首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendroprovenancing studies frequently use site chronologies to identify the origin of archaeological and historical timber. However, radial growth (tree-ring width, TRW) of tree species is influenced by both local and regional climate scales. Here we investigate how the use of annually-resolved Blue Intensity (BI) measurements can enhance dendroprovenancing precision of black pine (Pinus nigra Arn.) and Scots pine (P. sylvestris L.) on the Iberian Peninsula. Principal Component Gradient Analyses (PCGA) was used to assess geographical patterns of annual variation in different TRW and BI proxies of pine trees from two mountain ranges in the Central System and Andalusia in Spain. Local climate-growth relationships were quantified to identify underlying causes of identified groups with diverse growth patterns. Two distinct elevational groups were observed when performing PCGA on latewood BI time series with the response to summer drought as the main factor causing the differences. Both P. nigra and P. sylvestris BI time series were found to be more related to summer drought at low-elevation sites showing an increase in sensitivity at lower latitudes. PCGA of TRW time series allowed to discriminate between trees from Andalusia and Central System within the elevation groups. February and October temperatures were found to be the main climatic factors causing the differences in TRW time series among the high- elevation sites, whereas for low-elevation trees it was the average winter temperature influencing TRW. A subsequent leave-one-out analyses confirmed that including latewood BI time series improves the precision of dendroprovenancing of pine wood in the Iberian Peninsula.  相似文献   

2.

Key message

We propose a new methodology to identify intra-annual density fluctuations in latewood using cell features and relative radial position within the latewood of pine trees growing on Corsica, France. Climatic forcing of latewood wood anatomical anomalies was analyzed.

Abstract

We analyzed latewood anatomical features from Corsican pine (Pinus nigra ssp. laricio) of high-elevation sites in Corsica (France) derived from digital images of the wood surface. Latewood of each ring during the period 1950–2008 was partitioned into ten equal parts P1–P10. Mean values of the cell parameters cell lumen area (CLA), radial cell width (RCW), radial cell wall thickness (CWT), and modeled latewood density (MLD) were calculated for P1–P10. The cellular profiles for each cell parameter were subjected to principal component analyses. It was possible to quantify macroscopically visible variations of wood anatomy like intra-annual density fluctuations (IADFs) by latewood profiles of different cell parameters. A combination of cell parameter characteristics including their relative radial position within latewood provides a quantification of the cell anatomical variations in an IADF. Individual cell parameter chronologies and principal components of cell parameter profiles were correlated with climate data to determine the climatic forcing on latewood formation. Average cell parameter profiles and deviations from the long-term means are able to describe “normal” and “anomalous” environmental conditions during latewood formation. Cell feature anomalies throughout the latewood during individual years allow the reconstruction of past weather conditions with a high temporal resolution.  相似文献   

3.
Pinus nigra Arn. subsp. pallasiana (black pine) is one of the most widely grown tree in Turkey. It is the third most widely distributed tree species after Quercus L. and Pinus brutia Ten. Black pine grows in 20% of all forested areas in Turkey. In this dendroecological study, we identified the most important climate factors affecting radial growth of black pine in western Anatolia and classified its responses to climate. Twenty-eight site chronologies developed by different researchers were used in the analysis. Response functions were calculated for each chronology to identify the effect of climate on radial growth. Hierarchical cluster analysis was used to sort response functions and to classify the chronologies into groups based on climate responses. The individual responses of these chronologies to temperature and precipitation were classified in four main groups. Climatic and phytogeographic differences were the major factors influencing the formation of clusters. The results suggest that the major limiting factor is drought caused by low precipitation, especially in May, in almost all sites. The drought effect is much stronger in the transition region to the steppe, Central Anatolia and Mediterranean Regions than the Black Sea Region. Black pine trees respond positively to higher temperature at the beginning of growing season in almost all areas except in transition region to the steppe.  相似文献   

