首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Spider dragline silk is a natural fiber that has excellent tensile properties; however, it is difficult to produce artificially as a long, strong fiber. Here, the spider (Araneus ventricosus) dragline protein gene was cloned and a transgenic silkworm was generated, that expressed the fusion protein of the fibroin heavy chain and spider dragline protein in cocoon silk. The spider silk protein content ranged from 0.37 to 0.61% w/w (1.4–2.4 mol%) native silkworm fibroin. Using a good silk-producing strain, C515, as the transgenic silkworm can make the raw silk from its cocoons for the first time. The tensile characteristics (toughness) of the raw silk improved by 53% after the introduction of spider dragline silk protein; the improvement depended on the quantity of the expressed spider dragline protein. To demonstrate the commercial feasibility for machine reeling, weaving, and sewing, we used the transgenic spider silk to weave a vest and scarf; this was the first application of spider silk fibers from transgenic silkworms.  相似文献   

2.
Spider silks have great potential as biomaterials with extraordinary properties. Here, we report the cloning and characterization of the major ampullate silk protein gene from the spider Araneus ventricosus. A cDNA encoding the partial major ampullate silk protein (AvMaSp) was cloned from A. ventricosus. An analysis of the cDNA sequence shows that AvMaSp consists of a 240 amino acid repetitive region and a 99 amino acid C-terminal non-repetitive domain. The peptide motifs that were found in the spider major ampullate silk proteins, (A)n, (GA)n, and (GGX)n, were conserved in the repetitive region of AvMaSp. Phylogenetic analysis further confirmed that AvMaSp belongs to the spider major ampullate spidroin family of proteins. The AvMaSp-R cDNA, which encodes the 240 amino acid repetitive domain, was expressed as a soluble 22 kDa polypeptide in baculovirus-infected insect cells. Recombinant AvMaSp-R was degraded abruptly by trypsin. However, AvMaSp-R was stable at 100 °C for at least 30 min. Additionally, the AvMaSp-R was stable at pH values from 2 to 12 for at least 1 h. Taken together, our findings describe the molecular structure and biochemical properties of the A. ventricosus major ampullate silk protein and demonstrate its potential as a biomaterial.  相似文献   

3.
In the silkworm Bombyx mori, three fibroin genes, fibroin-heavy-chain (fibH), fibroin-light-chain (fibL) and fibrohexamerin (fhx), are coexpressed only in the posterior silk gland (PSG) cells, while the sericin genes encoding silk glue proteins are expressed in the middle silk gland (MSG) cells. Silk gland factor-2 (SGF-2) is a PSG-specific activator complex of fibH, composed of a LIM-homeodomain protein, Awh, and its cofactors, Ldb and Lcaf. We investigated whether SGF-2 can activate other fibroin genes using transgenic silkworms. The genes for Ldb and Lcaf were expressed ubiquitously in various tissues, while the gene for Awh was expressed strictly specific in PSG of the wild type silkworms. Misexpression of Awh in transgenic silkworms induced ectopic expression of fibL and fhx as well as fibH in MSG. Coincidently with the induction of fibL and fhx by Awh, binding of SGF-2 to the promoter of fibL and fhx was detected in vitro, and SGF-2 binds directly to the fhx core promoter. Ectopic expression of the fibroin genes was observed at high levels in the middle part of MSG. Moreover, fibL and fhx were induced in the anterior silk gland (ASG) of the transgenic silkworms, but fibH was not. These results indicate that Awh is a key activator of all three fibroin genes, and the activity is probably regulated in conjunction with additional factors.  相似文献   

