首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Molecular cell》2022,82(17):3135-3150.e9
  1. Download : Download high-res image (158KB)
  2. Download : Download full-size image
  相似文献   

3.
4.
5.
The localization of ASH1 mRNA to the distal tip of budding yeast cells is essential for the proper regulation of mating type switching in Saccharomyces cerevisiae. A localization element that is predominantly in the 3'-untranslated region (UTR) can direct this mRNA to the bud. Using this element in the three-hybrid in vivo RNA-binding assay, we identified a protein, Loc1p, that binds in vitro directly to the wild-type ASH1 3'-UTR RNA, but not to a mutant RNA incapable of localizing to the bud nor to several other mRNAs. LOC1 codes for a novel protein that recognizes double-stranded RNA structures and is required for efficient localization of ASH1 mRNA. Accordingly, Ash1p gets symmetrically distributed between daughter and mother cells in a loc1 strain. Surprisingly, Loc1p was found to be strictly nuclear, unlike other known RNA-binding proteins involved in mRNA localization which shuttle between the nucleus and the cytoplasm. We propose that efficient cytoplasmic ASH1 mRNA localization requires a previous interaction with specific nuclear factors.  相似文献   

6.
7.
8.
Arabidopsis genes MYR1 and MYR2 are regulators of flowering time under low light intensity. These Myb-related genes are expressed as alternative splice variants affected in their coiled-coil and DNA-binding domains. We tested whether alternative splicing could affect dimerization and localization of MYR1 and MYR2, thereby potentially affecting their activity. Using MYR1 as a model for variants within the coiled-coil region, we detected 2 types of homodimers. For MYR2, alternative splicing in the DNA-binding Myb-like domain abolished the ability of MYR2 to dimerize. Alternative splicing in the coiled-coil domain did not affect nuclear localization, as determined by transient expression in tobacco, while alternative splicing in the DNA-binding domain of MYR2 yielded a distinct intranuclear localization pattern that may reflect changes in phosphorylation-dependent protein folding. Thus alternative splicing of these genes may result in changes in dimerization or protein folding resulting in changes in activity and abundance of MYR1 or MYR2 protein.  相似文献   

9.
10.
MIR34A (microRNA 34a) is a tumor suppressor gene, but how it regulates chemotherapy response and resistance is not completely understood. Here, we show that the microRNA MIR34A-dependent high mobility group box 1 (HMGB1) downregulation inhibits autophagy and enhances chemotherapy-induced apoptosis in the retinoblastoma cell. HMGB1 is a multifaceted protein with a key role in autophagy, a self-degradative, homeostatic process with a context-specific role in cancer. MIR34A inhibits HMGB1 expression through a direct MIR34A-binding site within the HMGB1 3′ untranslated region. MIR34A inhibition of HMGB1 leads to a decrease in autophagy under starvation conditions or chemotherapy treatment. Inhibition of autophagy promotes oxidative injury and DNA damage and increases subsequent CASP3 activity, CASP3 cleavage, and PARP1 [poly (ADP-ribose) polymerase 1] cleavage, which are important to the apoptotic process. Finally, upregulation of MIR34A, knockdown of HMGB1, or inhibition of autophagy (e.g., knockdown of ATG5 and BECN1) restores chemosensitivity and enhances tumor cell death in the retinoblastoma cell. These data provide new insights into the mechanisms governing the regulation of HMGB1 expression by microRNA and their possible contribution to autophagy and drug resistance.  相似文献   

