首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change has had a significant impact on natural ecosystems and endemic species around the world and substantial impacts are expected in the future. As a result, knowing how climate change affects endemic species can help in putting forward the necessary conservation efforts. The use of niche modeling to predict changes in species distributions under different climate change scenarios is becoming a hot topic in biological conservation. This study aimed to use the global circulation model (CMIP5) to model the current distribution of suitable habitat for three critically endangered Aloe species endemic to Kenya and Tanzania in order to determine the impact of climate change on their suitable habitat in the years 2050 and 2070. We used two representative concentration pathways scenarios (RCP4.5 and RCP8.5) to project the contraction of suitable habitats for Aloe ballyi Reynolds, A. classenii Reynolds, and A. penduliflora Baker. Precipitation, temperature and environmental variables (Potential evapotranspiration, land cover, soil sedimentary and solar radiation) have had a significant impact on the current distribution of all the three species. Although suitable habitat expansion and contraction are predicted for all the species, loss of original suitable habitat is expected to be extensive. Climate change is expected to devastate >44% and 34% of the original habitats of A. ballyi and A. classenii respectively. Based on our findings, we propose that areas predicted to contract due to climate change should be designated as key protection zones for Aloe species conservation.  相似文献   

2.
Population genetic theory and empirical evidence indicate that deleterious alleles can be purged in small populations. However, this viewpoint remains controversial. It is unclear whether natural selection is powerful enough to purge deleterious mutations when wild populations continue to decline. Pheasants are terrestrial birds facing a long-term risk of extinction as a result of anthropogenic perturbations and exploitation. Nevertheless, there are scant genomics resources available for conservation management and planning. Here, we analyzed comparative population genomic data for the three extant isolated populations of Brown eared pheasant (Crossoptilon mantchuricum) in China. We showed that C. mantchuricum has low genome-wide diversity and a contracting effective population size because of persistent declines over the past 100,000 years. We compared genome-wide variation in C. mantchuricum with that of its closely related sister species, the Blue eared pheasant (C. auritum) for which the conservation concern is low. There were detrimental genetic consequences across all C. mantchuricum genomes including extended runs of homozygous sequences, slow rates of linkage disequilibrium decay, excessive loss-of-function mutations, and loss of adaptive genetic diversity at the major histocompatibility complex region. To the best of our knowledge, this study is the first to perform a comprehensive conservation genomic analysis on this threatened pheasant species. Moreover, we demonstrated that natural selection may not suffice to purge deleterious mutations in wild populations undergoing long-term decline. The findings of this study could facilitate conservation planning for threatened species and help recover their population size.  相似文献   

3.
Global biodiversity hotspots are rich in endemic insect species, many of which are threatened by the ongoing anthropogenic pressures on their habitats. The Cape region (South Africa) is one of these biodiversity hotspots, maintaining a high number of endemics. However, the ecology of most insect species in this region remains poorly understood. The two Orthoptera species Betiscoides meridionalis and Betiscoides parva are endemic to the Cape region and specialized on restio vegetation. They are threatened by increasing wildfire frequencies and invasions of non-native plant species. However, this information has been inferred from habitat changes, whereas no ecological study on these species has been conducted since they have been described. In order to facilitate conservation management, information on the ecology of these species is urgently required. The aim of our study was (1) to obtain data on the population ecology (particularly population sizes and mobility), and (2) to study the behavior of both species in response to environmental factors. For this purpose a mark-recapture-study and an observational behavior study were conducted. Both species had small population sizes and a low mobility with males moving greater distances than females. Wind had a strong influence on the behavior of Betiscoides, particularly on the small males of B. parva. Future studies might thus focus on the question whether wind-exposure is a critical factor for habitat choice of this species. We strongly recommend enhancing the connectivity of restio habitats and restoring these habitats to prevent extinction of specialized insect species.  相似文献   

