首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
We explore whether a growth-ring analysis can produce additional information about carbon budgets in tropical forests. Such forests are characterized by a high number of species and by trees that rarely have anatomically distinct annual growth rings, which hampers the application of dendrochronological tools in carbon balance assessments in the tropics. We use forest inventory data and archived annual diameter measurements from the Luki Biosphere Reserve in the southwestern margin of the Congo Basin forest massif. In addition, dated wood data are available from the same location thanks to tag nail traces that allow for the measurement of growth increments over a period of 66 years.We find that precise increment measurements based on dated wood are advisable for small subsets of many less abundant species and for functional species groups characterized by slow growth. The dated wood approach shows that many understory trees with non-periodical rings remain in a steady state for long periods of time. These results suggest a dated wood approach is advisable for studies of growth trajectories of individual trees that might be of importance for carbon assessments in degraded forests.  相似文献   

2.
The objective of this study is to globally assess the effects of atmospheric nitrogen deposition and climate, associated with rising levels of atmospheric CO2, on the variability of carbon isotope discrimination (Δ13C), and intrinsic water‐use efficiency (iWUE) of angiosperm and conifer tree species. Eighty‐nine long‐term isotope tree‐ring chronologies, representing 23 conifer and 13 angiosperm species for 53 sites worldwide, were extracted from the literature, and used to obtain long‐term time series of Δ13C and iWUE. Δ13C and iWUE were related to the increasing concentration of atmospheric CO2 over the industrial period (1850–2000) and to the variation of simulated atmospheric nitrogen deposition and climatic variables over the period 1950–2000. We applied generalized additive models and linear mixed‐effects models to predict the effects of climatic variables and nitrogen deposition on Δ13C and iWUE. Results showed a declining Δ13C trend in the angiosperm and conifer species over the industrial period and a 16.1% increase of iWUE between 1850 and 2000, with no evidence that the increased rate was reduced at higher ambient CO2 values. The temporal variation in Δ13C supported the hypothesis of an active plant mechanism that maintains a constant ratio between intercellular and ambient CO2 concentrations. We defined linear mixed‐effects models that were effective to describe the variation of Δ13C and iWUE as a function of a set of environmental predictors, alternatively including annual rate (Nrate) and long‐term cumulative (Ncum) nitrogen deposition. No single climatic or atmospheric variable had a clearly predominant effect, however, Δ13C and iWUE showed complex dependent interactions between different covariates. A significant association of Nrate with iWUE and Δ13C was observed in conifers and in the angiosperms, and Ncum was the only independent term with a significant positive association with iWUE, although a multi‐factorial control was evident in conifers.  相似文献   

3.
林业活动在一定程度上影响着区域森林的时空分布格局和碳汇/源功能。明确并量化林业活动对区域森林碳汇功能的影响与空间分布,对于区域森林碳汇提升和实现区域"碳中和"具有重要意义。以国家级生态示范区福建省南平市为例,以多期森林资源规划调查数据为基础,采用IPCC材积源-生物量法,基于土地利用类型的时空变化和林业活动类型划分,分类分析了南平市森林碳源和碳汇的空间分布特征,并量化了不同林业活动(一直保持为森林、人工造林、自然恢复、毁林和森林退化)对森林碳汇和碳源的影响。研究结果表明,2013年南平市森林碳储量总量为80.84Tg C,2020年森林碳储量总量增加至89.87Tg C,年均变化量为1.29Tg C/a (或4.73Tg CO2/a)。平均胸径、公顷蓄积等林分因子是当前主要影响森林碳储量的因素。在其他影响因素中,暗红壤分布区的森林生物质碳密度较高而在水稻土分布区则较低;此外,高海拔、中等立地质量土地上的森林碳密度较高。对于不同林业活动,2013-2020年南平市一直保持为森林(森林经营)、自然恢复增加的天然林和人工造林分别使森林生物质碳储量增加了0.34Tg C/a、0.85Tg C/a和1.05Tg C/a,同期因毁林和森林退化导致森林生物质碳储量分别减少0.75Tg C/a和0.42Tg C/a,森林生物质碳储量净增加1.09Tg C/a (或3.98Tg CO2/a),明显低于2013-2020森林碳储量净增量。对于土地利用变化较剧烈的区域,本文基于土地利用变化且区分林业活动路径的方法,能更准确地反映森林的碳汇和碳源及时空格局。2013-2020年间南平市一直保持为森林的生物质碳密度仅增长0.22Mg C hm-2 a-1,成熟林、过熟林面积占比增加使森林平均生长速率下降可能是主要原因。而同期通过自然恢复和人工造林使森林生物质碳密度分别增长4.00Mg C hm-2 a-1和4.10Mg C hm-2 a-1。优化龄组结构提升森林生长量、减少毁林和防止森林退化可以作为该区域未来森林增汇减排的有效举措。  相似文献   

4.
Rasineni GK  Guha A  Reddy AR 《Plant science》2011,181(4):428-438
The photosynthetic response of trees to rising CO2 concentrations largely depends on source-sink relations, in addition to differences in responsiveness by species, genotype, and functional group. Previous studies on elevated CO2 responses in trees have either doubled the gas concentration (>700 μmol mol−1) or used single large addition of CO2 (500-600 μmol mol−1). In this study, Gmelina arborea, a fast growing tropical deciduous tree species, was selected to determine the photosynthetic efficiency, growth response and overall source-sink relations under near elevated atmospheric CO2 concentration (460 μmol mol−1). Net photosynthetic rate of Gmelina was ∼30% higher in plants grown in elevated CO2 compared with ambient CO2-grown plants. The elevated CO2 concentration also had significant effect on photochemical and biochemical capacities evidenced by changes in FV/FM, ABS/CSm, ET0/CSm and RuBPcase activity. The study also revealed that elevated CO2 conditions significantly increased absolute growth rate, above ground biomass and carbon sequestration potential in Gmelina which sequestered ∼2100 g tree−1 carbon after 120 days of treatment when compared to ambient CO2-grown plants. Our data indicate that young Gmelina could accumulate significant biomass and escape acclimatory down-regulation of photosynthesis due to high source-sink capacity even with an increase of 100 μmol mol−1 CO2.  相似文献   

5.
城市住宅区作为城市生态系统重要的组成单元,其碳源汇对城市生态系统碳循环和碳平衡产生重要影响.本文采取案例分析、文献查阅、问卷调查等多种方法,获取关中地区城市住宅区CO2排放(碳源)与吸收(碳汇)数据,并分析其来源及空间分布情况.结果表明: 关中地区住宅区建材生产和改造更新过程CO2排放量最大;且建材类的CO2排放量远大于日常生活资料,仅有40%~52%碳排放发生在住宅区,其余发生在外围,呈现出碳源距离的空间波动性、成分的空间差异性以及圈层与分区分布.仅有9%~17%的碳排放可在住宅区内被吸收,外部空间被动承担大量碳汇功能,并显现为分层递变和空间分异.最后提出了碳源、碳汇空间管理技术和干预对策.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号