共查询到18条相似文献,搜索用时 0 毫秒
1.
The use of dense SNPs to predict the genetic value of an individual for a complex trait is often referred to as “genomic selection” in livestock and crops, but is also relevant to human genetics to predict, for example, complex genetic disease risk. The accuracy of prediction depends on the strength of linkage disequilibrium (LD) between SNPs and causal mutations. If sequence data were used instead of dense SNPs, accuracy should increase because causal mutations are present, but demographic history and long-term negative selection also influence accuracy. We therefore evaluated genomic prediction, using simulated sequence in two contrasting populations: one reducing from an ancestrally large effective population size (Ne) to a small one, with high LD common in domestic livestock, while the second had a large constant-sized Ne with low LD similar to that in some human or outbred plant populations. There were two scenarios in each population; causal variants were either neutral or under long-term negative selection. For large Ne, sequence data led to a 22% increase in accuracy relative to ∼600K SNP chip data with a Bayesian analysis and a more modest advantage with a BLUP analysis. This advantage increased when causal variants were influenced by negative selection, and accuracy persisted when 10 generations separated reference and validation populations. However, in the reducing Ne population, there was little advantage for sequence even with negative selection. This study demonstrates the joint influence of demography and selection on accuracy of prediction and improves our understanding of how best to exploit sequence for genomic prediction. 相似文献
2.
In plant and animal breeding studies a distinction is made between the genetic value (additive plus epistatic genetic effects) and the breeding value (additive genetic effects) of an individual since it is expected that some of the epistatic genetic effects will be lost due to recombination. In this article, we argue that the breeder can take advantage of the epistatic marker effects in regions of low recombination. The models introduced here aim to estimate local epistatic line heritability by using genetic map information and combining local additive and epistatic effects. To this end, we have used semiparametric mixed models with multiple local genomic relationship matrices with hierarchical designs. Elastic-net postprocessing was used to introduce sparsity. Our models produce good predictive performance along with useful explanatory information. 相似文献
3.
Modeling epistasis in genomic selection is impeded by a high computational load. The extended genomic best linear unbiased prediction (EG-BLUP) with an epistatic relationship matrix and the reproducing kernel Hilbert space regression (RKHS) are two attractive approaches that reduce the computational load. In this study, we proved the equivalence of EG-BLUP and genomic selection approaches, explicitly modeling epistatic effects. Moreover, we have shown why the RKHS model based on a Gaussian kernel captures epistatic effects among markers. Using experimental data sets in wheat and maize, we compared different genomic selection approaches and concluded that prediction accuracy can be improved by modeling epistasis for selfing species but may not for outcrossing species. 相似文献
4.
Shizhong Xu 《Genetics》2013,195(3):1103-1115
The correct models for quantitative trait locus mapping are the ones that simultaneously include all significant genetic effects. Such models are difficult to handle for high marker density. Improving statistical methods for high-dimensional data appears to have reached a plateau. Alternative approaches must be explored to break the bottleneck of genomic data analysis. The fact that all markers are located in a few chromosomes of the genome leads to linkage disequilibrium among markers. This suggests that dimension reduction can also be achieved through data manipulation. High-density markers are used to infer recombination breakpoints, which then facilitate construction of bins. The bins are treated as new synthetic markers. The number of bins is always a manageable number, on the order of a few thousand. Using the bin data of a recombinant inbred line population of rice, we demonstrated genetic mapping, using all bins in a simultaneous manner. To facilitate genomic selection, we developed a method to create user-defined (artificial) bins, in which breakpoints are allowed within bins. Using eight traits of rice, we showed that artificial bin data analysis often improves the predictability compared with natural bin data analysis. Of the eight traits, three showed high predictability, two had intermediate predictability, and two had low predictability. A binary trait with a known gene had predictability near perfect. Genetic mapping using bin data points to a new direction of genomic data analysis. 相似文献
5.
