首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeTo determine the surface dose of a water phantom using a semiconductor detector for diagnostic kilovoltage x-ray beams.MethodsAn AGMS-DM+ semiconductor detector was calibrated in terms of air kerma measured with an ionization chamber. Air kerma was measured for 20 x-ray beams with tube voltages of 50–140 kVp and a half-value layer (HVL) of 2.2–9.7 mm Al for given quality index (QI) values of 0.4, 0.5, and 0.6, and converted to the surface dose. Finally, the air kerma and HVL measured by the AGMS-DM+ detector were expressed as a ratio of the surface dose for 10 × 10 and 20 × 20 cm2 fields. The ratio of both was represented as a function of HVL for the given QI values and verified by comparing it with that calculated using the Monte Carlo method.ResultsThe air kerma calibration factor, CF, for the AGMS-DM+ detector ranged from 0.986 to 1.016 (0.9% in k = 1). The CF values were almost independent of the x-ray fluence spectra for the given QI values. The ratio of the surface dose to the air kerma determined by the PTW 30,013 chamber and the AGMS-DM+ detector was less than 1.8% for the values calculated using the Monte Carlo method, and showed a good correlation with the HVL for the given QI values.ConclusionIt is possible to determine the surface dose of a water phantom from the air kerma and HVL measured by a semiconductor detector for given QI values.  相似文献   

2.
AimDeveloping and assessing the feasibility of using a three-dimensional (3D) printed patient-specific anthropomorphic pelvis phantom for dose calculation and verification for stereotactic ablative radiation therapy (SABR) with dose escalation to the dominant intraprostatic lesions.Material and methodsA 3D-printed pelvis phantom, including bone-mimicking material, was fabricated based on the computed tomography (CT) images of a prostate cancer patient. To compare the extent to which patient and phantom body and bones overlapped, the similarity Dice coefficient was calculated. Modular cylindrical inserts were created to encapsulate radiochromic films and ionization chamber for absolute dosimetry measurements at the location of prostate and at the boost region. Gamma analysis evaluation with 2%/2mm criteria was performed to compare treatment planning system calculations and measured dose when delivering a 10 flattening filter free (FFF) SABR plan and a 10FFF boost SABR plan.ResultsDice coefficients of 0.98 and 0.91 were measured for body and bones, respectively, demonstrating agreement between patient and phantom outlines. For the boost plans the gamma analysis yielded 97.0% of pixels passing 2%/2mm criteria and these results were supported by the chamber average dose difference of 0.47 ± 0.03%. These results were further improved when overriding the bone relative electron density: 97.3% for the 2%/2mm gamma analysis, and 0.05 ± 0.03% for the ionization chamber average dose difference.ConclusionsThe modular patient-specific 3D-printed pelvis phantom has proven to be a highly attractive and versatile tool to validate prostate SABR boost plans using multiple detectors.  相似文献   

3.
PurposeTo assess if single shot acquisitions with solid-state dosimeters as well as Robson’s method could replace ionization chambers for tube output and HVL measurements, saving medical physicists time.Material and methodsThe energy responses of 4 solid-state dosimeters with automatic calculation of HVL were compared to ionization chamber measurements. Five anode/filter combinations were tested: Mo/Mo, Mo/Rh, Rh/Rh, W/Rh and W/Ag, from 24kVp to 35kVp. Tube output was measured free in air. HVL was measured using the solid-state dosimeters (single-shot acquisition), then manually with aluminum sheets and finally using the parametrization method of Robson.ResultsDeviations in tube output and HVL related to energy response in SSD were small in the 25–32 kVp range, and for tube output typically within 3%. Extrapolation using the Robson parametrization was within 5%, except for one device and for all W/Rh. Deviations of the HVL using the single shot approach were within 10% of the gold standard data. Larger deviations were found at the extreme tube voltages of 24kVp and 35kVp (maximum of 24%).ConclusionWith the assumption that deviations in tube output of 5% and for HVL of 10% are acceptable, all tested solid state dosimeters met this criterion in the tube voltage range of 26kVp to 32kVp. Robson’s method worked well for the spectra for which the method was developed, making both alternative approaches trustworthy for routine quality assurance purposes.  相似文献   

