首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundPhotoneutrons are produced in radiation therapy with high energy photons. Also, capture gamma rays are the byproduct of neutrons interactions with wall material of radiotherapy rooms.AimIn the current study an analytical formula was proposed for capture gamma dose calculations in double bend mazes in radiation therapy rooms.Materials and methodsA total of 40 different layouts with double-bend mazes and a 18 MeV photon beam of Varian 2100 Clinac were simulated using MCNPX Monte Carlo (MC) code. Neutron capture gamma ray dose equivalent was calculated by the MC method along the maze and at the maze entrance door of all the simulated rooms. Then, all MC resulted data were fitted to an empirical formula for capture gamma dose calculations. Wu–McGinley analytical formula for capture gamma dose equivalent at the maze entrance door in single-bend mazes was also used for comparison purposes.ResultsFor capture gamma dose equivalents at the maze entrance door, the difference of 2–11% was seen between MC and the derived equation, while the difference of 36–87% was found between MC and the Wu–McGinley methods.ConclusionOur results showed that the derived formula results were consistent with the MC results for all of 40 different geometries. However, as a new formula, further evaluations are required to validate its use in practical situations. Finally, its application is recommend for capture gamma dose calculations in double-bend mazes to improve shielding calculations.  相似文献   

2.
PurposeThis work describes PETSTEP (PET Simulator of Tracers via Emission Projection): a faster and more accessible alternative to Monte Carlo (MC) simulation generating realistic PET images, for studies assessing image features and segmentation techniques.MethodsPETSTEP was implemented within Matlab as open source software. It allows generating three-dimensional PET images from PET/CT data or synthetic CT and PET maps, with user-drawn lesions and user-set acquisition and reconstruction parameters. PETSTEP was used to reproduce images of the NEMA body phantom acquired on a GE Discovery 690 PET/CT scanner, and simulated with MC for the GE Discovery LS scanner, and to generate realistic Head and Neck scans. Finally the sensitivity (S) and Positive Predictive Value (PPV) of three automatic segmentation methods were compared when applied to the scanner-acquired and PETSTEP-simulated NEMA images.ResultsPETSTEP produced 3D phantom and clinical images within 4 and 6 min respectively on a single core 2.7 GHz computer. PETSTEP images of the NEMA phantom had mean intensities within 2% of the scanner-acquired image for both background and largest insert, and 16% larger background Full Width at Half Maximum. Similar results were obtained when comparing PETSTEP images to MC simulated data. The S and PPV obtained with simulated phantom images were statistically significantly lower than for the original images, but led to the same conclusions with respect to the evaluated segmentation methods.ConclusionsPETSTEP allows fast simulation of synthetic images reproducing scanner-acquired PET data and shows great promise for the evaluation of PET segmentation methods.  相似文献   

3.
AimThe aim of this study was to design a safe bunker for an 18 MV linac in to configuration; primary barriers made from nanoparticle-containing concrete and pure concrete.BackgroundApplication of some nanoparticles in the shielding materials has been studied and it was shown that the presence of some nanoparticles improved radiation shielding properties.Materials and methodsSome percentage of different nanoparticles were modeled by the MCNP5 code of MC in the megavoltage radiotherapy treatment room's primary barriers. Other parts of the designed room, such as secondary barriers and maze door, were modeled as ordinary pure concrete. A safe bunker was designed according to the MC derived spectra at primary and secondary barriers location using a modeled and benchmarked 18 MV linac in free air. Then, the thickness of the required shielding materials for the door and also concrete for the walls and primary barriers were calculated separately.ResultsAccording to the results, required concrete thickness in primary and secondary barriers was reduced by around 0.8% compared to pure concrete application. Additionally, required lead and BPE decreased by 25% and 15%, respectively, due to primary barriers nanoparticles.ConclusionsIt was concluded that application of some nanoparticles in the shielding materials structures in megavoltage radiotherapy can make the shielding effective.  相似文献   