Genetic correlations between quantitative traits measured in many breeding programs are pervasive. These correlations indicate that measurements of one trait carry information on other traits. Current single-trait (univariate) genomic selection does not take advantage of this information. Multivariate genomic selection on multiple traits could accomplish this but has been little explored and tested in practical breeding programs. In this study, three multivariate linear models (i.e., GBLUP, BayesA, and BayesCπ) were presented and compared to univariate models using simulated and real quantitative traits controlled by different genetic architectures. We also extended BayesA with fixed hyperparameters to a full hierarchical model that estimated hyperparameters and BayesCπ to impute missing phenotypes. We found that optimal marker-effect variance priors depended on the genetic architecture of the trait so that estimating them was beneficial. We showed that the prediction accuracy for a low-heritability trait could be significantly increased by multivariate genomic selection when a correlated high-heritability trait was available. Further, multiple-trait genomic selection had higher prediction accuracy than single-trait genomic selection when phenotypes are not available on all individuals and traits. Additional factors affecting the performance of multiple-trait genomic selection were explored. 相似文献
6.
Plant breeding populations exhibit varying levels of structure and admixture; these features are likely to induce heterogeneity of marker effects across subpopulations. Traditionally, structure has been dealt with as a potential confounder, and various methods exist to “correct” for population stratification. However, these methods induce a mean correction that does not account for heterogeneity of marker effects. The animal breeding literature offers a few recent studies that consider modeling genetic heterogeneity in multibreed data, using multivariate models. However, these methods have received little attention in plant breeding where population structure can have different forms. In this article we address the problem of analyzing data from heterogeneous plant breeding populations, using three approaches: (a) a model that ignores population structure [A-genome-based best linear unbiased prediction (A-GBLUP)], (b) a stratified (i.e., within-group) analysis (W-GBLUP), and (c) a multivariate approach that uses multigroup data and accounts for heterogeneity (MG-GBLUP). The performance of the three models was assessed on three different data sets: a diversity panel of rice (Oryza sativa), a maize (Zea mays L.) half-sib panel, and a wheat (Triticum aestivum L.) data set that originated from plant breeding programs. The estimated genomic correlations between subpopulations varied from null to moderate, depending on the genetic distance between subpopulations and traits. Our assessment of prediction accuracy features cases where ignoring population structure leads to a parsimonious more powerful model as well as others where the multivariate and stratified approaches have higher predictive power. In general, the multivariate approach appeared slightly more robust than either the A- or the W-GBLUP. 相似文献
7.
Although the concept of genomic selection relies on linkage disequilibrium (LD) between quantitative trait loci and markers, reliability of genomic predictions is strongly influenced by family relationships. In this study, we investigated the effects of LD and family relationships on reliability of genomic predictions and the potential of deterministic formulas to predict reliability using population parameters in populations with complex family structures. Five groups of selection candidates were simulated by taking different information sources from the reference population into account: (1) allele frequencies, (2) LD pattern, (3) haplotypes, (4) haploid chromosomes, and (5) individuals from the reference population, thereby having real family relationships with reference individuals. Reliabilities were predicted using genomic relationships among 529 reference individuals and their relationships with selection candidates and with a deterministic formula where the number of effective chromosome segments (Me) was estimated based on genomic and additive relationship matrices for each scenario. At a heritability of 0.6, reliabilities based on genomic relationships were 0.002 ± 0.0001 (allele frequencies), 0.022 ± 0.001 (LD pattern), 0.018 ± 0.001 (haplotypes), 0.100 ± 0.008 (haploid chromosomes), and 0.318 ± 0.077 (family relationships). At a heritability of 0.1, relative differences among groups were similar. For all scenarios, reliabilities were similar to predictions with a deterministic formula using estimated Me. So, reliabilities can be predicted accurately using empirically estimated Me and level of relationship with reference individuals has a much higher effect on the reliability than linkage disequilibrium per se. Furthermore, accumulated length of shared haplotypes is more important in determining the reliability of genomic prediction than the individual shared haplotype length. 相似文献
8.
