首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study was aimed to compare two different monitor unit (MU) or dose verification software in volumetric modulated arc therapy (VMAT) using modified Clarkson's integration technique for 6 MV photons beams. In-house Excel Spreadsheet based monitor unit verification calculation (MUVC) program and PTW's DIAMOND secondary check software (SCS), version-6 were used as a secondary check to verify the monitor unit (MU) or dose calculated by treatment planning system (TPS). In this study 180 patients were grouped into 61 head and neck, 39 thorax and 80 pelvic sites. Verification plans are created using PTW OCTAVIUS-4D phantom and also measured using 729 detector chamber and array with isocentre as the suitable point of measurement for each field. In the analysis of 154 clinically approved VMAT plans with isocentre at a region above −350 HU, using heterogeneity corrections, In-house Spreadsheet based MUVC program and Diamond SCS showed good agreement TPS. The overall percentage average deviations for all sites were (−0.93% + 1.59%) and (1.37% + 2.72%) for In-house Excel Spreadsheet based MUVC program and Diamond SCS respectively. For 26 clinically approved VMAT plans with isocentre at a region below −350 HU showed higher variations for both In-house Spreadsheet based MUVC program and Diamond SCS. It can be concluded that for patient specific quality assurance (QA), the In-house Excel Spreadsheet based MUVC program and Diamond SCS can be used as a simple and fast accompanying to measurement based verification for plans with isocentre at a region above −350 HU.  相似文献   

2.
PurposeTo evaluate the feasibility of the use of iterative cone-beam computed tomography (CBCT) for dose calculation in the head and neck region.MethodsThis study includes phantom and clinical studies. All acquired CBCT images were reconstructed with Feldkamp–Davis–Kress algorithm-based CBCT (FDK-CBCT) and iterative CBCT (iCBCT) algorithm. The Hounsfield unit (HU) consistency between the head and body phantoms was determined in both reconstruction techniques. Volumetric modulated arc therapy (VMAT) plans were generated for 16 head and neck patients on a planning CT scan, and the doses were recalculated on FDK-CBCT and iCBCT with Anisotropic Analytical Algorithm (AAA) and Acuros XB (AXB). As a comparison of the accuracy of dose calculations, the absolute dosimetric difference and 1%/1 mm gamma passing rate analysis were analyzed.ResultsThe difference in the mean HU values between the head and body phantoms was larger for FDK-CBCT (max value: 449.1 HU) than iCBCT (260.0 HU). The median dosimetric difference from the planning CT were <1.0% for both FDK-CBCT and iCBCT but smaller differences were found with iCBCT (planning target volume D50%: 0.38% (0.15–0.59%) for FDK-CBCT, 0.28% (0.13–0.49%) for iCBCT, AAA; 0.14% (0.04–0.19%) for FDK-CBCT, 0.07% (0.02–0.20%) for iCBCT). The mean gamma passing rate was significantly better in iCBCT than FDK-CBCT (AAA: 98.7% for FDK-CBCT, 99.4% for iCBCT; AXB: 96.8% for FDK_CBCT, 97.5% for iCBCT).ConclusionThe iCBCT-based dose calculation in VMAT for head and neck cancer was accurate compared to FDK-CBCT.  相似文献   

3.
PurposeWe aimed to identify the most accurate combination of phantom and protocol for image value to density table (IVDT) on volume-modulated arc therapy (VMAT) dose calculation based on kV-Cone-beam CT imaging, for head and neck (H&N) and pelvic localizations.MethodsThree phantoms (Catphan®600, CIRS®062M (inner phantom for head and outer phantom for body), and TomoTherapy® “Cheese” phantom) were used to create IVDT curves of CBCT systems with two different CBCT protocols (Standard-dose Head and Standard Pelvis). Hounsfield Unit (HU) time stability and repeatability for a single On-Board-Imager (OBI) and compatibility of two distinct devices were assessed with Catphan®600. Images from the anthropomorphic phantom CIRS ATOM® for both CT and CBCT modalities were used for VMAT dose calculation from different IVDT curves. Dosimetric indices from CT and CBCT imaging were compared.ResultsIVDT curves from CBCT images were highly different depending on phantom used (up to 1000 HU for high densities) and protocol applied (up to 200 HU for high densities). HU time stability was verified over seven weeks. A maximum difference of 3% on the dose calculation indices studied was found between CT and CBCT VMAT dose calculation across the two localizations using appropriate IVDT curves. One IVDT curve per localization can be established with a bi-monthly verification of IVDT-CBCT.ConclusionsThe IVDT-CBCTCIRS-Head phantom with the Standard-dose Head protocol was the most accurate combination for dose calculation on H&N CBCT images. For pelvic localizations, the IVDT-CBCTCheese established with the Standard Pelvis protocol provided the best accuracy.  相似文献   