4.
PurposeThis study aims to investigate the energy response of an optically stimulated luminescent dosimeter known as nanoDot for diagnostic kilovoltage X-ray beams via Monte Carlo calculations.MethodsThe nanoDot response is calculated as a function of X-ray beam quality in free air and on a water phantom surface using Monte Carlo simulations. The X-ray fluence spectra are classified using the quality index (QI), which is defined as the ratio of the effective energy to the maximum energy of the photons. The response is calculated for X-ray fluence spectra with QIs of 0.4, 0.5, and 0.6 with tube voltages of 50–137.6 kVp and monoenergetic photon beams. The surface dose estimated using the calculated response is verified by comparing it with that measured using an ionization chamber.ResultsThe nanoDot response in free air for monoenergetic photon beams (QI = 1.0) varies significantly at photon energies below 100 keV and reaches a factor of 3.6 at 25–30 keV. The response differs by up to approximately 6% between QIs of 0.4 and 0.6 for the same half-value layer (HVL). The response at the phantom surface decreases slightly owing to the backscatter effect, and it is almost independent of the field size. The agreement between the surface dose estimated using the nanoDot and that measured using the ionization chamber for assessing X-ray beam qualities is less than 2%.ConclusionsThe nanoDot response is indicated as a function of HVL for the specified QIs, and it enables the direct surface dose measurement.  相似文献   

5.
IntroductionA mathematical 3D model of an existing computed tomography (CT) scanner was created and used in the EGSnrc-based BEAMnrc and egs_cbct Monte Carlo codes. Simulated transmission dose profiles of a RMI-465 phantom were analysed to verify Hounsfield numbers against measured data obtained from the CT scanner.Methods and materialsThe modelled CT unit is based on the design of a Toshiba Aquilion 16 LB CT scanner. As a first step, BEAMnrc simulated the X-ray tube, filters, and secondary collimation to obtain phase space data of the X-ray beam. A bowtie filter was included to create a more uniform beam intensity and to remove the beam hardening effects. In a second step the Interactive Data Language (IDL) code was used to build an EGSPHANT file that contained the RMI phantom which was used in egs_cbct simulations. After simulation a series of profiles were sampled from the detector model and the Feldkamp-Davis-Kress (FDK) algorithm was used to reconstruct transversal images. The results were tested against measured data obtained from CT scans.ResultsThe egs_cbct code can be used for the simulation of a fan beam CT unit. The calculated bowtie filter ensured a uniform flux on the detectors. Good correlation between measured and simulated CT numbers was obtained.ConclusionsIn principle, Monte Carlo codes such as egs_cbct can model a fan beam CT unit. After reconstruction, the images contained Hounsfield values comparable to measured data.  相似文献   

6.
PurposeTo compare, via Monte Carlo simulations, homogeneous and non-homogenous breast models adopted for mean glandular dose (MGD) estimates in mammography vs. patient specific digital breast phantoms.MethodsWe developed a GEANT4 Monte Carlo code simulating four homogenous cylindrical breast models featured as follows: (1) semi-cylindrical section enveloped in a 5-mm adipose layer; (2) semi-elliptical section with a 4-mm thick skin; (3) semi-cylindrical section with a 1.45-mm skin layer; (4) semi-cylindrical section in a 1.45-mm skin layer and 2-mm subcutaneous adipose layer. Twenty patient specific digital breast phantoms produced from a dedicated CT scanner were assumed as reference in the comparison. We simulated two spectra produced from two anode/filter combinations. An additional digital breast phantom was produced via BreastSimulator software.ResultsWith reference to the results for patient-specific breast phantoms and for W/Al spectra, models #1 and #3 showed higher MGD values by about 1% (ranges [–33%; +28%] and [−31%; +30%], respectively), while for model #4 it was 2% lower (range [−34%; +26%]) and for model #2 –11% (range [−39%; +14%]), on average. On the other hand, for W/Rh spectra, models #1 and #4 showed lower MGD values by 2% and 1%, while for model #2 and #3 it was 14% and 8% lower, respectively (ranges [−43%; +13%] and [−41%; +21%]). The simulation with the digital breast phantom produced with BreastSimulator showed a MGD overestimation of +33%.ConclusionsThe homogeneous breast models led to maximum MGD underestimation and overestimation of 43% and 28%, respectively, when compared to patient specific breast phantoms derived from clinical CT scans.  相似文献   

