首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The localization of ASH1 mRNA to the distal tip of budding yeast cells is essential for the proper regulation of mating type switching in Saccharomyces cerevisiae. A localization element that is predominantly in the 3'-untranslated region (UTR) can direct this mRNA to the bud. Using this element in the three-hybrid in vivo RNA-binding assay, we identified a protein, Loc1p, that binds in vitro directly to the wild-type ASH1 3'-UTR RNA, but not to a mutant RNA incapable of localizing to the bud nor to several other mRNAs. LOC1 codes for a novel protein that recognizes double-stranded RNA structures and is required for efficient localization of ASH1 mRNA. Accordingly, Ash1p gets symmetrically distributed between daughter and mother cells in a loc1 strain. Surprisingly, Loc1p was found to be strictly nuclear, unlike other known RNA-binding proteins involved in mRNA localization which shuttle between the nucleus and the cytoplasm. We propose that efficient cytoplasmic ASH1 mRNA localization requires a previous interaction with specific nuclear factors.  相似文献   

3.
4.
5.
6.
7.
Arabidopsis genes MYR1 and MYR2 are regulators of flowering time under low light intensity. These Myb-related genes are expressed as alternative splice variants affected in their coiled-coil and DNA-binding domains. We tested whether alternative splicing could affect dimerization and localization of MYR1 and MYR2, thereby potentially affecting their activity. Using MYR1 as a model for variants within the coiled-coil region, we detected 2 types of homodimers. For MYR2, alternative splicing in the DNA-binding Myb-like domain abolished the ability of MYR2 to dimerize. Alternative splicing in the coiled-coil domain did not affect nuclear localization, as determined by transient expression in tobacco, while alternative splicing in the DNA-binding domain of MYR2 yielded a distinct intranuclear localization pattern that may reflect changes in phosphorylation-dependent protein folding. Thus alternative splicing of these genes may result in changes in dimerization or protein folding resulting in changes in activity and abundance of MYR1 or MYR2 protein.  相似文献   

8.
The glycine-rich protein AtGRP2 is one of the four members of the cold-shock domain (CSD) protein family in Arabidopsis. It is characterized by the presence of a nucleic acid-binding CSD domain, two glycine-rich domains and two CCHC zinc-fingers present in nucleic acid-binding proteins. In an attempt to further understand the role of CSD/GRP proteins in plants, we have proceeded to the functional characterization of the AtGRP2 gene. Here, we demonstrate that AtGRP2 is a nucleo-cytoplasmic protein involved in Arabidopsis development with a possible function in cold-response. Expression analysis revealed that the AtGRP2 gene is active in meristematic tissues, being modulated during flower development. Down-regulation of AtGRP2 gene, using gene-silencing techniques resulted in early flowering, altered stamen number and affected seed development. A possible role of AtGRP2 as an RNA chaperone is discussed.  相似文献   

9.
We have recently identified in Drosophila melanogaster a new gene encoding a nuclear protein, DIP1. Here we report the developmental expression and the finding that DIP1 subcellular localization is in the nucleus and at the nuclear periphery during interphase in embryos. Interestingly, in humans, DIP1 antibody identified signals in nuclei from cultured cells and reacted with a rough 30kDa protein in Western blotting experiments, demonstrating evolutionary conservation.  相似文献   

10.
A new full length cDNA clone encoding stearoyl-ACP desaturase (SAD) was isolated from seeds of Pongamia pinnata, an oil yielding legume plant. The cDNA clone (PpSAD) contained a single open reading frame of 1182-bp coding for 393 amino acids with a predicted molecular mass of 45.04 kDa, and shares similarity with SAD from other plants. Characteristics of the deduced protein were predicted and analyzed using molecular homology modeling; its three dimensional structure strongly resembled the crystal structure of Ricinus communis (RcSAD). Southern blot analysis indicated that ‘sad’ is a multiple copy gene and was a member of a small gene family. Expression analysis using quantitative real-time PCR revealed that the gene showed marked distinct expression during different stages of seed developments. The results of the expression analysis in this study, combined with existing research, suggest that ‘sad’ gene may be involved in the regulation of plant seed growth and development.  相似文献   