4.
In this study, we verified volumetric modulated arc therapy (VMAT) plans in an Elekta Synergy system with an integrated Agility 160-leaf multileaf collimator (MLC) by comparing them with Monte Carlo (MC)-calculated dose distributions using the AAPM TG-119 structure sets. The head configuration of the linear accelerator with the integrated MLC was simulated with the EGSnrc/BEAMnrc code. Firstly, the dosimetric properties of the MLC were evaluated with the MC technique and film measurements. Next, VMAT plans were created with the Pinnacle3 treatment planning system (TPS) for four regions in the AAPM TG-119 structures. They were then verified by comparing them with MC-calculated dose distributions using dose volume histograms (DVHs) and three-dimensional (3D) gamma analysis. The MC simulations for the Agility MLC dosimetric properties were in acceptable agreement with measurements. TPS-VMAT plans using TG-119 structure sets agreed with MC dose distributions within 2% in the comparison of D95 in planning target volumes (PTVs) evaluated from DVHs. In contrast, higher dose regions such as D20, D10, and D5 in PTVs for TPS tended to be smaller than MC values. This tendency was particularly noticeable for mock head and neck with complicated structures. In 3D gamma analysis, the passing rates with 3%/3mm criteria in PTVs were ≥99%, except for mock head and neck (89.5%). All passing rates for organs at risk (OARs) were in acceptable agreement of >96%. It is useful to verify dose distributions of PTVs and OARs in TPS-VMAT plans by using MC dose calculations and 3D gamma analysis.  相似文献   

5.
Micro computed tomography (µCT) scanners are used to create high-resolution images and to quantify properties of the scanned objects. While modern µCT scanners benefit from the cone beam geometry, they are compromised by scatter radiation. This work aims to develop a Monte Carlo (MC) model of a µCT scanner in order to characterize the scatter radiation in the detector plane.The EGS++ framework with the MC code EGSnrc was used to simulate the particle transport through the main components of the XtremeCT (SCANCO Medical AG, Switzerland). The developed MC model was based on specific information of the manufacturer and was validated against measurements. The primary and the scatter radiation were analyzed and by implementing a dedicated tracing method, the scatter radiation was subdivided into different scatter components.The comparisons of measured and simulated transmission values for different absorber and filter combinations result in a mean difference of 0.2% ± 1.4%, with a maximal local difference of 3.4%. The reconstructed image of the phantom based on measurements agrees well with the image reconstructed using the MC model. The local contribution of scattered radiation is up to 10% of the total radiation in the detector plane and most of the scattered particles result from interactions in the scanned object. The MC simulations show that scatter radiation contains information about the structure of the object.In conclusion, a MC model for a µCT scanner was successfully validated and applied to analyze the characteristics of the scatter radiation for a µCT scanner.  相似文献   

6.
PurposeTo study the impact of shielding elements in the proximity of Intra-Operative Radiation Therapy (IORT) irradiation fields, and to generate graphical and quantitative information to assist radiation oncologists in the design of optimal shielding during pelvic and abdominal IORT.MethodAn IORT system was modeled with BEAMnrc and EGS++ Monte Carlo codes. The model was validated in reference conditions by gamma index analysis against an experimental data set of different beam energies, applicator diameters, and bevel angles. The reliability of the IORT model was further tested considering shielding layers inserted in the radiation beam. Further simulations were performed introducing a bone-like layer embedded in the water phantom. The dose distributions were calculated as 3D dose maps.ResultsThe analysis of the resulting 2D dose maps parallel to the clinical axis shows that the bevel angle of the applicator and its position relative to the shielding have a major influence on the dose distribution. When insufficient shielding is used, a hotspot nearby the shield appears near the surface. At greater depths, lateral scatter limits the dose reduction attainable with shielding, although the presence of bone-like structures in the phantom reduces the impact of this effect.ConclusionsDose distributions in shielded IORT procedures are affected by distinct contributions when considering the regions near the shielding and deeper in tissue: insufficient shielding may lead to residual dose and hotspots, and the scattering effects may enlarge the beam in depth. These effects must be carefully considered when planning an IORT treatment with shielding.  相似文献   