Malachy T Campbell Haixiao Hu Trevor H Yeats Melanie Caffe-Treml Lucía Gutirrez Kevin P Smith Mark E Sorrells Michael A Gore Jean-Luc Jannink 《Genetics》2021,217(3)
Oat (Avena sativa L.) seed is a rich resource of beneficial lipids, soluble fiber, protein, and antioxidants, and is considered a healthful food for humans. Little is known regarding the genetic controllers of variation for these compounds in oat seed. We characterized natural variation in the mature seed metabolome using untargeted metabolomics on 367 diverse lines and leveraged this information to improve prediction for seed quality traits. We used a latent factor approach to define unobserved variables that may drive covariance among metabolites. One hundred latent factors were identified, of which 21% were enriched for compounds associated with lipid metabolism. Through a combination of whole-genome regression and association mapping, we show that latent factors that generate covariance for many metabolites tend to have a complex genetic architecture. Nonetheless, we recovered significant associations for 23% of the latent factors. These associations were used to inform a multi-kernel genomic prediction model, which was used to predict seed lipid and protein traits in two independent studies. Predictions for 8 of the 12 traits were significantly improved compared to genomic best linear unbiased prediction when this prediction model was informed using associations from lipid-enriched factors. This study provides new insights into variation in the oat seed metabolome and provides genomic resources for breeders to improve selection for health-promoting seed quality traits. More broadly, we outline an approach to distill high-dimensional “omics” data to a set of biologically meaningful variables and translate inferences on these data into improved breeding decisions. 相似文献
9.
Genomic prediction uses DNA sequences and phenotypes to predict genetic values. In homogeneous populations, theory indicates that the accuracy of genomic prediction increases with sample size. However, differences in allele frequencies and linkage disequilibrium patterns can lead to heterogeneity in SNP effects. In this context, calibrating genomic predictions using a large, potentially heterogeneous, training data set may not lead to optimal prediction accuracy. Some studies tried to address this sample size/homogeneity trade-off using training set optimization algorithms; however, this approach assumes that a single training data set is optimum for all individuals in the prediction set. Here, we propose an approach that identifies, for each individual in the prediction set, a subset from the training data (i.e., a set of support points) from which predictions are derived. The methodology that we propose is a sparse selection index (SSI) that integrates selection index methodology with sparsity-inducing techniques commonly used for high-dimensional regression. The sparsity of the resulting index is controlled by a regularization parameter (λ); the G-Best Linear Unbiased Predictor (G-BLUP) (the prediction method most commonly used in plant and animal breeding) appears as a special case which happens when λ = 0. In this study, we present the methodology and demonstrate (using two wheat data sets with phenotypes collected in 10 different environments) that the SSI can achieve significant (anywhere between 5 and 10%) gains in prediction accuracy relative to the G-BLUP. 相似文献
10.
Frank Technow Tobias A. Schrag Wolfgang Schipprack Eva Bauer Henner Simianer Albrecht E. Melchinger 《Genetics》2014,197(4):1343-1355
Maize (Zea mays L.) serves as model plant for heterosis research and is the crop where hybrid breeding was pioneered. We analyzed genomic and phenotypic data of 1254 hybrids of a typical maize hybrid breeding program based on the important Dent × Flint heterotic pattern. Our main objectives were to investigate genome properties of the parental lines (e.g., allele frequencies, linkage disequilibrium, and phases) and examine the prospects of genomic prediction of hybrid performance. We found high consistency of linkage phases and large differences in allele frequencies between the Dent and Flint heterotic groups in pericentromeric regions. These results can be explained by the Hill–Robertson effect and support the hypothesis of differential fixation of alleles due to pseudo-overdominance in these regions. In pericentromeric regions we also found indications for consistent marker–QTL linkage between heterotic groups. With prediction methods GBLUP and BayesB, the cross-validation prediction accuracy ranged from 0.75 to 0.92 for grain yield and from 0.59 to 0.95 for grain moisture. The prediction accuracy of untested hybrids was highest, if both parents were parents of other hybrids in the training set, and lowest, if none of them were involved in any training set hybrid. Optimizing the composition of the training set in terms of number of lines and hybrids per line could further increase prediction accuracy. We conclude that genomic prediction facilitates a paradigm shift in hybrid breeding by focusing on the performance of experimental hybrids rather than the performance of parental lines in testcrosses. 相似文献
11.