11.
12.
Using our microsatellite specific genotyping method, we analyzed tandem repeats, which are known to be highly variable with some recognized as biomarkers causative of disease, in over 500 individuals who were exon sequenced in a 1000 Genomes Project pilot study. We were able to genotype over 97% of the microsatellite loci in the targeted regions. A total of 25,115 variations were observed, including repeat length and single nucleotide polymorphisms, corresponding to an average of 45.6 variations per individual and a density of 1.1 variations per kilobase. Standard variant detection did not report 94.2% of the exonic repeat length variations in part because the alignment techniques are not ideal for repetitive regions. Additionally some standard variation detection tools rely on a database of known variations, making them less likely to call repeat length variations as only a small percent of these loci (~ 6000) have been accurately characterized. A subset of the hundreds of non-synonymous variations we identified was experimentally validated, indicating an accuracy of 96.5% for our microsatellite-based genotyping method, with some novel variants identified in genes associated with cancer. We propose that microsatellite-based genotyping be used as a part of large scale sequencing studies to identify novel variants.  相似文献   

13.
Inspection of the complete genome of the yeast Yarrowia lipolytica for the presence of genes encoding homologues of known telomere-binding proteins surprisingly revealed no counterparts of typical yeast Myb domain-containing telomeric factors including Rap1 or Taz1. Instead, we identified a gene, YALIOD10923g, encoding a protein containing two Myb domains, exhibiting a high degree of similarity to the Myb domain of human telomeric proteins TRF1 and TRF2 and homologous to an essential fission yeast protein Mug152 whose expression is elevated during meiosis. The protein, which we named Tay1p (telomere-associated in Yarrowia lipolytica 1), was purified for biochemical studies. Using a model Y. lipolytica telomere, we demonstrate that the protein preferentially binds to Y. lipolytica telomeric tracts. Tay1p binds along the telomeric tract as dimers and larger oligomers, and it is able to remodel the telomeric DNA into both looped structures and synaptic complexes of two model telomere DNAs. The ability of Tay1p to induce dimerization of telomeres in vitro goes in line with its oligomeric nature, where each oligomer can employ several Myb domains to form intermolecular telomere clusters. We also provide experimental evidence that Tay1p may be associated with Y. lipolytica telomeres in vivo. Together with its homologues from Schizosaccharomyces pombe and several basidiomycetous fungi (Sánchez-Alonso, P., and Guzman, P. (2008) Fungal Genet. Biol. 45, S54-S62), Tay1p constitutes a novel family of putative telomeric factors whose analysis may be instrumental in understanding the function and evolution of double-stranded DNA telomeric proteins.  相似文献   

14.
15.
We describe a Drosophila gene, orbit, that encodes a conserved 165-kD microtubule-associated protein (MAP) with GTP binding motifs. Hypomorphic mutations in orbit lead to a maternal effect resulting in branched and bent mitotic spindles in the syncytial embryo. In the larval central nervous system, such mutants have an elevated mitotic index with some mitotic cells showing an increase in ploidy. Amorphic alleles show late lethality and greater frequencies of hyperploid mitotic cells. The presence of cells in the hypomorphic mutant in which the chromosomes can be arranged, either in a circular metaphase or an anaphase-like configuration on monopolar spindles, suggests that polyploidy arises through spindle and chromosome segregation defects rather than defects in cytokinesis. A role for the Orbit protein in regulating microtubule behavior in mitosis is suggested by its association with microtubules throughout the spindle at all mitotic stages, by its copurification with microtubules from embryonic extracts, and by the finding that the Orbit protein directly binds to MAP-free microtubules in a GTP-dependent manner.  相似文献   