7.
PurposeThis work presents a method for estimating CT dosimetric indices with a prototype designed for suspending the phantom/ion chamber system fixed at the CT isocenter. The purpose of this study was to validate the proposed methodology, which can be used to provide a direct assessment of dosimetric indices in helical scans.MethodsThe method is based on a reference setup in which the measuring system for CT dosimetry is in a stationary configuration, i.e. not bound to the CT table, and on a mathematical formalism developed for the proposed reference system. The reliability of the method was demonstrated through a set of experimental measurements. Firstly, dosimetric indices were measured with the new method and compared with the indices obtained with the procedure currently used for CT dosimetry (measuring system bound to the CT table). Secondly, dosimetric indices measured with the new method were compared with those displayed on the CT console.ResultsThere is good agreement between the dosimetric indices obtained with the standard setup and those obtained with the suspended phantom setup, within the expected range of errors. The difference between dosimetric indices estimated with the proposed method and those displayed on the CT console is below 2%.ConclusionsThe method enables CT dosimetry to be performed with the dose detector in a stationary longitudinal position thanks to the newly introduced suspended phantom setup. Using this approach, CT dose can be assessed for high pitch helical scans, acquisitions without complete tube rotation and for cases where dynamic collimation is used.  相似文献   

8.
PurposeTo determine fetal doses in different stages of pregnancy in three common computed tomography (CT) examinations: pulmonary CT angiography, abdomino-pelvic and trauma scan with Monte Carlo (MC) simulations.MethodsAn adult female anthropomorphic phantom was scanned with a 64-slice CT using pulmonary angiography, abdomino-pelvic and trauma CT scan protocols. Three different sized gelatin boluses placed on the phantom’s abdomen simulated different stages of pregnancy. Intrauterine dose was used as a surrogate to a dose absorbed to the fetus. MC simulations were performed to estimate uterine doses. The simulation dose levels were calibrated with volumetric CT dose index (CTDIvol) measurements and MC simulations in a cylindrical CTDI body phantom and compared with ten point doses measured with metal-oxide-semiconductor field-effect-transistor dosimeters. Intrauterine volumes and uterine walls were segmented and the respective dose volume histograms were calculated.ResultsThe mean intrauterine doses in different stages of pregnancy varied from 0.04 to 1.04 mGy, from 4.8 to 5.8 mGy, and from 9.8 to 12.6 mGy in the CT scans for pulmonary angiography, abdomino-pelvic and trauma CT scans, respectively. MC simulations showed good correlation with the MOSFET measurement at the measured locations.ConclusionsThe three studied examinations provided highly varying fetal doses increasing from sub-mGy level in pulmonary CT angiography to notably higher levels in abdomino-pelvic and trauma scans where the fetus is in the primary exposure range. Volumetric dose distribution offered by MC simulations in an appropriate anthropomorphic phantom provides a comprehensive dose assessment when applied in adjunct to point-dose measurements.  相似文献   