4.
Transgenic modification of Bombyx mori silkworms is a benign approach for the production of silk fibers with extraordinary properties and also to generate therapeutic proteins and other biomolecules for various applications. Silk fibers with fluorescence lasting more than a year, natural protein fibers with strength and toughness exceeding that of spider silk, proteins and therapeutic biomolecules with exceptional properties have been developed using transgenic technology. The transgenic modifications have been done primarily by modifying the silk sericin and fibroin genes and also the silk producing glands. Although the genetic modifications were typically performed using the sericin 1 and other genes, newer techniques such as CRISPR/Cas9 have enabled successful modifications of both the fibroin H-chain and L-chain. Such modifications have led to the production of therapeutic proteins and other biomolecules in reasonable quantities at affordable costs for tissue engineering and other medical applications. Transgenically modified silkworms also have distinct and long-lasting fluorescence useful for bioimaging applications. This review presents an overview of the transgenic techniques for modifications of B. mori silkworms and the properties obtained due to such modifications with particular focus on production of growth factors, fluorescent proteins, and high performance protein fibers.  相似文献   

5.
AimsLeu-Ser-Glu-Leu (LSEL) is the main active ingredient of globin digest (GD) that has an anti-diabetic effect. Here, we investigated the anti-diabetic effect of LSEL for the first time.Main methodsThe anti-diabetic effects of GD and LSEL in ICR mice, streptozotocin (STZ)-induced diabetic mice and KK-Ay mice were examined.Key findingsGD and LSEL suppressed the elevation of blood glucose in an oral glucose tolerance test (OGTT) in ICR mice, STZ-induced diabetic mice and KK-Ay mice as well as in an oral sucrose tolerance test in ICR mice and in an insulin tolerance test (ITT) in KK-Ay mice. GD and LSEL decreased the blood glucose levels in the basal state in STZ-induced diabetic mice and KK-Ay mice. Furthermore, GD and LSEL elevated the serum insulin levels in an OGTT in ICR mice and KK-Ay mice and promoted the use of insulin in an ITT in KK-Ay mice. GD and LSEL increased the translocation or expression of the glucose transporter 4 in the muscle of ICR mice, STZ-induced diabetic mice and KK-Ay mice and increased the expression of the uncoupling protein 2 (UCP2) in the muscle of ICR mice.SignificanceThese results indicate that GD and LSEL control blood glucose through the promotion of glucose uptake in the muscle of the mice. The acceleration of glucose uptake by GD and LSEL may be controlled by the promotion of insulin secretion and the up-regulation of UCP2 expression. GD and LSEL seem to be useful for lowering the incidence of hyperglycemia.  相似文献   

6.
Spider dragline silk is a unique fibrous protein with a combination of tensile strength and elasticity, but the isolation of large amounts of silk from spiders is not feasible. In this study, we generated germline-transgenic silkworms (Bombyx mori) that spun cocoons containing recombinant spider silk. A piggyBac-based transformation vector was constructed that carried spider dragline silk (MaSp1) cDNA driven by the sericin 1 promoter. Silkworm eggs were injected with the vector, producing transgenic silkworms displaying DsRed fluorescence in their eyes. Genotyping analysis confirmed the integration of the MaSp1 gene into the genome of the transgenic silkworms, and silk protein analysis revealed its expression and secretion in the cocoon. Compared with wild-type silk, the recombinant silk displayed a higher tensile strength and elasticity. The results indicate the potential for producing recombinant spider silk in transgenic B. mori.  相似文献   

7.
We investigated whether adenovirus-mediated preproinsulin gene transfer into insulin target tissues (adipocytes) ameliorates hyperglycemia in diabetic mice. KKA(y) mice, a genetically obese type 2 diabetic animal model, were treated with a single subcutaneous injection of recombinant adenovirus, Adex1CA-human preproinsulin (Adex1CA-pchi), into the epididymal fat pads. pchi mRNA was expressed only in adipose tissue in which mature insulin was produced. Three days after virus injection these mice showed a marked decrease of blood glucose levels (from about 400 to 200 mg/dl), and an intraperitoneal glucose tolerance test revealed the markedly improved glucose tolerance. There was no significant difference in serum insulin levels between control and recombinant adenovirus-treated KKA(y) mice. The normalized glucose levels in diabetic mice were maintained for at least 2 weeks after the virus injection. This strategy could provide a novel and, most importantly, a simple and convenient gene therapy for obese type 2 diabetes patients.  相似文献   

