prospective queen larvae showed enhanced growth, and this was manifested through the overexpression of metabolic enzymes. Differently from similar studies targeting the causes of honeybee caste polymorphism, this subcellular level study provides an in-depth insight into mitochondrial proteins-mediated caste polymorphism and greatly improves protein coverage involved during honeybee caste determination. Hence, it is a major step forward in the analysis of the fundamental causes of honeybee caste pathway decision and greatly contributes to the knowledge of honeybee biology. In particular, the consistency between the 22 proteins and mRNA expressions provides us important target genes for the reverse genetic analysis of caste pathway modulation through RNA interference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号