9.
PurposeWe have proposed a method for determining the half-value layers (HVL) in dual-source dual-energy computed tomography (DS-DECT) scans without the need for the X-ray tubes to be fixed.MethodsA custom-made lead-covered case and an ionizing chamber connected with a multi-function digitizer module (a real-time dosimeter) were used. The chamber was placed in the center of the case, and aluminum or copper filters were placed in front of the aperture. The HVL was measured using aperture widths of 1.0, 2.0, and 3.0 cm for tube potentials of 80, 120, and 150 kV in single-source single-energy CT (SS-SECT) scans and was calculated from the peak air kerma rate (peak method) and the integrated air kerma rate (integrating method); the obtained values were compared with those from a conventional non-rotating method performed using the same procedure. The HVL was then measured using an aperture width of 1.0 cm for tube potential combinations of 70/Sn150 kV and 100/Sn150 kV in DS-DECT scans using the peak method.ResultsIn the SS-SECT scans, the combination of a 1.0-cm aperture and the peak method was adequate due to the small differences in the HVL values obtained for the conventional non-rotating method. The method was also found to be applicable for the DS-DECT scans.ConclusionsOur proposed method can determine the HVL in SS-SE and DS-DECT scans to a good level of accuracy without the need for the X-ray tubes to be fixed. The combination of a 1.0-cm aperture and the peak method was adequate.  相似文献   

10.
PurposeIn radiotherapy, accurate calculation of patient radiation dose is very important for good clinical outcome. In the presence of metallic implants, the dose calculation accuracy could be compromised by metal artefacts generated in computed tomography (CT) images of patients. This study investigates the influence of metal-induced CT artefacts on MC dose calculations in a pelvic prosthesis phantom.MethodsA pelvic phantom containing unilateral Ti prosthesis was CT-scanned and accurate Hounsfield unit (HU) values were assigned to known materials of the phantom as opposed to HU values produced through the artefact CT images of the phantom. Using the DOSXYZnrc MC code, dose calculations were computed in the phantom model constructed from the original CT images containing the artefacts and artefact-free images made from the exact geometry of the phantom with known materials. The dose calculations were benchmarked against Gafchromic EBT3 film measurements using 15 MeV electron and 10 MV photon beams.ResultsThe average deviations between film and MC dose data decreased from 3 ± 2% to 1 ± 1% and from about 6 ± 2% to 3 ± 1% for the artefact and artefact-free phantom models against film data for the electron and photon fields, respectively.ConclusionsFor the Ti prosthesis phantom, the presence of metal-induced CT artefacts could cause dose inaccuracies of about 3%. Construction of an artefact-free phantom model made from the exact geometry of the phantom with known materials to overcome the effect of artefacts is advantageous compared to using CT data directly of which the exact tissue composition is not well-known.  相似文献   

11.
When one measures the half-value layer (HVL) or the attenuation coefficient (mu) in a high-energy photon beam, it is necessary to use a narrow beam to eliminate the scattered photons produced in the attenuator. However, lateral electron equilibrium will be compromised if the beam is too small. If the HVL and mu are based on measurements of absorbed dose, the results will then depend on field size for a polyenergetic photon spectrum. The measured values also become sensitive to detector properties. This has been examined by experiments and Monte Carlo calculations. The field size should be sufficient for lateral electron equilibrium to prevent ambiguities in the resulting HVL or mu, which are of the order of 10% for 6-MV X rays.  相似文献   

12.
PurposeTo estimate the surface dose in diagnostic radiology in real time based on the relationship between the incident air kerma and the surface dose.MethodsThe air kerma for 20 X-ray beams with tube voltages of 50–140 kV and a half-value layer (HVL) of 2.27–9.65 mm Al was measured using an ionization chamber. The beam quality was classified based on the quality indexes (QIs) of 0.4, 0.5, and 0.6, which are defined as the ratio of the effective energy to the maximum energy corresponding to the tube potential. The surface dose for 20 X-ray beams was evaluated based on the measured air kerma, backscatter factor, and ratio of the mass–energy absorption coefficients of water to air, which were calculated using the Monte Carlo method. Finally, the relationship between the air kerma and the surface dose was investigated for X-ray beams with the specific QI values.ResultsThe surface dose at a water phantom was represented by a linear approximation of R2 > 0.98, with the air kerma, regardless of the X-ray beam quality. The surface dose estimated based on a linear approximation with the air kerma indicated an agreement within 8% with that evaluated by the chamber measurements at HVL > 3.4 mm Al.ConclusionIt is possible to estimate the surface dose in real time using the linear relationship between the incident air kerma and the surface dose regardless of the X-ray beam quality by accepting ±10% uncertainty in the surface dose estimation.  相似文献   