11.
The glycine-rich protein AtGRP2 is one of the four members of the cold-shock domain (CSD) protein family in Arabidopsis. It is characterized by the presence of a nucleic acid-binding CSD domain, two glycine-rich domains and two CCHC zinc-fingers present in nucleic acid-binding proteins. In an attempt to further understand the role of CSD/GRP proteins in plants, we have proceeded to the functional characterization of the AtGRP2 gene. Here, we demonstrate that AtGRP2 is a nucleo-cytoplasmic protein involved in Arabidopsis development with a possible function in cold-response. Expression analysis revealed that the AtGRP2 gene is active in meristematic tissues, being modulated during flower development. Down-regulation of AtGRP2 gene, using gene-silencing techniques resulted in early flowering, altered stamen number and affected seed development. A possible role of AtGRP2 as an RNA chaperone is discussed.  相似文献   

12.
A new full length cDNA clone encoding stearoyl-ACP desaturase (SAD) was isolated from seeds of Pongamia pinnata, an oil yielding legume plant. The cDNA clone (PpSAD) contained a single open reading frame of 1182-bp coding for 393 amino acids with a predicted molecular mass of 45.04 kDa, and shares similarity with SAD from other plants. Characteristics of the deduced protein were predicted and analyzed using molecular homology modeling; its three dimensional structure strongly resembled the crystal structure of Ricinus communis (RcSAD). Southern blot analysis indicated that ‘sad’ is a multiple copy gene and was a member of a small gene family. Expression analysis using quantitative real-time PCR revealed that the gene showed marked distinct expression during different stages of seed developments. The results of the expression analysis in this study, combined with existing research, suggest that ‘sad’ gene may be involved in the regulation of plant seed growth and development.  相似文献   

13.
14.
We have recently identified in Drosophila melanogaster a new gene encoding a nuclear protein, DIP1. Here we report the developmental expression and the finding that DIP1 subcellular localization is in the nucleus and at the nuclear periphery during interphase in embryos. Interestingly, in humans, DIP1 antibody identified signals in nuclei from cultured cells and reacted with a rough 30kDa protein in Western blotting experiments, demonstrating evolutionary conservation.  相似文献   

15.
Using our microsatellite specific genotyping method, we analyzed tandem repeats, which are known to be highly variable with some recognized as biomarkers causative of disease, in over 500 individuals who were exon sequenced in a 1000 Genomes Project pilot study. We were able to genotype over 97% of the microsatellite loci in the targeted regions. A total of 25,115 variations were observed, including repeat length and single nucleotide polymorphisms, corresponding to an average of 45.6 variations per individual and a density of 1.1 variations per kilobase. Standard variant detection did not report 94.2% of the exonic repeat length variations in part because the alignment techniques are not ideal for repetitive regions. Additionally some standard variation detection tools rely on a database of known variations, making them less likely to call repeat length variations as only a small percent of these loci (~ 6000) have been accurately characterized. A subset of the hundreds of non-synonymous variations we identified was experimentally validated, indicating an accuracy of 96.5% for our microsatellite-based genotyping method, with some novel variants identified in genes associated with cancer. We propose that microsatellite-based genotyping be used as a part of large scale sequencing studies to identify novel variants.  相似文献   

16.
Inspection of the complete genome of the yeast Yarrowia lipolytica for the presence of genes encoding homologues of known telomere-binding proteins surprisingly revealed no counterparts of typical yeast Myb domain-containing telomeric factors including Rap1 or Taz1. Instead, we identified a gene, YALIOD10923g, encoding a protein containing two Myb domains, exhibiting a high degree of similarity to the Myb domain of human telomeric proteins TRF1 and TRF2 and homologous to an essential fission yeast protein Mug152 whose expression is elevated during meiosis. The protein, which we named Tay1p (telomere-associated in Yarrowia lipolytica 1), was purified for biochemical studies. Using a model Y. lipolytica telomere, we demonstrate that the protein preferentially binds to Y. lipolytica telomeric tracts. Tay1p binds along the telomeric tract as dimers and larger oligomers, and it is able to remodel the telomeric DNA into both looped structures and synaptic complexes of two model telomere DNAs. The ability of Tay1p to induce dimerization of telomeres in vitro goes in line with its oligomeric nature, where each oligomer can employ several Myb domains to form intermolecular telomere clusters. We also provide experimental evidence that Tay1p may be associated with Y. lipolytica telomeres in vivo. Together with its homologues from Schizosaccharomyces pombe and several basidiomycetous fungi (Sánchez-Alonso, P., and Guzman, P. (2008) Fungal Genet. Biol. 45, S54-S62), Tay1p constitutes a novel family of putative telomeric factors whose analysis may be instrumental in understanding the function and evolution of double-stranded DNA telomeric proteins.  相似文献   