Natalia S. Forneris Andres Legarra Zulma G. Vitezica Shogo Tsuruta Ignacio Aguilar Ignacy Misztal Rodolfo J. C. Cantet 《Genetics》2015,199(3):675-681
Quality control filtering of single-nucleotide polymorphisms (SNPs) is a key step when analyzing genomic data. Here we present a practical method to identify low-quality SNPs, meaning markers whose genotypes are wrongly assigned for a large proportion of individuals, by estimating the heritability of gene content at each marker, where gene content is the number of copies of a particular reference allele in a genotype of an animal (0, 1, or 2). If there is no mutation at the marker, gene content has an additive heritability of 1 by construction. The method uses restricted maximum likelihood (REML) to estimate heritability of gene content at each SNP and also builds a likelihood-ratio test statistic to test for zero error variance in genotyping. As a by-product, estimates of the allele frequencies of markers at the base population are obtained. Using simulated data with 10% permutation error (4% actual error) in genotyping, the method had a specificity of 0.96 (4% of correct markers are rejected) and a sensitivity of 0.99 (1% of wrong markers are accepted) if markers with heritability lower than 0.975 are discarded. Checking of Mendelian errors resulted in a lower sensitivity (0.84) for the same simulation. The proposed method is further illustrated with a real data set with genotypes from 3534 animals genotyped for 50,433 markers from the Illumina PorcineSNP60 chip and a pedigree of 6473 individuals; those markers underwent very little quality control. A total of 4099 markers with P-values lower than 0.01 were discarded based on our method, with associated estimates of heritability as low as 0.12. Contrary to other techniques, our method uses all information in the population simultaneously, can be used in any population with markers and pedigree recordings, and is simple to implement using standard software for REML estimation. Scripts for its use are provided. 相似文献
12.
Lauren L. Hulsman Hanna Dorian J. Garrick Clare A. Gill Andy D. Herring James O. Sanders David G. Riley 《Genetics and molecular biology》2014,37(4):631-637
The objectives of this study were to 1) compare four models for breeding value prediction using genomic or pedigree information and 2) evaluate the impact of fixed effects that account for family structure. Comparisons were made in a Nellore-Angus population comprising F2, F3 and half-siblings to embryo transfer F2 calves with records for overall temperament at weaning (TEMP; n = 769) and Warner-Bratzler shear force (WBSF; n = 387). After quality control, there were 34,913 whole genome SNP markers remaining. Bayesian methods employed were BayesB ( = 0.995 or 0.997 for WBSF or TEMP, respectively) and BayesC (π = 0 and ), where is the ideal proportion of markers not included. Direct genomic values (DGV) from single trait Bayesian analyses were compared to conventional pedigree-based animal model breeding values. Numerically, BayesC procedures (using ) had the highest accuracy of all models for WBSF and TEMP (gĝ = 0.843 and 0.923, respectively), but BayesB had the least bias (regression of performance on prediction closest to 1, y,x = 2.886 and 1.755, respectively). Accounting for family structure decreased accuracy and increased bias in prediction of DGV indicating a detrimental impact when used in these prediction methods that simultaneously fit many markers. 相似文献
13.
Valentin Wimmer Christina Lehermeier Theresa Albrecht Hans-Jürgen Auinger Yu Wang Chris-Carolin Sch?n 《Genetics》2013,195(2):573-587
In genome-based prediction there is considerable uncertainty about the statistical model and method required to maximize prediction accuracy. For traits influenced by a small number of quantitative trait loci (QTL), predictions are expected to benefit from methods performing variable selection [e.g., BayesB or the least absolute shrinkage and selection operator (LASSO)] compared to methods distributing effects across the genome [ridge regression best linear unbiased prediction (RR-BLUP)]. We investigate the assumptions underlying successful variable selection by combining computer simulations with large-scale experimental data sets from rice (Oryza sativa L.), wheat (Triticum aestivum L.), and Arabidopsis thaliana (L.). We demonstrate that variable selection can be successful when the number of phenotyped individuals is much larger than the number of causal mutations contributing to the trait. We show that the sample size required for efficient variable selection increases dramatically with decreasing trait heritabilities and increasing extent of linkage disequilibrium (LD). We contrast and discuss contradictory results from simulation and experimental studies with respect to superiority of variable selection methods over RR-BLUP. Our results demonstrate that due to long-range LD, medium heritabilities, and small sample sizes, superiority of variable selection methods cannot be expected in plant breeding populations even for traits like FRIGIDA gene expression in Arabidopsis and flowering time in rice, assumed to be influenced by a few major QTL. We extend our conclusions to the analysis of whole-genome sequence data and infer upper bounds for the number of causal mutations which can be identified by LASSO. Our results have major impact on the choice of statistical method needed to make credible inferences about genetic architecture and prediction accuracy of complex traits. 相似文献
14.