13.
PurposeTo evaluate eXaSkin, a novel high-density bolus alternative to commercial tissue-equivalent Superflab, for 6MV photon-beam radiotherapy.Materials and methodsWe delivered a 10 × 10 cm2 open field at 90° and head-and-neck clinical plan, generated with the volumetric modulated arc therapy (VMAT) technique, to an anthropomorphic phantom in three scenarios: with no bolus on the phantom’s surface, with Superflab, and with eXaSkin. In each scenario, we measured dose to a central planning target volume (PTV) in the nasopharynx region with an ionization chamber, and we measured dose to the skin, at three different positions within the vicinity of a neck lymph node PTV, with MOSkin™, a semiconductor dosimeter. Measurements were compared against calculations with the treatment planning system (TPS).ResultsFor the static field, MOSkin results underneath the eXaSkin were in agreement with calculations to within 1.22%; for VMAT, to within 5.68%. Underneath Superflab, those values were 3.36% and 11.66%. The inferior agreement can be explained by suboptimal adherence of Superflab to the phantom’s surface as well as difficulties in accurately reproducing its placement between imaging and treatment session. In all scenarios, dose measured at the central target agreed to within 1% with calculations.ConclusionseXaSkin was shown to have superior adaptation to the phantom’s surface, producing minimal air gaps between the skin surface and bolus, allowing for accurate positioning and reproducibility of set-up conditions. eXaSkin with its high density material provides sufficient build-up to achieve full skin dose with less material thickness than Superflab.  相似文献   

14.
Beam hardening filters have long been employed in X-ray Computed Tomography (CT) to preferentially absorb soft and low-energy X-rays having no or little contribution to image formation, thus allowing the reduction of patient dose and beam hardening artefacts. In this work, we studied the influence of additional copper (Cu) and aluminium (Al) flat filters on patient dose and image quality and seek an optimum filter thickness for the GE LightSpeed VCT 64-slice CT scanner using experimental phantom measurements. Different thicknesses of Cu and Al filters (0.5–1.6 mm Cu, 0.5–4 mm Al) were installed on the scanner’s collimator. A planar phantom consisting of 13 slabs of Cu having different thicknesses was designed and scanned to assess the impact of beam filtration on contrast in the intensity domain (CT detector’s output). To assess image contrast and image noise, a cylindrical phantom consisting of a polyethylene cylinder having 16 holes filled with different concentrations of K2HPO4 solution mimicking different tissue types was used. The GE performance and the standard head CT dose index (CTDI) phantoms were also used to assess image resolution characterized by the modulation transfer function (MTF) and patient dose defined by the weighted CTDI. A 100 mm pencil ionization chamber was used for CTDI measurement. Finally, an optimum filter thickness was determined from an objective figure of merit (FOM) metric. The results show that the contrast is somewhat compromised with filter thickness in both the planar and cylindrical phantoms. The contrast of the K2HPO4 solutions in the cylindrical phantom was degraded by up to 10% for a 0.68 mm Cu filter and 6% for a 4.14 mm Al filter. It was shown that additional filters increase image noise which impaired the detectability of low density K2HPO4 solutions. It was found that with a 0.48 mm Cu filter the 50% MTF value is shifted by about 0.77 lp/cm compared to the case where the filter is not used. An added Cu filter with approximately 0.5 mm thickness accounts for 50% reduction in radiation-absorbed dose as measured by the weighted CTDI. The FOM results indicate that with an additional filter of 0.5 mm Cu or minimum 4 mm Al, a good compromise between image quality and patient dose is achieved for CT images acquired at tube voltages of 120 and 140 kVp. The results seem to indicate that an optimum filter for high kVp acquisitions, routinely used in cardiovascular imaging, should be 0.5 mm copper or 4 mm aluminium minimum.  相似文献   