4.
Intra-annual density fluctuations (IADFs) are anatomical features formed in response to changes in the environmental conditions within the growing season. These anatomical features are commonly observed in Mediterranean pines, being more frequent in younger and wider tree rings. However, the process behind IADF formation is still unknown. Weekly monitoring of cambial activity and wood formation would fill this void. Although studies describing cambial activity and wood formation have become frequent, this knowledge is still fragmentary in the Mediterranean region. Here we present data from the monitoring of cambial activity and wood formation in two diameter classes of maritime pine (Pinus pinaster Ait.), over two years, in order to test: (i) whether the differences in stem diameter in an even-aged stand were due to timings and/or rates of xylogenesis; (ii) if IADFs were more common in large trees; and (iii) if their formation is triggered by cambial resumption after the summer drought. Larger trees showed higher rates of cell production and longer growing seasons, due to an earlier start and later end of xylogenesis. When a drier winter occurs, larger trees were more affected, probably limiting xylogenesis in the summer months. In both diameter classes a latewood IADF was formed in 2012 in response to late-September precipitation, confirming that the timing of the precipitation event after the summer drought is crucial in determining the resumption of cambial activity and whether or not an IADF is formed. It was the first time that the formation of a latewood IADF was monitored at a weekly time scale in maritime pine. The capacity of maritime pine to adjust cambial activity to the current environmental conditions represents a valuable strategy under the future climate change conditions.  相似文献   

5.
Tree functional traits together with processes such as forest regeneration, growth, and mortality affect forest and tree structure. Forest management inherently impacts these processes. Moreover, forest structure, biodiversity, resilience, and carbon uptake can be sustained and enhanced with forest management activities. To assess structural complexity of individual trees, comprehensive and quantitative measures are needed, and they are often lacking for current forest management practices. Here, we utilized 3D information from individual Scots pine (Pinus sylvestris L.) trees obtained with terrestrial laser scanning to, first, assess effects of forest management on structural complexity of individual trees and, second, understand relationship between several tree attributes and structural complexity. We studied structural complexity of individual trees represented by a single scale‐independent metric called “box dimension.” This study aimed at identifying drivers affecting structural complexity of individual Scots pine trees in boreal forest conditions. The results showed that thinning increased structural complexity of individual Scots pine trees. Furthermore, we found a relationship between structural complexity and stem and crown size and shape as well as tree growth. Thus, it can be concluded that forest management affected structural complexity of individual Scots pine trees in managed boreal forests, and stem, crown, and growth attributes were identified as drivers of it.  相似文献   

6.
Mediterranean environments are of special interest for the study of the relationships between climate, growth and anatomic features. Dendrochronological techniques were applied at eight sampling sites that were selected throughout the natural distribution area of Pinus halepensis in the Iberian Peninsula. The objectives of this paper were: (i) to identify relationships between radial growth and climate for different crown classes of Aleppo pine (P. halepensis Mill.); (ii) to quantify the presence of intra-annual density fluctuations (IADFs) according to crown class and cambial age; (iii) to establish the relationships between IADFs and climate. In the more mesic sites, dominant trees showed higher climatic sensitivity than suppressed trees, while in the more xeric sites suppressed trees showed higher sensitivity than dominant trees. Tree-ring growth of both crown classes correlated positively with precipitation during and prior to the growing season. IADFs were more frequent in young than in old stands without differences between crown classes. Precipitation in April and December was positively correlated to the occurrence of IADFs, while precipitation in July correlated negatively. A higher frequency in IADFs occurred in the last 50 years, which coincides with the increase in drought events in the Iberian Peninsula.  相似文献   

7.
In tropical forest, landscape fragmentation and the consequent degradation of disturbed forests increase the incidence of light and dry hot winds, causing a disturbance on natural regeneration. Under these conditions, lianas (woody vines) development is stimulated instead of other species, which are more suited to mature forest and under less influence of the edge effect. For this, lianas colonization is an important variable for assessing the disturbance level of a forest. In this context, it becomes important to understand the nature of the competitive relationships between hyper-abundant lianas and ring growth of the host trees. Here, we selected trees with occupation or absence of lianas from two tropical species – Pinus caribaea var. hondurensis (Caribbean pine) and Tectona grandis (teak) – localized in a semideciduous forest fragment in southeastern Brazil, aiming to compare growth, climatic response, anatomy (vessels and intra-annual density fluctuations), wood density and carbon, by tree-ring analysis. The results showed that the lianas caused a change in tree-ring anatomy of host trees in last 10 years, mainly. We observed that trees occupied by lianas had a decrease the radial growth and carbon in the two species, an increase of the vessels size in teak and a decrease of the IADF frequency in Caribbean pine. In teak, the climate-tree relationship indicated that trees with lianas had lower response to rainfall and higher response to temperature in the summer (rainy and hottest period); in Caribbean pine, we observed that trees with lianas had a 2-month delay in the radial growth response to rainfall in the dry season. In the teak group, we observed that host trees had higher wood density values than liana-free tree in the outer rings, and the opposite was showed for pine. These findings show that tree-ring growth of host trees are a strong bioindicator of forest disturbance caused by aggressive colonization of lianas. We believe that these methods are applicable to future studies relating to the effects of habitat fragmentation and forest degradation on biodiversity and ecosystem services, particularly in the context of global climate change.  相似文献   