4.
Conservation of any species necessitates knowledge of its biology and natural history, as well as prospective locations or newer adaptive landscapes where the species can survive and thrive. This study presents habitat suitability and local conservation status of Taxus wallichiana and Abies pindrow in moist temperate forest of Hazara division, Pakistan. Data was collected through field surveys based on 363 samples from field, topographical and bioclimatic variables. In the present study, we employed the MaxEnt model exclusively for each tree species along with 23 independent or environment variables (19 bioclimatic and 4 topographic). The jackknife test was used to demonstrate the significance of variables with the highest gain, and it was found that overall tree cover, annual temperature range was the factors with the highest gain, while slope was amongst the least important. The MaxEnt model produced high accuracy for each tree species, with receiver operating characteristic (ROC), area under the curve (AUC), training mean testing values for Taxus wallichiana was 0.966 followed by 0.944 for Abies pindrow. Local conservation status of Taxus wallichiana and Abies pindrow was evaluated using IUCN criteria 2001. Taxus wallichiana was declared critically endangered locally as the population size reduced by 87%. In contrast, Abies pindrow was declared as endangered as population size reduced by 69% falling under endangered criteria A of IUCN. The decline in population size of Taxus wallichiana and Abies pindrow species were due to human cause anthropogenic activities such as exploitation and loss of habitat, the extent of occurrence, and slow regeneration of tree species. Results and field-based observation revealed that suitable habitat modeling showed unsuitable (0.0–0.2), less suitable (0.2–0.4), moderately (0.4–0.6), highly (0.6–0.7), and very highly (0.7–1.0) suitable habitat for Taxus wallichiana and Abies pindrow. Results also revealed that both species were distributed irregularly in the moist temperate forest of Hazara division. Habitat suitability of Taxus wallichiana and Abies pindrow can be considered one of most significant points toward conserving these tree species. Habitat loss is a major threat to their occurrence, which should be overcome by ensuring the protection of suitable habitat and conservation approaches. Considering the species ecological and economic value, it is essential to understand how the species distribution may vary as a result of climate change to establish effective conservation policies. This study also includes significant environmental elements that influence species distribution, which could help locate regions where the species could be planted. Forest tree species require effective, scientific, and long-term management and conservation techniques in the study area. Furthermore, the formulation and implementation of protective laws and policies are required to conserve and protect both the conifer species.  相似文献   

5.
Orophilous species are often unable to escape the consequences of climate change because mountains are surrounded by unsuitable habitats. Among them, several endemic species belonging to the genus Erebia Dalman (Lepidoptera, Nymphalidae, Satyrinae) can be considered as key species to assess the risk of biodiversity loss of mountain habitats. The aim of this paper is to measure changes that have occurred in the altitudinal distribution of Erebia cassioides on the Pollino Massif (Southern Italy) during the last 37 years. Sixteen sites sampled in 1975 have been resampled after about three decades (2004, 2012). In 1975 56 % of the sampled population inhabited sites above and 44 % sites below the treeline, while in 2004 and 2012 99 % of the population were observed above the treeline. Furthermore, we observed an uphill shift of 180 m in the barycentre altitude of the species distribution and an unexpected increased density of the population above the treeline which led to a range reduction coupled to population increase of E. cassioides. This pattern contrasts with the usually observed one that couples habitat reduction to population decreasing. The reason for the observed pattern is unclear, but the implication for conservation strategies could be important if confirmed for other species. In fact, during coming decades local extinctions as a consequence of climate change might be fewer and more delayed than expected, and relict populations of cold adapted species could be preserved for a longer time span within optimal habitat refugia.  相似文献   

6.
Species endemic to sky island systems are isolated to mountain peaks and high elevation plateaux both geographically and ecologically, making them particularly vulnerable to the effects of climate change. Pressures associated with climate change have already been linked to local extinctions of montane species, emphasizing the importance of understanding the genetic diversity and population connectivity within sky islands systems for the conservation management of remaining populations. Our study focuses on the endangered alpine skink Pseudemoia cryodroma, which is endemic to the Victorian Alps in south-eastern Australia, and has a disjunct distribution in montane habitats above 1100 m a.s.l. Using mitochondrial DNA (mtDNA) and microsatellite loci, we investigated species delimitation, genetic connectivity and population genetic structure across the geographic range of this species. We found discordance between genetic markers, indicating historical mtDNA introgression at one of the study sites between P. cryodroma and the closely related, syntopic P. entrecasteauxii. Molecular diversity was positively associated with site elevation and extent of suitable habitat, with inbreeding detected in three of the five populations. These results demonstrate the complex interaction between geography and habitat in shaping the population structure and genetic diversity of P. cryodroma, and highlight the importance of minimising future habitat loss and fragmentation for the long-term persistence of this species.  相似文献   