15.
The purpose of the study was to test the precision and accuracy of a method used to track selected landmarks during motion of the temporomandibular joint (TMJ). A precision phantom device was constructed and relative motions between two rigid bodies on the phantom device were measured using optoelectronic (OE) and electromagnetic (EM) motion tracking devices. The motion recordings were also combined with a 3D CT image for each type of motion tracking system (EM+CT and OE+CT) to mimic methods used in previous studies. In the OE and EM data collections, specific landmarks on the rigid bodies were determined using digitization. In the EM+CT and OE+CT data sets, the landmark locations were obtained from the CT images. 3D linear distances and 3D curvilinear path distances were calculated for the points. The accuracy and precision for all 4 methods were evaluated (EM, OE, EM+CT and OE+CT). In addition, results were compared with and without the CT imaging (EM vs. EM+CT, OE vs. OE+CT). All systems overestimated the actual 3D curvilinear path lengths. All systems also underestimated the actual rotation values. The accuracy of all methods was within 0.5mm for 3D curvilinear path calculations, 0.05mm for 3D linear distance calculations and 0.2 degrees for rotation calculations. In addition, Bland-Altman plots for each configuration of the systems suggest that measurements obtained from either system are repeatable and comparable.  相似文献   

16.
The estimation of patient dose using Monte Carlo (MC) simulations based on the available patient CT images is limited to the length of the scan. Software tools for dose estimation based on standard computational phantoms overcome this problem; however, they are limited with respect to taking individual patient anatomy into account. The purpose of this study was to generate whole-body patient models in order to take scattered radiation and over-scanning effects into account. Thorax examinations were performed on three physical anthropomorphic phantoms at tube voltages of 80 kV and 120 kV; absorbed dose was measured using thermoluminescence dosimeters (TLD). Whole-body voxel models were built as a combination of the acquired CT images appended by data taken from widely used anthropomorphic voxel phantoms. MC simulations were performed both for the CT image volumes alone and for the whole-body models. Measured and calculated dose distributions were compared for each TLD chip position; additionally, organ doses were determined.MC simulations based only on CT data underestimated dose by 8%–15% on average depending on patient size with highest underestimation values of 37% for the adult phantom at the caudal border of the image volume. The use of whole-body models substantially reduced these errors; measured and simulated results consistently agreed to better than 10%.This study demonstrates that combined whole-body models can provide three-dimensional dose distributions with improved accuracy. Using the presented concept should be of high interest for research studies which demand high accuracy, e.g. for dose optimization efforts.  相似文献   

17.
Micro computed tomography (µCT) scanners are used to create high-resolution images and to quantify properties of the scanned objects. While modern µCT scanners benefit from the cone beam geometry, they are compromised by scatter radiation. This work aims to develop a Monte Carlo (MC) model of a µCT scanner in order to characterize the scatter radiation in the detector plane.The EGS++ framework with the MC code EGSnrc was used to simulate the particle transport through the main components of the XtremeCT (SCANCO Medical AG, Switzerland). The developed MC model was based on specific information of the manufacturer and was validated against measurements. The primary and the scatter radiation were analyzed and by implementing a dedicated tracing method, the scatter radiation was subdivided into different scatter components.The comparisons of measured and simulated transmission values for different absorber and filter combinations result in a mean difference of 0.2% ± 1.4%, with a maximal local difference of 3.4%. The reconstructed image of the phantom based on measurements agrees well with the image reconstructed using the MC model. The local contribution of scattered radiation is up to 10% of the total radiation in the detector plane and most of the scattered particles result from interactions in the scanned object. The MC simulations show that scatter radiation contains information about the structure of the object.In conclusion, a MC model for a µCT scanner was successfully validated and applied to analyze the characteristics of the scatter radiation for a µCT scanner.  相似文献   