8.
Herbivores can affect future forest composition by feeding selectivity. At temperature-sensitive treelines, herbivory can exacerbate or constrain climate-driven distributional shifts in tree species. This study analyses the impact of herbivory in a Mediterranean treeline of widespread Pinus sylvestris and P. nigra pinewoods, testing whether herbivory damage reinforces or inhibits the climatic responses of these trees. We used naturally occurring sapling pairs of similar size and age of both species, thereby isolating plant characteristics from environmental effects in herbivore behaviour. Herbivory damage by ungulates proved higher than that caused by insects in saplings of both species. Low plant density and extreme abiotic conditions at the treeline could in part be responsible for the observed low incidence of insect herbivory. Ungulates preferred P. sylvestris over P. nigra, implying heavier browsing damage for a large number of P. sylvestris saplings, suffering reduced internode growth as a consequence. In addition, P. sylvestris could not compensate height-growth reductions due to browsing with higher growth rate than P. nigra. In fact, P. sylvestris showed similar or lower relative height growth with respect to P. nigra. Under a scenario of increasing aridity and maintenance of ungulate populations, the upward migration of P. sylvestris in its southern range could be restricted by higher drought vulnerability than P. nigra, a situation exacerbated by ungulate herbivory. Our results indicate that ungulate herbivory reinforces climatic response of coexisting P. sylvestris and P. nigra at treeline, favouring a potential change in community dominance towards Mediterranean P. nigra.  相似文献   

9.
Northern and high‐latitude alpine treelines are generally thought to be limited by available warmth. Most studies of tree‐growth–climate interaction at treeline as well as climate reconstructions using dendrochronology report positive growth response of treeline trees to warmer temperatures. However, population‐wide responses of treeline trees to climate remain largely unexamined. We systematically sampled 1558 white spruce at 13 treeline sites in the Brooks Range and Alaska Range. Our findings of both positive and negative growth responses to climate warming at treeline challenge the widespread assumption that arctic treeline trees grow better with warming climate. High mean temperatures in July decreased the growth of 40% of white spruce at treeline areas in Alaska, whereas warm springs enhance growth of additional 36% of trees and 24% show no significant correlation with climate. Even though these opposing growth responses are present in all sampled sites, their relative proportion varies between sites and there is no overall clear relationship between growth response and landscape position within a site. Growth increases and decreases appear in our sample above specific temperature index values (temperature thresholds), which occurred more frequently in the late 20th century. Contrary to previous findings, temperature explained more variability in radial growth after 1950. Without accounting for these opposite responses and temperature thresholds, climate reconstructions based on ring width will miscalibrate past climate, and biogeochemical and dynamic vegetation models will overestimate carbon uptake and treeline advance under future warming scenarios.  相似文献   

10.

Key message

Growth ring study of Pinus kesiya (khasi pine) growing in sub-tropical forest in Manipur, northeast India was performed to understand climate signatures in ring widths and intra-annual density fluctuations.

Abstract

The growth rings in khasi pine (Pinus kesiya Royle ex Gordon) growing in sub-tropical Reserve Forest in Imphal, Manipur, northeast India were analysed to understand environmental signals present in ring-width series and intra-annual density fluctuations (IADFs). For this the growth ring sequences in increment core samples collected from 28 trees were precisely dated and a ring-width chronology spanning AD 1958–2014 developed. The correlation analyses between ring-width chronology and weather data of Imphal revealed that a cool April–May–June favour tree growth. The wood anatomical features of growth rings revealed the occurrence of IADFs in early- and latewoods. The IADFs in earlywood were found to be associated with reduced precipitation in months from April to July. However, the wetter conditions in late growing season, especially August/September triggered the formation of IADFs in latewood. Our findings endorse that the IADF chronologies of khasi pine could emerge as an important proxy of summer monsoon rainfall in long-term perspective in data scarce region of northeast India.
  相似文献   