7.
Introduction and purposeThe Valencia applicators which are accessories of the microSelectron-HDR afterloader (Nucletron, Veenendaal, The Netherlands) are designed to treat skin lesions. These cup-shaped applicators are an alternative to superficial/orthovoltage x-ray treatment units. They limit the irradiation to the required area using tungsten-alloy shielding, and are equipped with a tungsten-alloy flattering filter allowing the treatment of skin tumors, the oral cavity, vaginal cuff, etc. The tungsten-alloy thickness to shield radiation is not the same in all parts of the applicators. This fact led us to question whether the leakage radiation differs depending on where it is measured, and whether this may be relevant in some clinical cases. The purpose of this work is to study from the radiation protection point of view the radiation leakage of the Valencia applicators, and provide a solution for current users and for the manufacturer.Methods and materialsSimulations based on the Monte Carlo (MC) method using the Geant4 code have been realized studying the dose rate distribution in air around the cup of the Valencia applicators. An experimental study with radiochromic film has also been done to measure the dose distribution in the back side of the applicators and to compare it with MC results.Results and conclusionsRadiation leakage of up to 170% of the prescribed dose has been found at the back surface of these applicators. Although this side is not usually directed to the patient, in some applications such as the treatment of a lesion on the nose, special care must be taken to avoid unexpected and unnecessary irradiation of the eyes. A possible solution could be to add additional shielding to the applicator in order to reduce this leakage or to put some shielding to protect the eyes. Additionally, a new concept design of the Valencia applicators using more shielding material in the applicator backside is proposed.  相似文献   

8.
AimThe aim of this study is to verify the Prowess Panther jaws-only intensity modulated radiation therapy (JO-IMRT) treatment planning (TP) by comparing the TP dose distributions for head-and-neck (H&N) cancer with the ones simulated by Monte Carlo (MC).BackgroundTo date, dose distributions planned using JO-IMRT for H&N patients were found superior to the corresponding three-dimensional conformal radiotherapy (3D-CRT) plans. Dosimetry of the JO-IMRT plans were also experimentally verified using an ionization chamber, MapCHECK 2, and Octavius 4D and good agreements were shown.Materials and methodsDose distributions of 15 JO-IMRT plans of nasopharyngeal patients were recalculated using the EGSnrc Monte Carlo code. The clinical photon beams were simulated using the BEAMnrc. The absorbed dose to patients treated by fixed-field IMRT was computed using the DOSXYZnrc. The simulated dose distributions were then compared with the ones calculated by the Collapsed Cone Convolution (CCC) algorithm on the TPS, using the relative dose error comparison and the gamma index using global methods implemented in PTW-VeriSoft with 3%/3 mm, 2%/2 mm, 1%/1 mm criteria.ResultsThere is a good agreement between the MC and TPS dose. The average gamma passing rates were 93.3 ± 3.1%, 92.8 ± 3.2%, 92.4 ± 3.4% based on the 3%/3 mm, 2%/2 mm, 1%/1 mm criteria, respectively.ConclusionsAccording to the results, it is concluded that the CCC algorithm was adequate for most of the IMRT H&N cases where the target was not immediately adjacent to the critical structures.  相似文献   