4.
A redundant independent dosimetric calculation (RIDC) prior to treatment has become a basic part of the QA process for 3D conventional radiotherapy, and is strongly recommended in several international publications. On the other hand, the rapid growth in the number of intensity modulated treatments has led to a significant increase in the workflow associated with QA treatments. Diamond (“K&S Associates”) is RIDC software which is capable of calculating VMAT (Volumetric Modulated Arc Therapy) fields. Modeling, validation and commissioning are necessary steps thereby making it a useful tool for VMAT QA. In this paper, a procedure for the validation of the calculation algorithm is demonstrated. A set 3D conventional field was verified in two ways: firstly, a comparison was made between Diamond calculations and experimental measures obtaining an average deviation of ?0.1 ± 0.7%(1SD), and secondly, a comparison made between Diamond and the treatment planning system (TPS) Eclipse, obtaining an average deviation of 0.4 ± 0.8%(1SD). For both steps, a plastic slab phantom was used. VMAT validation was carried out by analyzing 59 VMAT plans in two ways: first, Diamond calculation versus experimental measurement with an average deviation of ?0.2 ± 1.7%(1SD), and second, Diamond calculation versus TPS calculation with an average deviation of 0.0 ± 1.6%(1SD). In this phase a homogeneous cylindrical phantom was used. These results led us to consider this calculation algorithm validated for use in VMAT verifications.  相似文献   

5.
PurposeTo quantify the impact of simulated errors for nasopharynx radiotherapy across multiple institutions and planning techniques (auto-plan generated Volumetric Modulated Arc Therapy (ap-VMAT), manually planned VMAT (mp-VMAT) and manually planned step and shoot Intensity Modulated Radiation Therapy (mp-ssIMRT)).MethodsTen patients were retrospectively planned with VMAT according to three institution’s protocols. Within one institution two further treatment plans were generated using differing treatment planning techniques. This resulted in mp-ssIMRT, mp-VMAT, and ap-VMAT plans. Introduced treatment errors included Multi Leaf Collimator (MLC) shifts, MLC field size (MLCfs), gantry and collimator errors. A change of more than 5% in most selected dose metrics was considered to have potential clinical impact. The original patient plan total Monitor Units (MUs) were correlated to the total number of dose metrics exceeded.ResultsThe impact of different errors was consistent, with ap-VMAT plans (two institutions) showing larger dose deviations than mp-VMAT created plans (one institution). Across all institutions’ VMAT plans the significant errors included; ±5° for the collimator angle, ±5 mm for the MLC shift and +1, ±2 and ±5 mm for the MLC field size. The total number of dose metrics exceeding tolerance was positively correlated to the VMAT total plan MUs (r = 0.51, p < 0.001), across all institutions and techniques.ConclusionsDifferences in VMAT robustness to simulated errors across institutions occurred due to planning method differences. Whilst ap-VMAT was most sensitive to MLC errors, it also produced the best quality treatment plans. Mp-ssIMRT was most robust to errors. Higher VMAT treatment plan complexity led to less robust plans.  相似文献   