17.
18.
HI1506 is a 128-residue hypothetical protein of unknown function from Haemophilus influenzae. It was originally annotated as a shorter 85-residue protein, but a more detailed sequence analysis conducted in our laboratory revealed that the full-length protein has an additional 43 residues on the C terminus, corresponding with a region initially ascribed to HI1507. As part of a larger effort to understand the functions of hypothetical proteins from Gram-negative bacteria, and H. influenzae in particular, we report here the three-dimensional solution NMR structure for the corrected full-length HI1506 protein. The structure consists of two well-defined domains, an alpha/beta 50-residue N-domain and a 3-alpha 32-residue C-domain, separated by an unstructured 30-residue linker. Both domains have positively charged surface patches and weak structural homology with folds that are associated with RNA binding, suggesting a possible functional role in binding distal nucleic acid sites.  相似文献   

19.
We describe a Drosophila gene, orbit, that encodes a conserved 165-kD microtubule-associated protein (MAP) with GTP binding motifs. Hypomorphic mutations in orbit lead to a maternal effect resulting in branched and bent mitotic spindles in the syncytial embryo. In the larval central nervous system, such mutants have an elevated mitotic index with some mitotic cells showing an increase in ploidy. Amorphic alleles show late lethality and greater frequencies of hyperploid mitotic cells. The presence of cells in the hypomorphic mutant in which the chromosomes can be arranged, either in a circular metaphase or an anaphase-like configuration on monopolar spindles, suggests that polyploidy arises through spindle and chromosome segregation defects rather than defects in cytokinesis. A role for the Orbit protein in regulating microtubule behavior in mitosis is suggested by its association with microtubules throughout the spindle at all mitotic stages, by its copurification with microtubules from embryonic extracts, and by the finding that the Orbit protein directly binds to MAP-free microtubules in a GTP-dependent manner.  相似文献   

20.
The Archaeoglobus fulgidis gene RS27_ARCFU encodes the 30S ribosomal protein S27e. Here, we present the high-quality NMR solution structure of this archaeal protein, which comprises a C4 zinc finger motif of the CX(2)CX(14-16)CX(2)C class. S27e was selected as a target of the Northeast Structural Genomics Consortium (target ID: GR2), and its three-dimensional structure is the first representative of a family of more than 116 homologous proteins occurring in eukaryotic and archaeal cells. As a salient feature of its molecular architecture, S27e exhibits a beta-sandwich consisting of two three-stranded sheets with topology B(decreasing), A(increasing), F(decreasing), and C(increasing), D(decreasing), E(increasing). Due to the uniqueness of the arrangement of the strands, the resulting fold was found to be novel. Residues that are highly conserved among the S27 proteins allowed identification of a structural motif of putative functional importance; a conserved hydrophobic patch may well play a pivotal role for functioning of S27 proteins, be it in archaeal or eukaryotic cells. The structure of human S27, which possesses a 26-residue amino-terminal extension when compared with the archaeal S27e, was modeled on the basis of two structural templates, S27e for the carboxy-terminal core and the amino-terminal segment of the archaeal ribosomal protein L37Ae for the extension. Remarkably, the electrostatic surface properties of archaeal and human proteins are predicted to be entirely different, pointing at either functional variations among archaeal and eukaryotic S27 proteins, or, assuming that the function remained invariant, to a concerted evolutionary change of the surface potential of proteins interacting with S27.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号