9.
AimThe aim of this study was to characterize the radiation contamination inside and outside the megavoltage radiotherapy room.BackgroundRadiation contamination components in the 18 MV linac room are the secondary neutron, prompt gamma ray, electron and linac leakage radiation.Materials and MethodsAn 18 MV linac modeled in a typical bunker employing the MCNPX code of Monte Carlo. For fast calculation, phase-space distribution (PSD) file modeling was applied and the calculations were conducted for the radiation contamination components dose and spectra at 6 locations inside and outside the bunker.ResultsThe results showed that the difference of measured and calculated percent depth-dose (PDD) and photo beam-profile (PBP) datasets were lower than acceptable values. At isocenter, the obtained photon dose and neutron fluence were 2.4 × 10−14 Gy/initial e° and 2.22 × 10-8 n°/cm2, respectively. Then, neutron apparent source strength (QN) value was found as 1.34 × 1012 n°/Gy X at isocenter and the model verified to photon and neutron calculations. A surface at 2 cm below the flattening filter was modeled as phase-space (PS) file for PDD and PBP calculations. Then by use of a spherical cell in the center of the linac target as a PS surface, contaminant radiations dose, fluence and spectra were estimated at 6 locations in a considerably short time, using the registered history of all particles and photons in the 13GB PSD file as primary source in the second step.ConclusionDesigning the PSD file in MC modeling helps user to solve the problems with complex geometry and physics precisely in a shorter run-time.  相似文献   

10.
GoalProton treatment monitoring with Positron-Emission-Tomography (PET) is based on comparing measured and Monte Carlo (MC) predicted β+ activity distributions. Here we present PET β+ activity data and MC predictions both during and after proton irradiation of homogeneous PMMA targets, where protons were extracted from a cyclotron.Methods and materialsPMMA phantoms were irradiated with 62 MeV protons extracted from the CATANA cyclotron. PET activity data were acquired with a 10 × 10 cm2 planar PET system and compared with predictions from the FLUKA MC generator. We investigated which isotopes are produced and decay during irradiation, and compared them to the situation after irradiation. For various irradiation conditions we compared one-dimensional activity distributions of MC and data, focussing on Δw50%, i.e., the distance between the 50% rise and 50% fall-off position.ResultsThe PET system is able to acquire data during and after cyclotron irradiation. For PMMA phantoms the difference between the FLUKA MC prediction and our data in Δw50% is less than 1 mm. The ratio of PET activity events during and after irradiation is about 1 in both data and FLUKA, when equal time-frames are considered. Some differences are observed in profile shape.ConclusionWe found a good agreement in Δw50% and in the ratio between beam-on and beam-off activity between the PET data and the FLUKA MC predictions in all irradiation conditions.  相似文献   

11.

Aim

The aim of this work was to map the characteristics of (n,γ) and (γ,n) reactions in a high energy photon radiation therapy.

Background

Photoneutrons produced in the high energy X-Ray radiation therapy may damage patients and staff. It is due to high RBE of the produced neutrons according to their energy and isotropic emission. Characterization of the photoneutrons can help us in appropriate shielding.

Materials and methods

This study focused on the photoneutron and capture gamma ray phenomena. Characteristics such as dose value, fluence and spectra of both the neutrons and the by produced prompt gamma ray were described.

Results and discussion

Neutron and prompt gamma spectra in different points showed the neutrons to be thermalized when increasing the distance from the linac. Energy of the neutrons changed from about 0.6 MeV at the isocentre to around 10−08 MeV at the outer door position. Although the neutrons were found as fast neutrons, their spectra showed they were thermal neutrons at the outer door position. Additionally, it was seen that the energy of the gamma rays is higher than the scattered X-ray energy. The energy of gamma rays was seen to be up to 10 MeV while the linac photons had energy lower than 1 MeV. Neutron source strength obtained in this work was in good agreement with the published data, which may be a confirmation of our simulation accuracy.