6.
PurposeTo evaluate the Integral Quality Monitor (IQM) as a clinical dosimetry device for detecting photon beam delivery errors in clinically relevant conditions.Materials and methodsThe IQM’s ability to detect delivery errors introduced into clinical VMAT plans for two different treatment sites was assessed. This included measuring 103 nasopharynx VMAT plans and 78 lung SBRT VMAT plans with introduced errors in gantry angle (1–5°) and in MLC-defined field size and field shift (1–5 mm). The IQM sensitivity was compared to ArcCheck detector performance. Signal dependence on field position for on-axis and asymmetrically offset square field sizes from 1 × 1 cm2 to 30 × 30 cm2 was also investigated.ResultsThe IQM detected almost all introduced clinically-significant MLC field size errors, but not some small gantry angle errors or most MLC field shift errors. The IQM sensitivity was comparable to the ArcCheck for lung SBRT, but worse for the nasopharynx plans. Differences between IQM calculated/predicted and measured signals were within ± 2% for all on-axis square fields, but up to 60% for the smallest asymmetrically offset fields at large offsets.Conclusion The IQM performance was consistent and reproducible. It showed highest sensitivity to the field size errors for these plans, but did not detect some clinically-significant introduced gantry angle errors or most MLC field shift errors. The IQM calculation model is still being developed, which should improve small offset-field performance. Care is required in IQM use for plan verification or online monitoring, especially for small fields that are off-axis in the detector gradient direction.  相似文献   

7.
The aim of this study was to evaluate the use of dose difference maps with a convolutional neural network (CNN) to detect multi-leaf collimator (MLC) positional errors in patient-specific quality assurance for volumetric modulated radiation therapy (VMAT). A cylindrical three-dimensional detector (Delta4, ScandiDos, Uppsala, Sweden) was used to measure 161 beams from 104 clinical prostate VMAT plans. For the simulation used error-free plans plus plans with two types of MLC error were introduced: systematic error and random error. A total of 483 dose distributions in a virtual cylindrical phantom were calculated with a treatment planning system. Dose difference maps were created from two planar dose distributions from the measured and calculated dose distributions, and these were used as the input for the CNN, with 375 datasets assigned for training and 108 datasets assigned for testing. The CNN model had three convolution layers and was trained with five-fold cross-validation. The CNN model classified the error types of the plans as “error-free,” “systematic error,” or “random error,” with an overall accuracy of 0.944. The sensitivity values for the “error-free,” “systematic error,” and “random error” classifications were 0.889, 1.000, and 0.944, respectively, and the specificity values were 0.986, 0.986, and 0.944, respectively. This approach was superior to those based on gamma analysis. Using dose difference maps with a CNN model may provide an effective solution for detecting MLC errors for patient-specific VMAT quality assurance.  相似文献   

8.

Aim

To evaluate the new Octavius 4D system for patient specific quality assurance and to study the correlation between plan complexity and gamma index analysis in patient specific quality assurance of VMAT using the Octavius 4D system.

Background

McNiven (2010) proposed a study to evaluate the utility of a complexity metric, the Modulation Complexity Score, to evaluate the relationship of the metric with deliverability in IMRT.

Materials and methods

Evaluation of the Octavius 4D system was carried out by gamma evaluation of user defined MLC created patterns and AAPM TG 119 benchmark plans. The relationship between plan complexity expressed as Modulation Complexity Score (MCS) and the gamma index analysis was established by a planar and volumetric gamma analysis of 106 clinically approved VMAT patient plans of different sites.

Results

Average volumetric 3D global gamma evaluation (3 mm/3%) results for the evaluation plans was 97.41% for 6 MV X-rays and 98.30% for 15 MV X-rays. Average MCS values for the head and neck, pelvic and thoracic plans were 0.2224, 0.3615 and 0.1874. Average volumetric 3D global gamma analysis (3 mm/3%) results for the head and neck, pelvic and thoracic VMAT plans were 95.45%, 97.51% and 96.98%, respectively. Out of 90 correlation analyses between the MCS and gamma passing rate, only 3 had the r value greater than 0.5.

Conclusions

The Octavius 4D system is a suitable device for patient specific pretreatment QA. Global and local gamma analysis results showed a weak correlation with the MCS.  相似文献   