8.
Spiders produce multiple types of silk that exhibit diverse mechanical properties and biological functions. Most molecular studies of spider silk have focused on fibroins from dragline silk and capture silk, two important silk types involved in the survival of the spider. In our studies we have focused on the characterization of egg case silk, a third silk fiber produced by the black widow spider, Latrodectus hesperus. Analysis of the physical structure of egg case silk using scanning electron microscopy demonstrates the presence of small and large diameter fibers. By using the strong protein denaturant 8 M guanidine hydrochloride to solubilize the fibers, we demonstrated by SDS-PAGE and protein silver staining that an abundant component of egg case silk is a 100-kDa protein doublet. Combining matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry and reverse genetics, we have isolated a novel gene called ecp-1, which encodes for one of the protein components of the 100-kDa species. BLAST searches of the NCBInr protein data base using the primary sequence of ECP-1 revealed similarity to fibroins from spiders and silkworms, which mapped to two distinct regions within the ECP-1. These regions contained the conserved repetitive fibroin motifs poly(Ala) and poly(Gly-Ala), but surprisingly, no larger ensemble repeats could be identified within the primary sequence of ECP-1. Consistent with silk gland-restricted patterns of expression for fibroins, ECP-1 was demonstrated to be predominantly produced in the tubuliform gland, with lower levels detected in the major and minor ampullate glands. ECP-1 monomeric units were also shown to assemble into higher aggregate structures through the formation of disulfide bonds via a unique cysteine-rich N-terminal region. Collectively, our findings provide new insight into the components of egg case silk and identify a new class of silk proteins with distinctive molecular features relative to traditional members of the spider silk gene family.  相似文献   

9.
G protein-coupled receptor 40 (GPR40) mediates both acute and chronic effects of free fatty acids (FFAs) on insulin secretion. However, it remains controversial whether inhibition of GPR40 would be beneficial in prevention of type 2 diabetes. This study is designed to evaluate the potential effects of DC260126, a small molecule antagonist of GPR40, on β-cell function following administration of 10 mg/kg dose of DC260126 to obese diabetic db/db mice. Oral glucose tolerance test, glucose stimulated insulin secretion and insulin tolerance test were used to investigate the pharmacological effects of DC260126 on db/db mice after 21-days treatment. Immunohistochemistry and serum biochemical analysis were also performed in this study. Although no significant change of blood glucose levels was found in DC260126-treated mice, DC260126 significantly inhibited glucose stimulated insulin secretion, reduced blood insulin level and improved insulin sensitivity after 3 weeks administration in db/db mice. Moreover, DC260126 reduced the proinsulin/insulin ratio and the apoptotic rate of pancreatic β-cells remarkably in DC260126-treated db/db mice compared to vehicle-treated mice (p<0.05, n = 8). The results suggest that although DC260126 could not provide benefit for improving hyperglycemia, it could protect against pancreatic β-cells dysfunction through reducing overload of β-cells, and it increases insulin sensitivity possibly via alleviation of hyperinsulinemia in db/db mice.  相似文献   

10.
We describe a novel insulin-degrading enzyme, SidC, that contributes to the proliferation of the human bacterial pathogen Vibrio vulnificus in a mouse model. SidC is phylogenetically distinct from other known insulin-degrading enzymes and is expressed and secreted specifically during host infection. Purified SidC causes a significant decrease in serum insulin levels and an increase in blood glucose levels in mice. A comparison of mice infected with wild type V. vulnificus or an isogenic sidC-deletion strain showed that wild type bacteria proliferated to higher levels. Additionally, hyperglycemia leads to increased proliferation of V. vulnificus in diabetic mice. Consistent with these observations, the sid operon was up-regulated in response to low glucose levels through binding of the cAMP-receptor protein (CRP) complex to a region upstream of the operon. We conclude that glucose levels are important for the survival of V. vulnificus in the host, and that this pathogen uses SidC to actively manipulate host endocrine signals, making the host environment more favorable for bacterial survival and growth.  相似文献   