11.
Alpine treeline ecotones are considered early-warning monitors of the effects of climate change on terrestrial ecosystems, but it is still unclear how accurately treeline dynamics may track the expected temperature rises. Site-specific abiotic constraints, such as topography and demographic trends may make treelines less responsive to environmental fluctuations. A better understanding on how local processes modulate treelines’ response to warming is thus required. We developed a model of treeline dynamics based on individual data of growth, mortality and reproduction. Specifically, we modeled growth patterns, mortality rates and reproductive size thresholds as a function of temperature and stand structure to evaluate the influence of climate- and stand-related processes on treeline dynamics. In this study, we analyze the dynamics of four Pyrenean mountain pine treeline sites with contrasting stand structures, and subjected to differing rates of climate warming. Our models indicate that Pyrenean treelines could reach basal areas and reproductive potentials similar to those currently observed in high-elevation subalpine forest by the mid twenty-first century. The fastest paces of treeline densification are forecasted by the late twenty-first century and are associated with higher warming rates. We found a common densification response of Pyrenean treelines to climate warming, but contrasting paces arise due to current size structures. Treelines characterized by a multistratified stand structure and subjected to lower mean annual temperatures were the most responsive to climate warming. In monostratified stands, tree growth was less sensitive to temperature than in multistratified stands and trees reached their reproductive size threshold later. Therefore, our simulations highlight that stand structure is paramount in modulating treeline responsiveness to ongoing climate warming. Synthesis. Treeline densification over the twenty-first century is likely to occur at different rates contingent on current stand structure and its effects on individual-level tree growth responses to warming. Accurate projections of future treeline dynamics must thus incorporate site-specific factors other than climate, specifically those related to stand structure and its influence on tree growth.  相似文献   

12.
Spatial and temporal variability in growth and climate response of trees at and near treeline was investigated in the western Mackenzie Mountains, Northwest Territories, and the Hudson Bay Lowlands of northern Manitoba. Residual ring width chronologies were constructed using cores extracted from 108 trees in the mountains and 170 from the lowlands, and compared to historical climate data. Growth of most trees exhibited significant correlations with summer and autumn temperatures, and the growth–climate relationship did not differ noticeably between trees at and distal to treeline. Most mountain trees had significant positive growth trends from 1851 to 2006 that corresponded with warming over the same period, while growth trends varied among sites and species in the lowlands. Regionally, growth of all species responded positively to warming during the 20th century with the exception of lowland Picea mariana, which exhibited little response. Growth response for most trees was age-dependent, with trees established after 1920 demonstrating improved growth and sensitivity to temperature than older individuals, and growth of most species since the 1990s was greater than any time during the last 250 years, particularly for lowland Larix laricina. This study suggests that site factors and tree age can be more important drivers of local-scale growth trends than regional climate at arctic treelines where temperature is often assumed to be the main constraint on tree growth.  相似文献   

13.
Orophilous species are often unable to escape the consequences of climate change because mountains are surrounded by unsuitable habitats. Among them, several endemic species belonging to the genus Erebia Dalman (Lepidoptera, Nymphalidae, Satyrinae) can be considered as key species to assess the risk of biodiversity loss of mountain habitats. The aim of this paper is to measure changes that have occurred in the altitudinal distribution of Erebia cassioides on the Pollino Massif (Southern Italy) during the last 37 years. Sixteen sites sampled in 1975 have been resampled after about three decades (2004, 2012). In 1975 56 % of the sampled population inhabited sites above and 44 % sites below the treeline, while in 2004 and 2012 99 % of the population were observed above the treeline. Furthermore, we observed an uphill shift of 180 m in the barycentre altitude of the species distribution and an unexpected increased density of the population above the treeline which led to a range reduction coupled to population increase of E. cassioides. This pattern contrasts with the usually observed one that couples habitat reduction to population decreasing. The reason for the observed pattern is unclear, but the implication for conservation strategies could be important if confirmed for other species. In fact, during coming decades local extinctions as a consequence of climate change might be fewer and more delayed than expected, and relict populations of cold adapted species could be preserved for a longer time span within optimal habitat refugia.  相似文献   

14.
In the Mediterranean region, the effects of climate change on tree growth have been more and more noticeable in recent decades. Pinus nigra is one of the most common mid-elevation pine in this region and one of the species most affected by increasing dryness. In Tunisia, in order to guide species selection for future reforestation of the Khroumirie Mountains, research studies are under way to improve knowledge of black pine ecology. The effects of interannual climate variations on radial growth were compared for 19 provenances of black pine in a 51-year-old common garden experiment in Souiniet (NW Tunisia, 492m) in a humid Mediterranean bioclimate. A significant positive correlation with April precipitation and a significant negative correlation with spring temperature were noted. A cool wet spring is beneficial to growth as it affects tree water balance at the onset of the growing season; in contrast, spring drought is responsible for low annual growth. Mild January–February temperatures have a positive influence on ring width as mild winters may foster photosynthesis and promote early resumption of cambial activity. Analysis of the pointer years showed that winter snow and hail are major factors limiting growth of black pine in the studied area. Despite overall similarities in ring width to climate relationships among provenances, differences observed attest to the interaction of the environment and genetic control of black pine diameter growth.  相似文献   