9.
PurposeTo perform a detailed evaluation of dose calculation accuracy and clinical feasibility of Mobius3D. Of particular importance, multileaf collimator (MLC) modeling accuracy in the Mobius3D dose calculation algorithm was investigated.MethodsMobius3D was fully commissioned by following the vendor-suggested procedures, including dosimetric leaf gap (DLG) optimization. The DLG optimization determined an optimal DLG correction factor which minimized the average difference between calculated and measured doses for 13 patient volumetric-modulated arc therapy (VMAT) plans. Two sets of step-and-shoot plans were created to examine MLC and off-axis open fields modeling accuracy of the Mobius3D dose calculation algorithm: MLC test set and off-axis open field test set. The test plans were delivered to MapCHECK for the MLC tests and an ionization chamber for the off-axis open field test, and these measured doses were compared to Mobius3D-calculated doses.ResultsThe mean difference between the calculated and measured doses across the 13 VMAT plans was 0.6% with an optimal DLG correction factor of 1.0. The mean percentage of pixels passing gamma from a 3%/1 mm gamma analysis for the MLC test set was 43.5% across the MLC tests. For the off-axis open field tests, the Mobius3D-calculated dose for 1.5 cm square field was −4.6% lower than the chamber-measured dose.ConclusionsIt was demonstrated that Mobius3D has dose calculation uncertainties for small fields and MLC tongue-and-groove design is not adequately taken into consideration in Mobius3D. Careful consideration of DLG correction factor, which affects the resulting dose distributions, is required when commissioning Mobius3D for patient-specific QA.  相似文献   

10.
PurposeTo study the influence of Multileaf Collimator (MLC) leaf width in radiosurgery treatment planning for Volumetric Modulated Arc Therapy (VMAT) and 3D Dynamic Conformal Arc Therapy (3D-DCA).Material and methods16 patients with solitary brain metastases treated with radiosurgery via the non-coplanar VMAT were replanned for the 3D-DCA. For each planning technique two MLC leaf width sizes were utilized, i.e. 5 mm and 2.5 mm. These treatment plans were compared using dosimetric indices (conformity, gradient and mean dose for brain tissue) and the normal tissue complication probability (NTCP).ResultsAn improvement in planning quality for VMAT was observed versus 3D-DCA for any MLC leaf width, mainly with regards to dose conformity and to a lesser extent regards dose gradient. No significant difference was observed for any of both techniques using smaller leaf width. However, dose gradient was improved in favor of the 2.5 mm MLC for either of both techniques (15% VMAT and 10% 3D-DCA); being noticeable for lesions smaller than 10 cm3. Nonetheless, the NTCP index was not significantly affected by variations in the dose gradient index.ConclusionsThis, our present study, suggests that the use of an MLC leaf width of 2.5 mm via the noncoplanar VMAT and 3D-DCA techniques provides improvement in terms of dose gradient for small volumes, over those results obtained with an MLC leaf width of 5 mm. The 3D-DCA does also benefit from MLC leaf widths of a smaller size, mainly in terms of conformity.  相似文献   

11.
ObjectiveThis work investigates the time and frequency to observe fiducial markers in MLC-modulated fields during intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) beam delivery for real-time prostate localization.MethodsThirty seven prostate patients treated with IMRT or VMAT were included in this retrospective study. DRR images were generated for all MLC segments/control points using the TPS. The MLC leaf pattern of each control point was overlaid on the DRR, and the number of fiducials within the MLC opening was analyzed. EPID images of fiducials in a pelvic phantom were obtained to demonstrate the fiducial visibility during modulated beam delivery.ResultsGold fiducials were visible on EPID images. The probability of seeing a number of fiducials within the MLC opening was analyzed. At least one fiducial was visible during 42 ± 2% and 52 ± 2% beam-on time for IMRT of the prostate with and without lymph nodes, and during 81 ± 4% and 80 ± 5% beam-on time for VMAT of the prostate with and without lymph nodes, respectively. The mean time interval to observe at least one fiducial was 8.4 ± 0.7 and 5.9 ± 0.5 s for IMRT of the prostate with and without the lymph nodes, respectively, and 1.6 ± 0.1 s for VMAT prostate patients. The estimated potential dosimetric uncertainty was 7% and 2% for IMRT and VMAT, respectively.ConclusionsOur results demonstrated that the time and frequency to observe fiducial markers in MLC-modulated fields during IMRT/VMAT beam delivery were adequate for real-time prostate localization. The beam’s eye view fiducial positions could be used for intrafractional target monitoring and motion correction in prostate radiotherapy.  相似文献   