Christian Riedelsheimer Jeffrey B. Endelman Michael Stange Mark E. Sorrells Jean-Luc Jannink Albrecht E. Melchinger 《Genetics》2013,194(2):493-503
Intense structuring of plant breeding populations challenges the design of the training set (TS) in genomic selection (GS). An important open question is how the TS should be constructed from multiple related or unrelated small biparental families to predict progeny from individual crosses. Here, we used a set of five interconnected maize (Zea mays L.) populations of doubled-haploid (DH) lines derived from four parents to systematically investigate how the composition of the TS affects the prediction accuracy for lines from individual crosses. A total of 635 DH lines genotyped with 16,741 polymorphic SNPs were evaluated for five traits including Gibberella ear rot severity and three kernel yield component traits. The populations showed a genomic similarity pattern, which reflects the crossing scheme with a clear separation of full sibs, half sibs, and unrelated groups. Prediction accuracies within full-sib families of DH lines followed closely theoretical expectations, accounting for the influence of sample size and heritability of the trait. Prediction accuracies declined by 42% if full-sib DH lines were replaced by half-sib DH lines, but statistically significantly better results could be achieved if half-sib DH lines were available from both instead of only one parent of the validation population. Once both parents of the validation population were represented in the TS, including more crosses with a constant TS size did not increase accuracies. Unrelated crosses showing opposite linkage phases with the validation population resulted in negative or reduced prediction accuracies, if used alone or in combination with related families, respectively. We suggest identifying and excluding such crosses from the TS. Moreover, the observed variability among populations and traits suggests that these uncertainties must be taken into account in models optimizing the allocation of resources in GS. 相似文献
15.
Numerous Bayesian methods of phenotype prediction and genomic breeding value estimation based on multilocus association models have been proposed. Computationally the methods have been based either on Markov chain Monte Carlo or on faster maximum a posteriori estimation. The demand for more accurate and more efficient estimation has led to the rapid emergence of workable methods, unfortunately at the expense of well-defined principles for Bayesian model building. In this article we go back to the basics and build a Bayesian multilocus association model for quantitative and binary traits with carefully defined hierarchical parameterization of Student's t and Laplace priors. In this treatment we consider alternative model structures, using indicator variables and polygenic terms. We make the most of the conjugate analysis, enabled by the hierarchical formulation of the prior densities, by deriving the fully conditional posterior densities of the parameters and using the acquired known distributions in building fast generalized expectation-maximization estimation algorithms. 相似文献
16.
17.
Ana I. Vazquez Gustavo de los Campos Yann C. Klimentidis Guilherme J. M. Rosa Daniel Gianola Nengjun Yi David B. Allison 《Genetics》2012,192(4):1493-1502
Prediction of genetic risk for disease is needed for preventive and personalized medicine. Genome-wide association studies have found unprecedented numbers of variants associated with complex human traits and diseases. However, these variants explain only a small proportion of genetic risk. Mounting evidence suggests that many traits, relevant to public health, are affected by large numbers of small-effect genes and that prediction of genetic risk to those traits and diseases could be improved by incorporating large numbers of markers into whole-genome prediction (WGP) models. We developed a WGP model incorporating thousands of markers for prediction of skin cancer risk in humans. We also considered other ways of incorporating genetic information into prediction models, such as family history or ancestry (using principal components, PCs, of informative markers). Prediction accuracy was evaluated using the area under the receiver operating characteristic curve (AUC) estimated in a cross-validation. Incorporation of genetic information (i.e., familial relationships, PCs, or WGP) yielded a significant increase in prediction accuracy: from an AUC of 0.53 for a baseline model that accounted for nongenetic covariates to AUCs of 0.58 (pedigree), 0.62 (PCs), and 0.64 (WGP). In summary, prediction of skin cancer risk could be improved by considering genetic information and using a large number of single-nucleotide polymorphisms (SNPs) in a WGP model, which allows for the detection of patterns of genetic risk that are above and beyond those that can be captured using family history. We discuss avenues for improving prediction accuracy and speculate on the possible use of WGP to prospectively identify individuals at high risk. 相似文献
18.