15.
Recent climate effects include severe fluctuation and an increasing probability of extreme meteorological events, such as seasonal and annual drought, the succession between typhoons and summer drought, between low temperature and winter drying, and even the association between high tide and high temperatures. We studied the wilting of Japanese black pine (Pinus thunbergii Parl.) by investigating the age, site properties and injury status of wilted trees. The water and energy imbalances of wilted trees were determined by measuring the imaging temperature and anthocyanin content and by performing a meteorological analysis. We found a heavy rainfall after a successive normal climate induced the lush growth and secondary height growth of P. thunbergii, which is sensitive to winter drying injury. Pines wilted because of the internal water and energy imbalance due to a sudden change of precipitation and cold injury, especially pine trees growing at unfavorable site conditions. In Northeast Asia and along the coast of China, such extreme changes of precipitation are not infrequent.  相似文献   

16.
ABSTRACT

Background: Topoclimate can influence tree establishment within treeline ecotones. Yet much less is known about how regional topography, such as the Continental Divide, Rocky Mountains, mediates the role of climate in governing treeline dynamics.

Aims: To utilise the Continental Divide to test whether contrasts in growing-season moisture regimes to the west (summer-dry) and east (summer-wet) impact the spatio-temporal patterns of tree establishment and rates of treeline advance in the Northern Rocky Mountains.

Methods: We sampled trees at sites on north- and south-facing slopes, west and east of the Continental Divide. We used dendroecological techniques to reconstruct patterns of tree establishment. Age-structure data were quantitatively compared with climate to evaluate possible mechanistic linkages.

Results: Across all sites, 96% of trees established after 1950. There was a treeline advance (range = 39–140 m) accompanied by increases in tree density. Significantly more trees established during wet springs on both sides of the Divide.

Conclusions: Overall, snow duration in spring and autumn temperatures appear to influence patterns of tree recruitment at the treeline. Continued warming will likely amplify the role of autumn climate in regulating tree establishment throughout treeline ecotones in the Northern Rocky Mountains, particularly west of the Divide where summer-dry conditions persist.  相似文献   

17.
In the context of ecological research, tree-ring analysis often deals with short time series (< 30 years). Their crossdating and averaging can be difficult but crucial to use such data for ecological modelling, multivariate statistics, and climate-growth analysis. Several studies were conducted in the Central Apennines (Italy) on recent encroachment of European black pine (Pinus nigra J.F. Arnold) on treeless areas above the current forestline. Growth of young trees is mainly controlled by endogenous or microclimatic factors making usual dendrochronology methods less applicable and crossdating very difficult or even impossible. The potential ecological information deriving from tree-ring growth in short series is therefore limited by this methodological bias. The aim of this study is to test suitable methods for optimizing the use of short ring series for further analytical use. A dataset of 734 tree-ring series of young European black pines (mean cambial age 15 years) growing at high altitude in 8 sites was used in this analysis. At each site tree-ring series were divided in two groups based on inter-series correlation: the crossdated or selected series (SEL), and non-crossdated or rejected ones (REJ). The following dendrochronological parameters were calculated for SEL and REJ series: mean tree-ring width, mean sensitivity, Gini coefficient, first order autocorrelation, inter-series correlation, and Gleichläufigkeit (GLK). Two methods of pointer years analysis were tested in order to detect years with synchronous growth: i) Normalization in a moving Window (NW) and ii) the RElative growth change method (RE). The two methods were applied to the raw series varying the standard thresholds, in order to detect synchronous growth-years in SEL and REJ group. A sensitivity analysis was included to assess how the threshold choice in the analysis could affect the results obtained. The term “common” was used to indicate years with similar tree growth response. Differences in the detected number of common years within SEL and REJ were obtained using different time windows with the RE and NW methods. The 47 % of all series were classified as SEL, showing more common years than the REJ series. However, a similar result occurred considering all the series together without SEL/REJ discrimination. In general, a significant occurrence of common years could be a tool to select series to be averaged for a site mean chronology. These are preliminary but encouraging results contributing to a more efficient use of the ecological information provided by short time series from young trees.  相似文献   