12.
PurposeTo investigate the effectiveness of an EPID-based 3D transit dosimetry system in detecting deliberately introduced errors during VMAT delivery.MethodsAn Alderson phantom was irradiated using four VMAT treatment plans (one prostate, two head-and-neck and one lung case) in which delivery, thickness and setup errors were introduced. EPID measurements were performed to reconstruct 3D dose distributions of “error” plans, which were compared with “no-error” plans using the mean gamma (γmean), near-maximum gamma (γ1%) and the difference in isocenter dose (ΔDisoc) as metrics.ResultsOut of a total of 42 serious errors, the number of errors detected was 33 (79%), and 27 out of 30 (90%) if setup errors are not included. The system was able to pick up errors of 5 mm movement of a leaf bank, a wrong collimator rotation angle and a wrong photon beam energy. A change in phantom thickness of 1 cm was detected for all cases, while only for the head-and-neck plans a 2 cm horizontal and vertical shift of the phantom were alerted. A single leaf error of 5 mm could be detected for the lung plan only.ConclusionAlthough performed for a limited number of cases and error types, this study shows that EPID-based 3D transit dosimetry is able to detect a number of serious errors in dose delivery, leaf bank position and patient thickness during VMAT delivery. Errors in patient setup and single leaf position can only be detected in specific cases.  相似文献   

13.
The purposes of this study were to perform tests for the ArcCHECK QA system, and to evaluate the suitability of this system for IMRT and VMAT verification. The device was tested for short term reproducibility, dose linearity, dose rate dependence, dose per pulse dependence, field size dependence, out of field dependence and directional dependence. Eight simple plans that each used four beams of different field sizes as well as IMRT and VMAT plans for various organs of 10 patients were measured by ArcCHECK. The phantom data was then compared with ion chamber measurements and planned results. The ArcCHECK diodes performed well for all tests except directional dependence, which varies from a minimum of ?4.9% (seen only when the beam is incident on the diode at 180°) to a maximum of 9.1% (approximately at 105°). For simple plan verification, the absolute dose pass rates of γ index (3%/3 mm) were almost identical. They had an average pass rate of 94.6% ± 1.3% when the field size was ≤20 cm in the X direction (right to left direction), but the pass rate fell rapidly when the field size was >20 cm in the X direction. For all patient-specific IMRT and VMAT QA, the pass rates exceeded 95% and 93%, respectively, and high reproducibility of these results has been observed from week to week. The comparative measurements show that the ArcCHECK QA system is completely suitable for clinical IMRT and VMAT verification.  相似文献   

14.
PurposePhotographic film is widely used for the dose distribution verification of intensity-modulated radiation therapy (IMRT). However, analysis for verification of the results is subjective. We present a novel method for marking the isocenter using irradiation from a megavoltage (MV) beam transmitted through slits in a multi-leaf collimator (MLC).MethodsWe evaluated the effect of the marking irradiation at 500 monitor units (MU) on the total transmission through the MLC using an ionization chamber and Radiochromic Film. Film dosimetry was performed for quality assurance (QA) of IMRT plans. Three methods of registration were used for each film: marking by irradiating with an MV beam through slits in the MLC (MLC-IC); marking with a fabricated phantom (Phantom-IC); and a subjective method based on isodose lines (Manual). Each method was subjected to local γ-analysis.ResultsThe effect of the marking irradiation on the total transmission was 0.16%, as measured by a ionization chamber at a 10-cm depth in a solid phantom, while the inter-leaf transmission was 0.3%, determined from the film. The mean pass rates for each registration method agreed within ±1% when the criteria used were a distance-to-agreement (DTA) of 3 mm and a dose difference (DD) of 3%. For DTA/DD criteria of 2 mm/3%, the pass rates in the sagittal plane were 96.09 ± 0.631% (MLC-IC), 96.27 ± 0.399% (Phantom-IC), and 95.62 ± 0.988% (Manual).ConclusionThe present method is a versatile and useful method of improving the objectivity of film dosimetry for IMRT QA.  相似文献   