11.
Insulin resistance is the key feature of type 2 diabetes and is manifested as attenuated insulin receptor (IR) signaling in response to same levels of insulin binding. Several small molecule IR activators have been identified and reported to exhibit insulin sensitization properties. One of these molecules, TLK19781 (Cmpd1), was investigated to examine its IR sensitizing action in vivo. Our data demonstrate that Cmpd1, at doses that produced minimal efficacy in the absence of insulin, potentiated insulin action during an OGTT in non-diabetic mice and enhanced insulin-mediated glucose lowering in diabetic mice. Interestingly, different from insulin alone, Cmpd1 combined with insulin showed enhanced efficacy and duration of action without increased hypoglycemia. To explore the mechanism underlying the apparent glucose dependent efficacy, tissue insulin signaling was compared in healthy and diabetic mice. Cmpd1 enhanced insulin’s effects on IR phosphorylation in both healthy and diabetic mice. In contrast, the compound potentiated insulin’s effects on Akt phosphorylation in diabetic but not in non-diabetic mice. These differential effects on signaling corresponding to glucose levels could be part of the mechanism for reduced hypoglycemia risk. The in vivo efficacy of Cmpd1 is specific and dependent on IR expression. Results from these studies support the idea of targeting IR for insulin sensitization, which carries low hypoglycemia risk by standalone treatment and could improve the effectiveness of insulin therapies.  相似文献   

12.
Lysophosphatidylserine (LPS) is known to have diverse cellular effects, but although LPS is present in many biological fluids, its in vivo effects have not been elucidated. In the present study, we investigated the effects of LPS on glucose metabolism in vivo, and how skeletal muscle cells respond to LPS stimulation. LPS enhanced glucose uptake in a dose- and time-dependent manner in L6 GLUT4myc myotubes, and this effect of LPS on glucose uptake was mediated by a Gαi and PI 3-kinase dependent signal pathway. LPS increased the level of GLUT4 on the cell surface of L6 GLUT4myc myotubes, and enhanced glucose uptake in 3T3-L1 adipocytes. In line with its cellular functions, LPS lowered blood glucose levels in normal mice, while leaving insulin secretion unaffected. LPS also had a glucose-lowering effect in STZ-treated type 1 diabetic mice and in obese db/db type 2 diabetic mice. This study shows that LPS-stimulated glucose transport both in skeletal muscle cells and adipocytes, and significantly lowered blood glucose levels both in type 1 and 2 diabetic mice. Our results suggest that LPS is involved in the regulation of glucose homeostasis in skeletal muscle and adipose tissue.  相似文献   

13.
Metabolic profiling of silkworm, especially the factors that affect silk synthesis at the metabolic level, is little known. Herein, metabolomic method based on gas chromatography-mass spectrometry was applied to identify key metabolic changes in silk synthesis deficient silkworms. Forty-six differential metabolites were identified in Nd group with the defect of silk synthesis. Significant changes in the levels of glycine and uric acid (up-regulation), carbohydrates and free fatty acids (down-regulation) were observed. The further metabolomics of silk synthesis deficient silkworms by decreasing silk proteins synthesis using knocking out fibroin heavy chain gene or extirpating silk glands operation showed that the changes of the metabolites were almost consistent with those of the Nd group. Furthermore, the increased silk yields by supplying more glycine or its related metabolite confirmed that glycine is a key metabolite to regulate silk synthesis. These findings provide important insights into the regulation between metabolic profiling and silk synthesis.  相似文献   