7.
Elaeocarpus serratus L., commonly known as ‘rudraksh’ referred in the Ayurveda as a wonderful plant for strengthening body constitutions, has been recognized as a threatened plant of Assam, India. Traditionally, rudraksh beads, its bark and leaves are used to cure various ailments like stress, anxiety, depression, nerve pain, epilepsy, migraine, lack of concentration, asthma, hypertension, arthritis and liver diseases. The population stock of the species has been depleting very fast in its natural habitat due to rapid habitat fragmentation and changing climate altering the structural and functional integrity of the plant. Hence, conservation of E. serratus L. with proper scientific investigation to prevent from extinction in its wild habitat is urgently needed. The present study was emphasized with the specific objectives to study the distribution and population status, predication of suitable sites through ENM, standardization of macropropagation methods and reinforcement/reintroduction into the suitable wild habitat to improve conservation status. In the present investigation E. serratus L. was reported in few locations of Assam and Arunachal Pradesh with population sizes of mean density, frequency of occurrence and abundance in relation to other associated species as 0.333, 13.922 and 2.215 respectively. For improving the conservation status, potential area and habitat for reinforcement was predicted using Maximum Entropy (MaxEnt) distribution modelling algorithm. Subsequently, macropropagation protocol was standardized through seed germination and air-layering; saplings were raised and 1050 saplings were reintroduced to the wild habitats selected on the basis of ecological niche modelling. Survival rate was found significantly high as 68%, suggesting that our approach is effective for changing population status and to conserve the plant.  相似文献   

8.
《Ecological Informatics》2012,7(6):364-370
Temperate forests of Chile exhibit high biodiversity, which generates a wide range of habitats for wildlife. These valuable natural ecosystems have been affected by major natural and anthropogenic processes that have reduced habitats, resulting in serious ecological problems, given both the high endemism of certain avian groups in these forests and the complexity of their habitat selection. Continued degradation and ecosystem problems could lead to the extinction of such groups. In spite of this possibility, ecologically valuable wildlife conservation is seldom integrated into forest management decision-making processes. This study aims to integrate wildlife into forest management, identifying potential habitats for two endemic birds of high ecological value, the Black throated Huet-Huet (Pteroptochos tarnii), and the Ochre-flanked Tapaculo (Eugralla paradoxa). Both species inhabit an ecotonal area between evergreen and sclerophyllous forests, making them high-quality bio-indicator species for the degree of conservation of temperate forest. The integration of environmental information and a geostatistical model based on the criterion of maximum entropy (Maxent model) identifies the most important variables that explain the presence of each species. Pteroptochos tarnii is less restrictive in its choice of habitat than Eugralla paradoxa, requiring merely certain topographical condition (elevation, ground slope and aspect). However Eugralla paradoxa requires not only the same topographical features, but also eco-geographical characteristics such as distance to trails, waterways and ecotones. Maxent analysis showed that for both species, the model most capable of predicting their choice of microhabitat was not random based, but rather one based on topographical and environmental variables. The integration of Maxent and Geographic Information Systems (GIS) tools could help to solve problems of wildlife habitat conservation and forest planning.  相似文献   

9.
Among nine endemic Lucanus beetles in Taiwan, L. datunensis is the island’s smallest and most threatened species. It currently exists as only one population located in tall grasslands of Mt. Datun in the Yangmingshan National Park. Given the isolated population, unique subtropical grassland, and the threats resulting from human activities, L. datunensis raises immediate conservation concern for its long-term survival. Phylogenies reconstructed from combined mitochondrial cytochrome oxidase subunit 1 (1310 bps) and nuclear wingless (436 bps) genes were resolved and placed L. datunensis as a phylogenetically distinct species sister to L. fortunei from China. All 13 examined individuals of L. datunensis shared just one mitochondrial haplotype suggesting extremely low mitochondrial DNA diversity and a small effective population size. L. datunensis and morphologically closest L. miwai were distantly related and appear to have evolved in parallel the life history traits of a small body size and diurnal mate-searching behavior. We hypothesize that these habitat-associated characters are convergent adaptations that have evolved in response to shifts from forests to grasslands.  相似文献   

10.
Recent climate projections have shown that the distribution of organisms in island biotas is highly affected by climate change. Here, we present the result of the analysis of niche dynamics of a plant group, Memecylon, in Sri Lanka, an island, using species occurrences and climate data. We aim to determine which climate variables explain current distribution, model how climate change impacts the availability of suitable habitat for Memecylon, and determine conservation priority areas for Sri Lankan Memecylon. We used georeferenced occurrence data of Sri Lankan Memecylon to develop ecological niche models and assess both current and future potential distributions under six climate change scenarios in 2041–2060 and 2061–2080. We also overlaid land cover and protected area maps and performed a gap analysis to understand the impacts of land‐cover changes on Memecylon distributions and propose new areas for conservation. Differences among suitable habitats of Memecylon were found to be related to patterns of endemism. Under varying future climate scenarios, endemic groups were predicted to experience habitat shifts, gains, or losses. The narrow endemic Memecylon restricted to the montane zone were predicted to be the most impacted by climate change. Projections also indicated that changes in species’ habitats can be expected as early as 2041–2060. Gap analysis showed that while narrow endemic categories are considerably protected as demonstrated by their overlap with protected areas, more conservation efforts in Sri Lankan forests containing wide endemic and nonendemic Memecylon are needed. This research helped clarify general patterns of responses of Sri Lankan Memecylon to global climate change. Data from this study are useful for designing measures aimed at filling the gaps in forest conservation on this island.  相似文献   