18.
PurposeThe dose calculated using a convolution algorithm should be validated in a simple homogeneous water-equivalent phantom before clinical use. The dose calculation accuracy within a solid water phantom was investigated.MethodsThe specific Gamma knife design requires a dose rate calibration within a spherical solid water phantom. The TMR10 algorithm, which approximates the phantom material as liquid water, correctly computes the absolute dose in water. The convolution algorithm, which considers electron density miscalculates the dose in water as the phantom Hounsfield units were converted into higher electron density when the original CT calibration curve was used. To address this issue, the electron density of liquid water was affected by modifying the CT calibration curve. The absolute dose calculated using the convolution algorithm was compared with that computed by the TMR10. The measured depth dose profiles were also compared to those computed by the convolution and TMR10 algorithms. A patient treatment was recalculated in the solid-water phantom and the delivery quality assurance was checked.ResultsThe convolution algorithm and the TMR10 calculate an absolute dose within 1% when using the modified CT calibration curve. The dose depth profile calculated using the convolution algorithms was superimposed on the TMR10 and measured dose profiles when the modified CT calibration curve was applied. The Gamma index was better than 93%.ConclusionsDose calculation algorithms, which consider electron density, require a CT calibration curve adapted to the phantom material to correctly compute the dose in water.  相似文献   

19.
PurposeTo verify the accuracy of 4D Monte Carlo (MC) simulations, using the 4DdefDOSXYZnrc user code, in a deforming anatomy. We developed a tissue-equivalent and reproducible deformable lung phantom and evaluated 4D simulations of delivered dose to the phantom by comparing calculations against measurements.MethodsA novel deformable phantom consisting of flexible foam, emulating lung tissue, inside a Lucite external body was constructed. A removable plug, containing an elastic tumor that can hold film and other dosimeters, was inserted in the phantom. Point dose and position measurements were performed inside and outside the tumor using RADPOS 4D dosimetry system. The phantom was irradiated on an Elekta Infinity linac in both stationary and moving states. The dose delivery was simulated using delivery log files and the phantom motion recorded with RADPOS.ResultsReproducibility of the phantom motion was determined to be within 1 mm. The phantom motion presented realistic features like hysteresis. MC calculations and measurements agreed within 2% at the center of tumor. Outside the tumor agreements were better than 5% which were within the positional/dose reading uncertainties at the measurement points. More than 94% of dose points from MC simulations agreed within 2%/2 mm compared to film measurements.ConclusionThe deformable lung phantom presented realistic and reproducible motion characteristics and its use for verification of 4D dose calculations was demonstrated. Our 4DMC method is capable of accurate calculations of the realistic dose delivered to a moving and deforming anatomy during static and dynamic beam delivery techniques.  相似文献   

20.
PurposeTo compare the effective dose (ED) and image quality (IQ) of O-arm cone-beam CT (Medtronic, Minneapolis, MN, USA) and Airo multi-slice CT (Brainlab AG, Munich, Germany) for intraoperative-CT (i-CT) in spinal surgery.MethodsThe manufacturer-defined protocols available in the O-arm and Airo systems for three-dimensional lumbar spine imaging were compared.Organ dose was measured both with thermo-luminescent dosimeters and GafChromic films in the Alderson Radiation Therapy anthropomorphic phantom.A subjective analysis was performed by neurosurgeons to compare the clinical IQ of the anthropomorphic phantom images acquired with the different i-CT systems and imaging protocols.Image uniformity, noise, contrast-to-noise-ratio (CNR), and spatial resolution were additionally assessed with the Catphan 504 phantom.ResultsO-arm i-CT caused 56% larger ED than Airo due to the high definition (HD) imaging protocol.The noise was larger for O-arm images leading to a lower CNR than that measured for Airo. Moreover, scattering and beam hardening effects were observed in the O-arm images. Better spatial resolution was measured for the O-arm system (9 lp/cm) than for Airo (4 lp/cm).For all the investigated protocols, O-arm was found to be better for identifying anatomical features important for accurate pedicle screw positioning.ConclusionsAccording to phantom measurements, the HD protocol of O-arm offered better clinical IQ than Airo but larger ED. The larger noise of O-arm images did not compromise the clinical IQ while the superior spatial resolution of this system allowed a better visibility of anatomical features important for pedicle screw positioning in the lumbar region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号