15.
PurposeDynamic treatment planning algorithms use a dosimetric leaf separation (DLS) parameter to model the multi-leaf collimator (MLC) characteristics. Here, we quantify the dosimetric impact of an incorrect DLS parameter and investigate whether common pretreatment quality assurance (QA) methods can detect this effect.Methods16 treatment plans with intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) technique for multiple treatment sites were calculated with a correct and incorrect setting of the DLS, corresponding to a MLC gap difference of 0.5 mm. Pretreatment verification QA was performed with a bi-planar diode array phantom and the electronic portal imaging device (EPID). Measurements were compared to the correct and incorrect planned doses using gamma evaluation with both global (G) and local (L) normalization. Correlation, specificity and sensitivity between the dose volume histogram (DVH) points for the planning target volume (PTV) and the gamma passing rates were calculated.ResultsThe change in PTV and organs at risk DVH parameters were 0.4–4.1%. Good correlation (>0.83) between the PTVmean dose deviation and measured gamma passing rates was observed. Optimal gamma settings with 3%L/3 mm (per beam and composite plan) and 3%G/2 mm (composite plan) for the diode array phantom and 2%G/2 mm (composite plan) for the EPID system were found. Global normalization and per beam ROC analysis of the diode array phantom showed an area under the curve <0.6.ConclusionsA DLS error can worsen pretreatment QA using gamma analysis with reasonable credibility for the composite plan. A low detectability was demonstrated for a 3%G/3 mm per beam gamma setting.  相似文献   

16.
Pretreatment intensity-modulated radiotherapy quality assurance is performed using simple rectangular or cylindrical phantoms; thus, the dosimetric errors caused by complex patient-specific anatomy are absent in the evaluation objects. In this study, we construct a system for generating patient-specific three-dimensional (3D)-printed phantoms for radiotherapy dosimetry. An anthropomorphic head phantom containing the bone and hollow of the paranasal sinus is scanned by computed tomography (CT). Based on surface rendering data, a patient-specific phantom is formed using a fused-deposition-modeling-based 3D printer, with a polylactic acid filament as the printing material. Radiophotoluminescence glass dosimeters can be inserted in the 3D-printed phantom. The phantom shape, CT value, and absorbed doses are compared between the actual and 3D-printed phantoms. The shape difference between the actual and printed phantoms is less than 1 mm except in the bottom surface region. The average CT value of the infill region in the 3D-printed phantom is −6 ± 18 Hounsfield units (HU) and that of the vertical shell region is 126 ± 18 HU. When the same plans were irradiated, the dose differences were generally less than 2%. These results demonstrate the feasibility of the 3D-printed phantom for artificial in vivo dosimetry in radiotherapy quality assurance.  相似文献   

17.

The hypofractionated radiotherapy modality was established to reduce treatment durations and enhance therapeutic efficiency, as compared to conventional fractionation treatment. However, this modality is challenging because of rigid dosimetric constraints. This study aimed to assess the impact of multi-leaf collimator (MLC) widths (10 mm and 5 mm) on plan quality during the treatment of prostate cancer. Additionally, this study aimed to investigate the impact of the MLC mode of energy on the Agility flattening filter (FF), MLC Agility-free flattening filter (FFF), and MLCi2 for patients receiving hypofractionated radiotherapy. Two radiotherapy techniques; Intensity Modulated Radiotherapy (IMRT) and Volumetric Modulated Arc Radiotherapy (VMAT), were used in this research. In the present study, computed tomography simulations of ten patients (six plans per patient) with localized prostate adenocarcinoma were analyzed. Various dosimetric parameters were assessed, including monitor units, treatment delivery times, conformity, and homogeneity indices. To evaluate the plan quality, dose-volume histograms (DVHs) were estimated for each technique. The results demonstrated that the determined dosimetric parameters of planning target volume (PTV)p (such as D mean, conformity, and homogeneity index) showed greater improvement with MLC Agility FF and MLC Agility FFF than with MLCi2. Additionally, the treatment delivery time was reduced in the MLC Agility FF (by 31%) and MLC Agility FFF (by 10.8%) groups compared to the MLCi2 group. It is concluded that for both the VMAT and IMRT techniques, the smaller width (5 mm) MLCs revealed better planning target volume coverage, improved the dosimetric parameters for PTV, reduced the treatment time, and met the constraints for OARs. It is therefore recommended to use 5 mm MLCs for hypofractionated prostate cancer treatment due to better target coverage and better protection of OARs.