11.
Freshwater fish biodiversity loss in the Mediterranean Basin is regarded as among the highest globally, with long-term population data sets required to discern long-term population trends of threatened species, in order to design appropriate conservation interventions. In this study, we assessed the population trends of two threatened freshwater fishes, Valencia letourneuxi and Valencia robertae, employing the most recent and largest compiled database to date (16 populations over 14 years). We applied the innovative methodology of the Living Planet Index (LPI) to assess the average rate of change over time across a set of V. letourneuxi and V. robertae populations in Greece. The LPI application revealed a dramatic decline of both species, with V. letourneuxi declining by 97.7% and V. robertae by 91.0%. Beta regression showed that water pollution, eutrophication and alien Eastern mosquitofish Gambusia holbrooki’ presence were the three best fitting predictors of the decline of V. letourneuxi and V. robertae populations. Based on the above, we outline the conservation measures urgently required to revert the near collapse of the populations of the two species. Conservation actions include the strict protection of the their lowland spring habitats, habitat improvement through changes in water management and agricultural practices, mosquitofish invasion prevention and mosquitofish impact mitigation measures, as well as translocation actions and captive breeding. Lastly, the association patterns of the proposed conservation actions with anthropogenic pressures and their expected outcomes were analysed through an alluvial diagram, providing insights on the scale of pressures mitigated by conservation actions and on their conservation benefits.  相似文献   

12.
Understanding habitat quality and landscape connectivity and exploring corridors connecting habitat patches are crucial for conservation, particularly for species distributed among isolated populations. The Sichuan golden snub-nosed monkey, Rhinopithecus roxellana, is an Endangered primate species endemic to mountainous forests in China. Its easternmost distribution lies in the Shennongjia area, which harbors an isolated subspecies, R. roxellana hubeiensis. Unfortunately, it has experienced significant habitat loss, fragmentation, and dramatic population decline in recent decades, primarily due to increased human disturbance. To quantify habitat quality, identify suitable habitat patches, and detect possible linkages among these patches for R. roxellana hubeiensis, we conducted habitat suitability assessments and landscape connectivity analyses in the Shennongjia area based on a set of environmental factors. We created a habitat quality model and a movement cost surface for the Shennongjia area based on a habitat suitability index, graph theory, expert knowledge, field experience, and information from the literature. Our results show that suitable habitat for R. roxellana hubeiensis in Shennongjia is fragmented and limited, and that this is particularly true for highly suitable habitats. We detected six core habitat patches and six least-cost paths and corridors. Our study does not provide accurate distributions of the monkeys and their habitat use. However, it identifies the most feasible and traversable habitats and corridors, which should be conservation priorities for this subspecies, and provides valuable guidance for reevaluating habitat conservation plans.  相似文献   

13.
The upsurge in anthropogenic climate change has accelerated the habitat loss and fragmentation of wild animals and plants. The rare and endangered plants are important biodiversity elements. However, the lack of comprehensive and reliable information on the spatial distribution of these organisms has hampered holistic and efficient conservation management measures. We explored the consequences of climate change on the geographical distribution of Firmiana kwangsiensis (Malvaceae), an endangered species, to provide a reference for conservation, introduction, and cultivation of this species in new ecological zones. Modeling of the potential distribution of F. kwangsiensis under the current and two future climate scenarios in maximum entropy was performed based on 30 occurrence records and 27 environmental variables of the plant. We found that precipitation‐associated and temperature‐associated variables limited the potentially suitable habitats for F. kwangsiensis. Our model predicted 259,504 km2 of F. kwangsiensis habitat based on 25 percentile thresholds. However, the high suitable habitat for F. kwangsiensis is only about 41,027 km2. F. kwangsiensis is most distributed in Guangxi''s protected areas. However, the existing reserves are only 2.7% of the total suitable habitat and 4.2% of the high suitable habitat for the plant, lower than the average protection area in Guangxi (7.2%). This means the current protected areas network is insufficient, underlining the need for alternative conservation mechanisms to protect the plant habitat. Our findings will help identify additional F. kwangsiensis localities and potential habitats and inform the development and implementation of conservation, management, and cultivation practices of such rare tree species.  相似文献   

