首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Irinotecan (SN38) and oxaliplatin are chemotherapeutic agents used in the treatment of colorectal cancer. However, the frequent development of resistance to these drugs represents a considerable challenge in the clinic. Alus as retrotransposons comprise 11% of the human genome. Genomic toxicity induced by carcinogens or drugs can reactivate Alus by altering DNA methylation. Whether or not reactivation of Alus occurs in SN38 and oxaliplatin resistance remains unknown.

Results

We applied reduced representation bisulfite sequencing (RRBS) to investigate the DNA methylome in SN38 or oxaliplatin resistant colorectal cancer cell line models. Moreover, we extended the RRBS analysis to tumor tissue from 14 patients with colorectal cancer who either did or did not benefit from capecitabine + oxaliplatin treatment. For the clinical samples, we applied a concept of ‘DNA methylation entropy’ to estimate the diversity of DNA methylation states of the identified resistance phenotype-associated methylation loci observed in the cell line models. We identified different loci being characteristic for the different resistant cell lines. Interestingly, 53% of the identified loci were Alu sequences- especially the Alu Y subfamily. Furthermore, we identified an enrichment of Alu Y sequences that likely results from increased integration of new copies of Alu Y sequence in the drug-resistant cell lines. In the clinical samples, SOX1 and other SOX gene family members were shown to display variable DNA methylation states in their gene regions. The Alu Y sequences showed remarkable variation in DNA methylation states across the clinical samples.

Conclusion

Our findings imply a crucial role of Alu Y in colorectal cancer drug resistance. Our study underscores the complexity of colorectal cancer aggravated by mobility of Alu elements and stresses the importance of personalized strategies, using a systematic and dynamic view, for effective cancer therapy.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1552-y) contains supplementary material, which is available to authorized users.  相似文献   

3.

Background

Aberrant DNA methylation is a hallmark of many cancers. Classically there are two types of endometrial cancer, endometrioid adenocarcinoma (EAC), or Type I, and uterine papillary serous carcinoma (UPSC), or Type II. However, the whole genome DNA methylation changes in these two classical types of endometrial cancer is still unknown.

Results

Here we described complete genome-wide DNA methylome maps of EAC, UPSC, and normal endometrium by applying a combined strategy of methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylation-sensitive restriction enzyme digestion sequencing (MRE-seq). We discovered distinct genome-wide DNA methylation patterns in EAC and UPSC: 27,009 and 15,676 recurrent differentially methylated regions (DMRs) were identified respectively, compared with normal endometrium. Over 80% of DMRs were in intergenic and intronic regions. The majority of these DMRs were not interrogated on the commonly used Infinium 450K array platform. Large-scale demethylation of chromosome X was detected in UPSC, accompanied by decreased XIST expression. Importantly, we discovered that the majority of the DMRs harbored promoter or enhancer functions and are specifically associated with genes related to uterine development and disease. Among these, abnormal methylation of transposable elements (TEs) may provide a novel mechanism to deregulate normal endometrium-specific enhancers derived from specific TEs.

Conclusions

DNA methylation changes are an important signature of endometrial cancer and regulate gene expression by affecting not only proximal promoters but also distal enhancers.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-868) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

DNA methylation is a heritable mechanism that acts in response to environmental changes, lifestyle and diseases by influencing gene expression in eukaryotes. Epigenetic studies of wild organisms are mandatory to understand their role in e.g. adaptational processes in the great variety of ecological niches. However, strategies to address those questions on a methylome scale are widely missing. In this study we present such a strategy and describe a whole genome sequence and methylome analysis of the wild guinea pig.

Results

We generated a full Wild guinea pig (Cavia aperea) genome sequence with enhanced coverage of methylated regions, benefiting from the available sequence of the domesticated relative Cavia porcellus. This new genome sequence was then used as reference to map the sequence reads of bisulfite treated Wild guinea pig sequencing libraries to investigate DNA-methylation patterns at nucleotide-specific level, by using our here described method, named ‘DNA-enrichment-bisulfite-sequencing’ (MEBS). The results achieved using MEBS matched those of standard methods in other mammalian model species. The technique is cost efficient, and incorporates both methylation enrichment results and a nucleotide-specific resolution even without a whole genome sequence available. Thus MEBS can be easily applied to extend methylation enrichment studies to a nucleotide-specific level.