  相似文献   

18.
PurposeTo evaluate the utility of the use of iterative cone-beam computed tomography (CBCT) for machine log file-based dose verification during volumetric modulated arc therapy (VMAT) for prostate cancer patients.MethodsAll CBCT acquisition data were used to reconstruct images with the Feldkamp-Davis-Kress algorithm (FDK-CBCT) and the novel iterative algorithm (iCBCT). The Hounsfield unit (HU)-electron density curves for CBCT images were created using the Advanced Electron Density Phantom. The I’mRT and anthropomorphic phantoms were irradiated with VMAT after CBCT registration. Subsequently, fourteen prostate cancer patients received VMAT after CBCT registration. Machine log files and both CBCT images were exported to the PerFRACTION software, and a 3D patient dose was reconstructed. Mean dose for planning target volume (PTV), the bladder, and rectum and the 3D gamma analysis were evaluated.ResultsFor the phantom studies, the variation of HU values was observed at the central position surrounding the bones in FDK-CBCT. There were almost no changes in the difference of doses at the isocenter between measurement and reconstructed dose for planning CT (pCT), FDK-CBCT, and iCBCT. Mean dose differences of PTV, rectum, and bladder between iCBCT and pCT were approximately 2% lower than those between FDK-CBCT and pCT. For the clinical study, average gamma analysis for 2%/2 mm was 98.22% ± 1.07 and 98.81% ± 1.25% in FDK-CBCT and iCBCT, respectively.ConclusionsA similar machine log file-based dose verification accuracy is obtained for FDK-CBCT and iCBCT during VMAT for prostate cancer patients.  相似文献   

19.
This study investigates the superficial dose from FFF beams in comparison with the conventional flattened ones using a Monte Carlo (MC) method. Published phase-space files which incorporated real geometry of a TrueBeam accelerator were used for the dose calculation in phantom and clinical cases. The photon fluence on the central axis is 3 times that of a flattened beam for a 6 MV FFF beam and 5 times for a 10 MV beam. The mean energy across the field in air at the phantom surface is 0.92–0.95 MeV for the 6 MV FFF beam and 1.18–1.30 MeV for the corresponding flattened beam. At 10 MV, the values are 1.52–1.72 and 2.15–2.87 MeV for the FFF and flattened beams, respectively. The phantom dose at the depth of 1 mm in the 6 MV FFF beam is 6% ± 2.5% (of the maximum dose) higher compared to the flattened beam for a 25 × 25 cm2 field and 14.6% ± 1.9% for the 2 × 2 cm2 field. For the 10 MV beam, the corresponding differences are 3.4% ± 1.5% and 10.7% ± 0.6%. The skin dose difference at selected points on the patient's surface between the plans using FFF and flattened beams in the head-and-neck case was 6.5% ± 2.3% (1SD), and for the breast case it was 6.4% ± 2.3%. The Monte Carlo simulations showed that due to the lower mean energy in the FFF beam, the clinical superficial dose is higher without the flattening filter compared to the flattened beam.  相似文献   

20.
PurposeThe log file-based patient dose estimation includes a residual dose estimation error caused by leaf miscalibration, which cannot be reflected on the estimated dose. The purpose of this study is to determine this residual dose estimation error.Methods and materialsModified log files for seven head-and-neck and prostate volumetric modulated arc therapy (VMAT) plans simulating leaf miscalibration were generated by shifting both leaf banks (systematic leaf gap errors: ±2.0, ±1.0, and ±0.5 mm in opposite directions and systematic leaf shifts: ±1.0 mm in the same direction) using MATLAB-based (MathWorks, Natick, MA) in-house software. The generated modified and non-modified log files were imported back into the treatment planning system and recalculated. Subsequently, the generalized equivalent uniform dose (gEUD) was quantified for the definition of the planning target volume (PTV) and organs at risks.ResultsFor MLC leaves calibrated within ±0.5 mm, the quantified residual dose estimation errors that obtained from the slope of the linear regression of gEUD changes between non- and modified log file doses per leaf gap are in head-and-neck plans 1.32 ± 0.27% and 0.82 ± 0.17 Gy for PTV and spinal cord, respectively, and in prostate plans 1.22 ± 0.36%, 0.95 ± 0.14 Gy, and 0.45 ± 0.08 Gy for PTV, rectum, and bladder, respectively.ConclusionsIn this work, we determine the residual dose estimation errors for VMAT delivery using the log file-based patient dose calculation according to the MLC calibration accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号