18.
Abstract. Altitudinal and latitudinal distribution limits of trees are mainly controlled by temperature. Therefore climate warming is expected to induce upslope or poleward migrations. In the Swiss Central Alps, summers in the period 1982-1991 were on average 0.8 °C warmer than those of the period 30 yr before. We investigated whether populations of conifers at the montane Pinus sylvestris-Pinus cembra ecocline exhibit demographic trends in response to that warming. We found no evidence for this. Young seedlings of Pinus sylvestris, the species which is expected to expand its range upward in a warmer climate, were virtually absent from all sites, whereas large fractions of Pinus cembra populations were observed in the seedling and juvenile categories even below the present lower distribution limit of adult trees. This suggests that there are no major altitudinal shifts in response to the recent sequence of warmer summers. Germination and seedling survival trials with Pinus sylvestris suggest that temperature per se would not exclude this species even from establishing at the current treeline in the Swiss Central Alps. Similar results were found at the polar treeline. Phytotron tests of seedling survival showed much less drought resistance in Pinus sylvestris than in Pinus cembra which is in contrast to their phytogeographic distributions. Thus, the montane pine ecocline in the Swiss Central Alps seems to be stabilized by species interactions and may not be directly responsive to moderate climatic change, which needs to be taken into account in predictive attempts.  相似文献   

19.
Above-average climate warming occurred during the 20th century in high altitude regions, and alpine treelines are believed to be an early indicator to respond to these warming-related changes. However, empirical investigations on treeline dynamics showed diverse results. The main objectives of this study are: (1) to investigate if treeline position shifted and if tree recruitment changed along with climate warming, and (2) to test if adult trees have “nursing effect” on tree establishment at treelines. We investigated two Balfour spruce (Picea balfouriana Rehd. et Wils.) treelines in Chang Niang (CNT) and Dang Dui (DDT), Dingqing county, Changdu prefecture, eastern Tibet. At each treeline site, three replicate plots with a size 30 m × 50 m were established. The coordinates of each tree within the plots were recorded and the age of each tree was identified by dendrochronological method. The changes in treeline position and tree recruitment were examined from spatially fine-scale distribution of trees and their age structure. The spatial patterns of individual trees were analyzed to infer the neighborhood effects. Results indicate that plots CNT2, CNT3, DDT1 and DDT2 showed stable treeline position during the last century, whereas plots CNT1 and DDT3 showed treeline advancing movement. Tree recruitments in all the six plots were enhanced during the 20th century, with two peaks occurring in the 1890–1910s and the 1950–1990s. Seedlings and saplings showed a general clustered distribution in all the six plots. The diverse pattern of treeline movement and episodic regeneration suggest that the treeline activity is not merely a result of climate change. “Nursing effects” from adult trees may play an important role in shaping the treeline activities on the eastern Tibetan Plateau. Our findings reveal diverse patterns in treeline dynamics at a local scale and highlight the importance of incorporating biotic interactions into species distribution modeling approaches.  相似文献   

20.
  1. Alpine treelines are expected to shift upward due to recent climate change. However, interpretation of changes in montane systems has been problematic because effects of climate change are frequently confounded with those of land use changes. The eastern Himalaya, particularly Langtang National Park, Central Nepal, has been relatively undisturbed for centuries and thus presents an opportunity for studying climate change impacts on alpine treeline uncontaminated by potential confounding factors.
  2. We studied two dominant species, Abies spectabilis (AS) and Rhododendron campanulatum (RC), above and below the treeline on two mountains. We constructed 13 transects, each spanning up to 400 m in elevation, in which we recorded height and state (dead or alive) of all trees, as well as slope, aspect, canopy density, and measures of anthropogenic and animal disturbance.
  3. All size classes of RC plants had lower mortality above treeline than below it, and young RC plants (<2 m tall) were at higher density above treeline than below. AS shows little evidence of a position change from the historic treeline, with a sudden extreme drop in density above treeline compared to below. Recruitment, as measured by size–class distribution, was greater above treeline than below for both species but AS is confined to ~25 m above treeline whereas RC is luxuriantly growing up to 200 m above treeline.
  4. Synthesis. Evidence suggests that the elevational limits of RC have shifted upward both because (a) young plants above treeline benefited from facilitation of recruitment by surrounding vegetation, allowing upward expansion of recruitment, and (b) temperature amelioration to mature plants increased adult survival. We predict that the current pure stand of RC growing above treeline will be colonized by AS that will, in turn, outshade and eventually relegate RC to be a minor component of the community, as is the current situation below the treeline.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号