Conclusions

The approach is suited to study methylomes of not yet sequenced mammals at single nucleotide resolution. The strategy is transferable to other mammalian species by applying the nuclear genome sequence of a close relative. It is therefore of interest for studies on a variety of wild species trying to answer evolutionary, adaptational, ecological or medical questions by epigenetic mechanisms.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1036) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.

Background

Whole-genome sequencing is an important method to understand the genetic information, gene function, biological characteristics and survival mechanisms of organisms. Sequencing large genomes is very simple at present. However, we encountered a hard-to-sequence genome of Pseudomonas aeruginosa phage PaP1. Shotgun sequencing method failed to complete the sequence of this genome.

Results

After persevering for 10 years and going over three generations of sequencing techniques, we successfully completed the sequence of the PaP1 genome with a length of 91,715 bp. Single-molecule real-time sequencing results revealed that this genome contains 51 N-6-methyladenines and 152 N-4-methylcytosines. Three significant modified sequence motifs were predicted, but not all of the sites found in the genome were methylated in these motifs. Further investigations revealed a novel immune mechanism of bacteria, in which host bacteria can recognise and repel modified bases containing inserts in a large scale. This mechanism could be accounted for the failure of the shotgun method in PaP1 genome sequencing. This problem was resolved using the nfi- mutant of Escherichia coli DH5α as a host bacterium to construct a shotgun library.

Conclusions

This work provided insights into the hard-to-sequence phage PaP1 genome and discovered a new mechanism of bacterial immunity. The methylome of phage PaP1 is responsible for the failure of shotgun sequencing and for bacterial immunity mediated by enzyme Endo V activity; this methylome also provides a valuable resource for future studies on PaP1 genome replication and modification, as well as on gene regulation and host interaction.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-803) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background

Base-resolution methylome data generated by whole-genome bisulfite sequencing (WGBS) is often used to segment the genome into domains with distinct methylation levels. However, most segmentation methods include many parameters to be carefully tuned and/or fail to exploit the unsurpassed resolution of the data. Furthermore, there is no simple method that displays the composition of the domains to grasp global trends in each methylome.

Results

We propose to use changepoint detection for domain demarcation based on base-resolution methylome data. While the proposed method segments the methylome in a largely comparable manner to conventional approaches, it has only a single parameter to be tuned. Furthermore, it fully exploits the base-resolution of the data to enable simultaneous detection of methylation changes in even contrasting size ranges, such as focal hypermethylation and global hypomethylation in cancer methylomes. We also propose a simple plot termed methylated domain landscape (MDL) that globally displays the size, the methylation level and the number of the domains thus defined, thereby enabling one to intuitively grasp trends in each methylome. Since the pattern of MDL often reflects cell lineages and is largely unaffected by data size, it can serve as a novel signature of methylome.

Conclusions

Changepoint detection in base-resolution methylome data followed by MDL plotting provides a novel method for methylome characterization and will facilitate global comparison among various WGBS data differing in size and even species origin.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1809-5) contains supplementary material, which is available to authorized users.  相似文献   

8.

Background

The genome of the human gastric pathogen Helicobacter pylori encodes a large number of DNA methyltransferases (MTases), some of which are shared among many strains, and others of which are unique to a given strain. The MTases have potential roles in the survival of the bacterium. In this study, we sequenced a Malaysian H. pylori clinical strain, designated UM032, by using a combination of PacBio Single Molecule, Real-Time (SMRT) and Illumina MiSeq next generation sequencing platforms, and used the SMRT data to characterize the set of methylated bases (the methylome).

Results

The N4-methylcytosine and N6-methyladenine modifications detected at single-base resolution using SMRT technology revealed 17 methylated sequence motifs corresponding to one Type I and 16 Type II restriction-modification (R-M) systems. Previously unassigned methylation motifs were now assigned to their respective MTases-coding genes. Furthermore, one gene that appears to be inactive in the H. pylori UM032 genome during normal growth was characterized by cloning.