14.
目的:研究脂联素受体激动剂(AdipoRon)对2型糖尿病小鼠肾脏损伤的干预作用。方法:将40只SPF级雄性C57/BL6小鼠随机分为正常对照组(n=10)和实验组(n=30):实验组给予高糖、高脂饲料喂养,联合腹腔注射小剂量链脲佐菌素(STZ)建立2型糖尿病(T2DM)小鼠模型,再随机分为3组(n=10):模型对照(DM)组、低剂量AdipoRon治疗(DM+L)组及高剂量AdipoRon治疗(DM+H)组。检测血清中葡萄糖含量的变化;采用酶联免疫法检测小鼠血清中胰岛素受体(INSR)、胰岛素受体底物-1(IRS-1)以及肿瘤坏死因子-α(TNF-α)的蛋白质含量;HE染色镜下观察肾组织形态学变化;实时荧光定量PCR法检测肾组织胰岛素促进因子-1(PDX-1)和胰岛素(insulin)mRNA的表达;Western blot检测肾组织内磷酸化胰岛素受体底物-1(p-IRS-1)蛋白质;ELISA试剂盒检测小鼠血胰岛素含量。结果:病理学检查表明,AdipoRon可减轻2型糖尿病所致小鼠肾脏损伤。与DM组小鼠比较,DM+H组和DM+L组小鼠血糖、TNF-α水平均显著降低(P<0.05),INSR、IRS-1和p-IRS-1表达显著上升,PDX-1和insulin mRNA表达显著上升(P<0.05,P<0.01)。结论:给予AdipoRon治疗的小鼠血糖和血清TNF-α水平显著降低,INSR,IRS-1和p-IRS-1蛋白质含量,PDX-1和insulin mRNA表达均显著上升,表明AdipoRon对2型糖尿病小鼠肾脏损伤有一定的干预作用。  相似文献   

15.
In this study, the water-soluble selenium-enriched exopolysaccharides (Se-ECZ-EPS) were isolated from submerged culture broth of Enterobacter cloacae Z0206 through fermentation, ethanol precipitation and deproteinization. The protective effects of Se-ECZ-EPS on alloxan-induced diabetic mice were investigated. Diabetes was induced in ICR (Institute of Cancer Research) mice by administration of single doses of alloxan intraperitoneally (190 mg/kg body weight). Se-ECZ-EPS at a dose of 200 mg/kg body weight were administered per os (p.o.) as single dose per day to diabetes-induced mice for a period of 42 days. The decrease in body weight, serum insulin level, and the increase in blood glucose level, glycosylated serum protein (GSP), total cholesterol (TC) and triglycerides (TG) in liver were observed in diabetic mice. On the other hand, oral administration of Se-ECZ-EPS resulted in a significant reduction in fasting blood glucose levels, GSP, TC and TG contents in liver coupled with improvement of body weight and serum insulin level in comparison with diabetic control group. These results suggest that Se-ECZ-EPS possess significant protective and anti-diabetic effects in alloxan-induced diabetic mice.  相似文献   

16.
Silkworms contain a powerful and effective fibroin promoter, which controls the expression of fibroin, a silk protein. The fibroin promoter and well-known characteristics of silkworm, the application of transgenic technique to silkworm will provide an excellent opportunity to mass-produce biomolecules. In this study, the production of recombinant human insulin like growth factor-I (rhIGF-I) in the silkworm system was designed. The method makes use of the microinjection technique and P element vector to transfer foreign genes into the chromosomes. We constructed the expression vector using the fibroin gene promoter and P element vector containing IGF-I gene (pFpIGF-I). We then microinjected this vector into eggs, and through PCR screening, transgenic silkworms were selected. We isolated and purified rhIGF-I from silkworm cocoons, returning a concentration of rhIGF-I of about 1,300 ng/g from transgenic silkworm cocoons. In a comparison of transgenic silkworm rhIGF-I and colostral IGF-I on cell proliferation, colostral IGF-I was better able to increase the proliferation rate of the cell line relative to the transgenic silkworm rhIGF-I, and showed a similar cell proliferation pattern. The anti-cancer effects of transgenic silkworm rhIGF-I were higher than that of colostral IGF-I on HeLa and SNU-C1 cancer cells. These results confirmed the construction of new transgenic silkworm strains producing rhIGF-I.  相似文献   