Conclusion

The study showed that the Monte Carlo simulation can be applied in the radiotherapy and industrial radiation works as a useful and precise estimator. We also concluded that the dose from the prompt gamma ray at the outer door location is higher than the scattered radiation from the linac and should be considered in the shielding.  相似文献   

12.
Hydrogen peroxide (H2O2) was detected cytochemically, via transmission electron microscopy (TEM), in pumpkin tissues exposed to high-dose gamma ray. Its reaction with cerium chloride produced electron-dense precipitates of cerium perhydroxides. Their patterns of deposition in the tissues of both control plants and those irradiated with gamma ray (PIG) were typically found in the plasma membranes and cell walls. However, gamma irradiation remarkably increased the intensities of cerium perhydroxide deposits (CPDs) in the plasma membranes and cell walls for all tissue types, but especially the leaves. The only exception was for vessels in the cotyledons. After gamma irradiation, the (H2O2) content in all tissues was higher than in the control samples, except for the cotyledons of PIG, where the (H2O2) content was lower than for all others. The increased appearance of CPDs may have been due to the enhancement of (H2O2) accumulation by gamma radiation. This accumulation also varied according to the cell or tissue type examined.  相似文献   

13.
PurposeTo compare, via Monte Carlo simulations, homogeneous and non-homogenous breast models adopted for mean glandular dose (MGD) estimates in mammography vs. patient specific digital breast phantoms.MethodsWe developed a GEANT4 Monte Carlo code simulating four homogenous cylindrical breast models featured as follows: (1) semi-cylindrical section enveloped in a 5-mm adipose layer; (2) semi-elliptical section with a 4-mm thick skin; (3) semi-cylindrical section with a 1.45-mm skin layer; (4) semi-cylindrical section in a 1.45-mm skin layer and 2-mm subcutaneous adipose layer. Twenty patient specific digital breast phantoms produced from a dedicated CT scanner were assumed as reference in the comparison. We simulated two spectra produced from two anode/filter combinations. An additional digital breast phantom was produced via BreastSimulator software.ResultsWith reference to the results for patient-specific breast phantoms and for W/Al spectra, models #1 and #3 showed higher MGD values by about 1% (ranges [–33%; +28%] and [−31%; +30%], respectively), while for model #4 it was 2% lower (range [−34%; +26%]) and for model #2 –11% (range [−39%; +14%]), on average. On the other hand, for W/Rh spectra, models #1 and #4 showed lower MGD values by 2% and 1%, while for model #2 and #3 it was 14% and 8% lower, respectively (ranges [−43%; +13%] and [−41%; +21%]). The simulation with the digital breast phantom produced with BreastSimulator showed a MGD overestimation of +33%.ConclusionsThe homogeneous breast models led to maximum MGD underestimation and overestimation of 43% and 28%, respectively, when compared to patient specific breast phantoms derived from clinical CT scans.  相似文献   

14.
PurposeThe field of online monitoring of the beam range is one of the most researched topics in proton therapy over the last decade. The development of detectors that can be used for beam range verification under clinical conditions is a challenging task. One promising possible solution are modalities that record prompt-gamma radiation produced by the interactions of the proton beam with the target tissue. A good understanding of the energy spectra of the prompt gammas and the yields in certain energy regions is crucial for a successful design of a prompt-gamma detector. Monte-Carlo simulations are an important tool in development and testing of detector concepts, thus the proper modelling of the prompt-gamma emission in those simulations are of vital importance. In this paper, we confront a number of GEANT4 simulations of prompt-gamma emission, performed with different versions of the package and different physics lists, with experimental data obtained from a phantom irradiation with proton beams of four different energies in the range 70–230 MeV.MethodsThe comparison is made on different levels: features of the prompt-gamma energy spectrum, gamma emission depth profiles for discrete transitions and the width of the distal fall-off in those profiles.ResultsThe best agreement between the measurements and the simulations is found for the GEANT4 version 10.4.2 and the reference physics list QGSP_BIC_HP.ConclusionsModifications to prompt-gamma emission modelling in higher versions of the software increase the discrepancy between the simulation results and the experimental data.  相似文献   