Conclusion

Consistent with previously-studied H. pylori strains, we show that strain UM032 contains a relatively large number of R-M systems, including some MTase activities with novel specificities. Additional studies are underway to further elucidating the biological significance of the R-M systems in the physiology and pathogenesis of H. pylori.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1585-2) contains supplementary material, which is available to authorized users.  相似文献   

9.
10.
11.
12.
13.

Background

Patient-derived tumour xenografts are an attractive model for preclinical testing of anti-cancer drugs. Insights into tumour biology and biomarkers predictive of responses to chemotherapeutic drugs can also be gained from investigating xenograft models. As a first step towards examining the equivalence of epigenetic profiles between xenografts and primary tumours in paediatric leukaemia, we performed genome-scale DNA methylation and gene expression profiling on a panel of 10 paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) tumours that were stratified by prednisolone response.

Results

We found high correlations in DNA methylation and gene expression profiles between matching primary and xenograft tumour samples with Pearson’s correlation coefficients ranging between 0.85 and 0.98. In order to demonstrate the potential utility of epigenetic analyses in BCP-ALL xenografts, we identified DNA methylation biomarkers that correlated with prednisolone responsiveness of the original tumour samples. Differential methylation of CAPS2, ARHGAP21, ARX and HOXB6 were confirmed by locus specific analysis. We identified 20 genes showing an inverse relationship between DNA methylation and gene expression in association with prednisolone response. Pathway analysis of these genes implicated apoptosis, cell signalling and cell structure networks in prednisolone responsiveness.

Conclusions

The findings of this study confirm the stability of epigenetic and gene expression profiles of paediatric BCP-ALL propagated in mouse xenograft models. Further, our preliminary investigation of prednisolone sensitivity highlights the utility of mouse xenograft models for preclinical development of novel drug regimens with parallel investigation of underlying gene expression and epigenetic responses associated with novel drug responses.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-416) contains supplementary material, which is available to authorized users.  相似文献   

14.

Background

In invertebrates, genes belonging to dynamically regulated functional categories appear to be less methylated than “housekeeping” genes, suggesting that DNA methylation may modulate gene expression plasticity. To date, however, experimental evidence to support this hypothesis across different natural habitats has been lacking.

Results

Gene expression profiles were generated from 30 pairs of genetically identical fragments of coral Acropora millepora reciprocally transplanted between distinct natural habitats for 3 months. Gene expression was analyzed in the context of normalized CpG content, a well-established signature of historical germline DNA methylation. Genes with weak methylation signatures were more likely to demonstrate differential expression based on both transplant environment and population of origin than genes with strong methylation signatures. Moreover, the magnitude of expression differences due to environment and population were greater for genes with weak methylation signatures.

Conclusions

Our results support a connection between differential germline methylation and gene expression flexibility across environments and populations. Studies of phylogenetically basal invertebrates such as corals will further elucidate the fundamental functional aspects of gene body methylation in Metazoa.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1109) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.

Background

Studies of DNA methylomes in a wide range of eukaryotes have revealed both conserved and divergent characteristics of DNA methylation among phylogenetic groups. However, data on invertebrates particularly molluscs are limited, which hinders our understanding of the evolution of DNA methylation in metazoa. The sequencing of the Pacific oyster Crassostrea gigas genome provides an opportunity for genome-wide profiling of DNA methylation in this model mollusc.

Results

Homologous searches against the C. gigas genome identified functional orthologs for key genes involved in DNA methylation: DNMT1, DNMT2, DNMT3, MBD2/3 and UHRF1. Whole-genome bisulfite sequencing (BS-seq) of the oyster’s mantle tissues revealed that more than 99% methylation modification was restricted to cytosines in CpG context and methylated CpGs accumulated in the bodies of genes that were moderately expressed. Young repeat elements were another major targets of CpG methylation in oysters. Comparison with other invertebrate methylomes suggested that the 5’-end bias of gene body methylation and the negative correlation between gene body methylation and gene length were the derived features probably limited to the insect lineage. Interestingly, phylostratigraphic analysis showed that CpG methylation preferentially targeted genes originating in the common ancestor of eukaryotes rather than the oldest genes originating in the common ancestor of cellular organisms.