16.
17.
Screening of transfer DNA (tDNA) tagged lines of Arabidopsis thaliana for mutants defective in systemic acquired resistance led to the characterization of dir1-1 (defective in induced resistance [systemic acquired resistance, SAR]) mutant. It has been suggested that the protein encoded by the dir1 gene, i.e., DIR1, is involved in the long distance signaling associated with SAR. DIR1 displays the cysteine signature of lipid transfer proteins, suggesting that the systemic signal could be lipid molecules. However, previous studies have shown that this signature is not sufficient to define a lipid transfer protein, i.e., a protein capable of binding lipids. In this context, the lipid binding properties and the structure of a DIR1-lipid complex were both determined by fluorescence and X-ray diffraction. DIR1 is able to bind with high affinity two monoacylated phospholipids (dissociation constant in the nanomolar range), mainly lysophosphatidyl cholines, side-by-side in a large internal tunnel. Although DIR1 shares some structural and lipid binding properties with plant LTP2, it displays some specific features that define DIR1 as a new type of plant lipid transfer protein. The signaling function associated with DIR1 may be related to a specific lipid transport that needs to be characterized and to an additional mechanism of recognition by a putative receptor, as the structure displays on the surface the characteristic PxxP structural motif reminiscent of SH3 domain signaling pathways.  相似文献   

18.
In a paradigmatic approach we identified cross-reactive plant allergens for allergy diagnosis and treatment by screening of a tobacco leaf complementary DNA (cDNA) library with serum IgE from a polysensitized allergic patient. Two IgE-reactive cDNA clones were isolated which code for proteins with significant sequence similarity to the actin-binding protein, villin. Northern- and Western-blotting demonstrate expression of the villin-related allergens in pollen and somatic plant tissues. In addition, villin-related proteins were detected in several plant allergen sources (tree-, grass-, weed pollen, fruits, vegetables, nuts). A recombinant C-terminal fragment of the villin-related protein was expressed in Escherichia coli, purified and shown to react specifically with allergic patients IgE. After profilin, villin-related proteins represent another family of cytoskeletal proteins, which has been identified as cross-reactive plant allergens. They may be used for the diagnosis and treatment of patients suffering from multivalent plant allergies.  相似文献   

19.
Actin binding proteins play key roles in cell structure and movement particularly as regulators of the assembly, stability and localization of actin filaments in the cytoplasm. In the present study, a cDNA clone encoding an actin bundling protein named as AhABP was isolated from Acanthamoeba healyi, a causative agent of granulomatous amebic encephalitis. This clone exhibited high similarity with genes of Physarum polycephalum and Dictyostelium discoideum, which encode actin bundling proteins. Domain search analysis revealed the presence of essential conserved regions, i.e., an active actin binding site and 2 putative calcium binding EF-hands. Transfected amoeba cells demonstrated that AhABP is primarily localized in phagocytic cups, peripheral edges, pseudopods, and in cortical cytoplasm where actins are most abundant. Moreover, AhABP after the deletion of essential regions formed ellipsoidal inclusions within transfected cells. High-speed co-sedimentation assays revealed that AhABP directly interacted with actin in the presence of up to 10 microM of calcium. Under the electron microscope, thick parallel bundles were formed by full length AhABP, in contrast to the thin actin bundles formed by constructs with deletion sites. In the light of these results, we conclude that AhABP is a novel actin bundling protein that is importantly associated with actin filaments in the cytoplasm.  相似文献   

20.
WD (tryptophan/aspartic acid) repeat proteins perform a wide variety of functions in eukaryotic cells. They are characterised by the presence of a number of conserved repeat motifs that contribute to the beta-propeller structures which are the common feature of this large group of proteins. We report here the properties of the first characterised member of this family in the American trypanosome, Trypanosoma cruzi (TcBPP1). In the CL Brener clone the protein is 482 amino acids long and is predicted to contain four WD repeat motifs, flanked by amino and carboxyl terminal extensions. TcBPP1 is a single copy gene present on a 1.0/1.6 Mb pair of homologous chromosomes in a locus that is syntenic with the corresponding regions of Trypanosoma brucei and Leishmania major chromosomes. Consistent with the proposed hybrid nature of the CL Brener clone, the proteins encoded by the two different alleles share only 97% identity at the amino acid level. To determine subcellular location, we examined transfected parasites for the distribution of green fluorescent protein (GFP) fused with different regions of TcBPP1. These studies demonstrated that a 115 amino acid peptide derived from the amino terminal domain of TcBPP1 is able to target GFP to the mitochondrion. Interestingly this region lacks a typical amino terminal presequence suggesting that mitochondrial import is mediated by an alternative targeting signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号