17.
Calcium ions (Ca2+) are crucial for the conformational transition of silk fibroin in vitro, and silk fibroin conformations correlate with the mechanical properties of silk fibers. To investigate the relationship between Ca2+ and mechanical properties of silk fibers, CaCl2 was injected into silkworms (Bombyx mori). Fourier-transform infrared spectroscopy (FTIR) analysis and mechanical testing revealed that injection of CaCl2 solution (7.5 mg/g body weight) significantly increased the levels of α-helix and random coil structures of silk proteins. In addition, extension of silk fibers increased after CaCl2 injection. In mammals, sarcoplasmic reticulum Ca2+-ATPase in muscle and endoplasmic reticulum Ca2+-ATPase in other tissues (together denoted by SERCA) are responsible for calcium balance. Therefore, we analyzed the expression pattern of silkworm SERCA (BmSERCA) in silk glands and found that BmSERCA was abundant in the anterior silk gland (ASG). After injection of thapsigargin (TG) to block SERCA activity, silkworms showed a silk-spinning deficiency and their cocoons had higher calcium content compared to that of controls. Moreover, FTIR analysis revealed that the levels of α-helix and β-sheet structures increased in silk fibers from TG-injected silkworms compared to controls. The results provide evidence that BmSERCA has a key function in calcium transportation in ASG that is related to maintaining a suitable ionic environment. This ionic environment with a proper Ca2+ concentration is crucial for the formation of silk fibers with favorable mechanical performances.  相似文献   

18.
In this study, streptozotocin-nicotinamide-induced mildly diabetic mice and streptozotocin-induced severely diabetic mice were created to compare their characteristics and to investigate the effects of antidiabetic drugs on glucose tolerance. In severely diabetic mice, the pancreatic insulin content decreased to approximately 10% of levels found in normal mice. These mice also showed a decrease in body weight, a marked increase in nonfasting blood glucose levels and urinary glucose excretion, and a marked decline in glucose tolerance due to insulin secretory deficiency. In contrast, the pancreatic insulin content was approximately 50% of normal levels in mildly diabetic mice. These mice did not show any change in body weight, but displayed a mild increase in nonfasting blood glucose levels and urinary glucose excretion, and a mild decline in glucose tolerance due to loss of early-phase insulin secretion. Administration of antidiabetic drugs, namely voglibose, metformin, glibenclamide, sitagliptin and insulin, significantly improved glucose tolerance in mildly diabetic mice. In severely diabetic mice, voglibose, metformin and insulin significantly improved glucose tolerance, but no significant effect was observed for glibenclamide and sitagliptin due to a decreased insulinotropic effect. These results demonstrate that streptozotocin-nicotinamide-induced mildly diabetic mice have many pathological features resembling type 2 diabetes, and can serve as models for the pharmacological evaluation of many antidiabetic drugs.  相似文献   

19.
20.
The antiobesity and antidiabetic effects of the beta3-adrenergic agonists were investigated on nonobese type 2 diabetic MKR mice after injection with a beta3-adrenergic agonist, CL-316243. An intact response to acute CL-316243 treatment was observed in MKR mice. Chronic intraperitoneal CL-316243 treatment of MKR mice reduced blood glucose and serum insulin levels. Hyperinsulinemic euglycemic clamps exhibited improvement of the whole body insulin sensitivity and glucose homeostasis concurrently with enhanced insulin action in liver and adipose tissue. Treating MKR mice with CL-316243 significantly lowered serum and hepatic lipid levels, in part due to increased whole body triglyceride clearance and fatty acid oxidation in adipocytes. A significant reduction in total body fat content and epididymal fat weight was observed along with enhanced metabolic rate in both wild-type and MKR mice after treatment. These data demonstrate that beta3-adrenergic activation improves the diabetic state of nonobese diabetic MKR mice by potentiation of free fatty acid oxidation by adipose tissue, suggesting a potential therapeutic role for beta3-adrenergic agonists in nonobese diabetic subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号