Conclusions

Comparative analysis of the oyster DNA methylomes and that of other animal species revealed that the characteristics of DNA methylation were generally conserved during invertebrate evolution, while some unique features were derived in the insect lineage. The preference of methylation modification on genes originating in the eukaryotic ancestor rather than the oldest genes is unexpected, probably implying that the emergence of methylation regulation in these ''relatively young’ genes was critical for the origin and radiation of eukaryotes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1119) contains supplementary material, which is available to authorized users.  相似文献   

17.

Background

Aberrant DNA methylation as the most important reason making epigenetic silencing of genes is a main mechanism of gene inactivation in patients with colorectal cancer. In this study, we decided to identify promoter methylation status of ten genes encoding WNT negative regulators, and measure the expression of DNMT1 enzyme in colorectal cancer samples.

Results

Aberrant methylation of APC gene was statistically significant associated with age over 50 (p = 0.017), DDK3 with male (p < 0.0001), SFRP4, WIF1, and WNT5a with increasing tumor stage (p = 0.004, p = 0.029, and p = 0.004), SFRP4 and WIF1 with tumor differentiation (p = 0.009 and p = 0.031) and SFRP2 and SFRP5 with histological type (p = 0.001 and p = 0.025). The increasing number of methylated genes correlated with the expression levels of the DNMT1 mRNA.

Conclusions

The rate of gene promoter methylation of WNT pathway regulators is high in colorectal cancer cells. Hyper-methylation is associated with increased expression of the DNMT1 enzyme.  相似文献   

18.

Background

Several individual studies have suggested that autosomal CpG methylation differs by sex both in terms of individual CpG sites and global autosomal CpG methylation. However, these findings have been inconsistent and plagued by spurious associations due to the cross reactivity of CpG probes on commercial microarrays. We collectively analysed 76 published studies (n = 6,795) for sex-associated differences in both autosomal and sex chromosome CpG sites.

Results

Overall autosomal methylation profiles varied substantially by study, and we encountered substantial batch effects. We accounted for these by conducting random effects meta-analysis for individual autosomal CpG methylation associations. After excluding non-specific probes, we found 184 autosomal CpG sites differentially methylated by sex after correction for multiple testing. In line with previous studies, average beta differences were small. Many of the most significantly associated CpG probes were new. Of note was differential CpG methylation in the promoters of genes thought to be involved in spermatogenesis and male fertility, such as SLC9A2, SPESP1, CRISP2, and NUPL1. Pathway analysis revealed overrepresentation of genes differentially methylated by sex in several broad Gene Ontology biological processes, including RNA splicing and DNA repair.

Conclusions

This study represents a comprehensive analysis of sex-specific methylation patterns. We demonstrate the existence of sex-specific methylation profiles and report a large number of novel DNA methylation differences in autosomal CpG sites between sexes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-981) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.

Background

DNA methylation is associated with aberrant gene expression in cancer, and has been shown to correlate with therapeutic response and disease prognosis in some types of cancer. We sought to investigate the biological significance of DNA methylation in lung cancer.

Results

We integrated the gene expression profiles and data of gene promoter methylation for a large panel of non-small cell lung cancer cell lines, and identified 578 candidate genes with expression levels that were inversely correlated to the degree of DNA methylation. We found these candidate genes to be differentially methylated in normal lung tissue versus non-small cell lung cancer tumors, and segregated by histologic and tumor subtypes. We used gene set enrichment analysis of the genes ranked by the degree of correlation between gene expression and DNA methylation to identify gene sets involved in cellular migration and metastasis. Our unsupervised hierarchical clustering of the candidate genes segregated cell lines according to the epithelial-to-mesenchymal transition phenotype. Genes related to the epithelial-to-mesenchymal transition, such as AXL, ESRP1, HoxB4, and SPINT1/2, were among the nearly 20% of the candidate genes that were differentially methylated between epithelial and mesenchymal cells. Greater numbers of genes were methylated in the mesenchymal cells and their expressions were upregulated by 5-azacytidine treatment. Methylation of the candidate genes was associated with erlotinib resistance in wild-type EGFR cell lines. The expression profiles of the candidate genes were associated with 8-week disease control in patients with wild-type EGFR who had unresectable non-small cell lung cancer treated with erlotinib, but not in patients treated with sorafenib.

Conclusions

Our results demonstrate that the underlying biology of genes regulated by DNA methylation may have predictive value in lung cancer that can be exploited therapeutically.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1079) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号