15.
PurposeTo determine fetal doses in different stages of pregnancy in three common computed tomography (CT) examinations: pulmonary CT angiography, abdomino-pelvic and trauma scan with Monte Carlo (MC) simulations.MethodsAn adult female anthropomorphic phantom was scanned with a 64-slice CT using pulmonary angiography, abdomino-pelvic and trauma CT scan protocols. Three different sized gelatin boluses placed on the phantom’s abdomen simulated different stages of pregnancy. Intrauterine dose was used as a surrogate to a dose absorbed to the fetus. MC simulations were performed to estimate uterine doses. The simulation dose levels were calibrated with volumetric CT dose index (CTDIvol) measurements and MC simulations in a cylindrical CTDI body phantom and compared with ten point doses measured with metal-oxide-semiconductor field-effect-transistor dosimeters. Intrauterine volumes and uterine walls were segmented and the respective dose volume histograms were calculated.ResultsThe mean intrauterine doses in different stages of pregnancy varied from 0.04 to 1.04 mGy, from 4.8 to 5.8 mGy, and from 9.8 to 12.6 mGy in the CT scans for pulmonary angiography, abdomino-pelvic and trauma CT scans, respectively. MC simulations showed good correlation with the MOSFET measurement at the measured locations.ConclusionsThe three studied examinations provided highly varying fetal doses increasing from sub-mGy level in pulmonary CT angiography to notably higher levels in abdomino-pelvic and trauma scans where the fetus is in the primary exposure range. Volumetric dose distribution offered by MC simulations in an appropriate anthropomorphic phantom provides a comprehensive dose assessment when applied in adjunct to point-dose measurements.  相似文献   

16.
We confirmed the feasibility of using our proposed system to extract two different kinds of functional images from a positron emission tomography (PET) module by using an insertable collimator during boron neutron capture therapy (BNCT). Coincidence events from a tumor region that included boron particles were identified by a PET scanner before BNCT; subsequently, the prompt gamma ray events from the same tumor region were collected after exposure to an external neutron beam through an insertable collimator on the PET detector. Five tumor regions that contained boron particles and were located in the water phantom and in the BNCT system with the PET module were simulated with Monte Carlo simulation code. The acquired images were quantitatively analyzed. Based on the receiver operating characteristic (ROC) curves in the five boron regions, A, B, C, D, and E, the PET and single-photon images were 10.2%, 11.7%, 8.2% (center region), 12.6%, and 10.5%, respectively. We were able to acquire simultaneously PET and single prompt photon images for tumor regions monitoring by using an insertable collimator without any additional isotopes.  相似文献   

17.
PurposeThe main objective of this study was to evaluate the efficacy of tungsten carbide as new lead-free radiation shielding material in nuclear medicine by evaluating the attenuation properties.Materials and methodsThe elemental composition of tungsten carbide was analysed using Field-Emission Scanning Electron Microscopy (FESEM) with energy dispersive X-ray (EDX). The purity of tungsten carbide was 99.9%, APS: 40–50 µm. Three discs of tungsten carbide was fabricated with thickness of 0.1 cm, 0.5 cm and 1.0 cm. Three lead discs with similar thickness were used to compare the attenuation properties with tungsten carbide discs. Energy calibration of gamma spectroscopy was performed by using 123I, 133Ba, 152Eu, and 137Cs. Gamma radiation from these sources were irradiated on both materials at energies ranging from 0.160 MeV to 0.779 MeV. The experimental attenuation coefficients of lead and tungsten carbide were compared with theoretical attenuation coefficients of both materials from NIST database. The half value layer and mean free path of both materials were also evaluated in this study.ResultsThis study found that the peaks obtained from gamma spectroscopy have linear relationship with all energies used in this study. The relative differences between the measured and theoretical mass attenuation coefficients are within 0.19–5.11% for both materials. Tungsten carbide has low half value layer and mean free path compared to lead for all thickness at different energies.ConclusionThis study shows that tungsten carbide has high potential to replace lead as new lead-free radiation shielding material in nuclear medicine.  相似文献   

18.
PurposeTo provide mean glandular dose (MGD) estimates via Monte Carlo (MC) simulations as a function of the breast models and scan parameters in mammography, digital breast tomosynthesis (DBT) and dedicated breast CT (BCT).MethodsThe MC code was based on GEANT4 toolkit. The simulated compressed breast was either a cylinder with a semi-circular section or ad hoc shaped for oblique view (MLO). In DBT we studied the influence of breast models and exam parameters on the T-factors (i.e. the conversion factor for the calculation of the MGD in DBT from that for a 0-degree projection), and in BCT we investigated the influence on the MGD estimates of the ion chamber volume used for the air kerma measurements.ResultsIn mammography, a model representative of a breast undergoing an MLO view exam did not produce substantial differences (0.4%) in MGD estimates, when compared to a conventional cranio-caudal (CC) view breast model. The beam half value layer did not present a significant influence on T-factors in DBT (<0.8%), while the skin model presented significant influence on MGD estimates (up to 3.3% at 30 degrees scan angle), increasing for larger scan angles. We derived a correction factor for taking into account the different ion chamber volume used in MGD estimates in BCT.ConclusionsA series of MC code modules for MGD estimates in 2D and 3D breast imaging have been developed in order to take into account the most recent advances in breast models.  相似文献   

19.
PurposeTo validate the SpekPy software toolkit that has been developed to estimate the spectra emitted from tungsten anode X-ray tubes. The model underlying the toolkit introduces improvements upon a well-known semi-empirical model of X-ray emission.Materials and methodsUsing the same theoretical framework as the widely-used SpekCalc software, new electron penetration data was simulated using the Monte Carlo (MC) method, alternative bremsstrahlung cross-sections were applied, L-line characteristic emissions were included, and improvements to numerical methods implemented. The SpekPy toolkit was developed with the Python programming language. The toolkit was validated against other popular X-ray spectrum models (50 to 120 kVp), X-ray spectra estimated with MC (30 to 150 kVp) as well as reference half value layers (HVL) associated with numerous radiation qualities from standard laboratories (20 to 300 kVp).ResultsThe toolkit can be used to estimate X-ray spectra that agree with other popular X-ray spectrum models for typical configurations in diagnostic radiology as well as with MC spectra over a wider range of conditions. The improvements over SpekCalc are most evident at lower incident electron energies for lightly and moderately filtered radiation qualities. Using the toolkit, estimations of the HVL over a large range of standard radiation qualities closely match reference values.ConclusionsA toolkit to estimate X-ray spectra has been developed and extensively validated for central-axis spectra. This toolkit can provide those working in Medical Physics and beyond with a powerful and user-friendly way of estimating spectra from X-ray tubes.  相似文献   

20.
AimThis work is focused on the Monte Carlo microdosimetric calculations taking into account the influence of the AuNPs’ shape, size and mass concentration on the radiation dose enhancement for the high-energy 6 MV and 18 MV X-ray therapeutic beams from a medical linac.BackgroundDue to a high atomic number and the photoelectric effect, gold nanoparticles can significantly enhance doses of ionizing radiation. However, this enhancement depends upon several parameters, such as, inter alia, nanoparticles’ shape etc.MethodThe simulated system was composed of the therapeutic beam, a water phantom with the target volume (with and without AuNPs) located at the depth of the maximum dose, i.e. at 1.5 cm for the 6 MV beam and at 3.5 cm for the 18 MV one. In the study the GEANT4 code was used because it makes it possible to get a very short step of simulation which is required in case of simulating the radiation interactions with nanostructures.ResultsThe dependence between the dose increase and the mass concentration of gold was determined and described by a simple mathematical formula for three different shapes of gold nanoparticles — two nanorods of different sizes and a flat 2D structure. The dose increase with the saturation occurring with the increasing mass concentration of gold was observed.ConclusionsIt was found that relatively large cylindrical gold nanoparticles can limit the increase of the dose absorbed in the target volume much more than the large 2D gold nanostructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号