14.
European hare Lepus europaeus populations have undergone recent declines but the species has successfully naturalised in many countries outside its native range. It was introduced to Ireland during the mid-late nineteenth century for field sport and is now well established in Northern Ireland. The native Irish hare Lepus timidus hibernicus is an endemic subspecies of mountain hare L. timidus and has attracted major conservation concern following a long-term population decline during the twentieth century and is one of the highest priority species for conservation action in Ireland. Little is known about the European hare in Ireland or whether it poses a significant threat to the native mountain hare subspecies by compromising its ecological security or genetic integrity. We review the invasion ecology of the European hare and examine evidence for interspecific competition with the mountain hare for habitat space and food resources, interspecific hybridisation, disease and parasite transmission and possible impacts of climate change. We also examine the impact that introduced hares can have on native non-lagomorph species. We conclude that the European hare is an emerging and significant threat to the conservation status of the native Irish hare. Invasive mammal species have been successfully eradicated from Ireland before and immediate action is often the only opportunity for cost-effective eradication. An urgent call is issued for further research whilst the need for a European hare invasive Species Action Plan (iSAP) and Eradication strategy are discussed.  相似文献   

15.
Reintroduction or translocation of threatened plant species, as part of in situ conservation efforts, often failed because of the lack or the poor quality of remaining natural habitats due to human disturbances and invasion by alien species, especially in island ecosystems. We conducted a study on Ochrosia tahitensis (Apocynaceae), a critically endangered endemic small tree in the tropical high volcanic island of Tahiti (French Polynesia, South Pacific) to find the most suitable sites for future translocation. Distribution models were produced based on climate, topography, and plant community inventories (i.e. species composition and abundance, canopy height and openness, basal area of woody species) of the few remnant populations. Results show that this species, comprising 32 reproductive trees within 16 populations known in the wild, remains restricted to a few ecological refuges representing a very small part of its potential ecological range located on the northwest side of the island, and shares its current habitats with a set of more common native woody species found in mesic-wet forests. The use of native plant communities as a proxy for habitat suitability along with species distribution modelling can enhance translocation success in island ecosystems, but only if the major threats causing population decrease, mainly forest destruction and fragmentation and invasive alien species, are effectively managed.  相似文献   

16.
Field survey conducted to understand habitat, distribution, population structure and conservation status of Lilium polyphyllum. Three populations (total 649 individuals) are in decline because of habitat degradation, agriculture invasion and over exploitation. Our finding confirmed critically endangered status of the species, although with new criteria. We recommended integrated conservation plan.  相似文献   

17.
Anthropogenic habitat fragmentation of species that live in naturally patchy metapopulations such as mountaintops or sky islands experiences two levels of patchiness. Effects of such multilevel patchiness on species have rarely been examined. Metapopulation theory suggests that patchy habitats could have varied impacts on persistence, dependent on differential migration. It is not known whether montane endemic species, evolutionarily adapted to natural patchiness, are able to disperse between anthropogenic fragments at similar spatial scales as natural patches. We investigated historic and contemporary gene flow between natural and anthropogenic patches across the distribution range of a Western Ghats sky‐island‐endemic bird species complex. Data from 14 microsatellites for 218 individuals detected major genetic structuring by deep valleys, including one hitherto undescribed barrier. As expected, we found strong effects of historic genetic differentiation across natural patches, but not across anthropogenic fragments. Contrastingly, contemporary differentiation (DPS) was higher relative to historic differentiation (FST) in anthropogenic fragments, despite the species’ ability to historically traverse shallow valleys. Simulations of recent isolation resulted in high DPS/FST values, confirming recent isolation in Western Ghats anthropogenic fragments and also suggesting that this ratio can be used to identifying recent fragmentation in the context of historic connectedness. We suggest that in this landscape, in addition to natural patchiness affecting population connectivity, anthropogenic fragmentation additionally impacts connectivity, making anthropogenic fragments akin to islands within natural islands of montane habitat, a pattern that may be recovered in other sky‐island systems.  相似文献   

18.
Lake sturgeon (Acipenser fulvescens) are of conservation concern throughout their range. Many populations are dependent on fluvial habitats which have been increasingly impacted and fragmented by dams and human development. Although lake sturgeon were once abundant in the Ottawa River and its tributaries, historical commercial harvests and other anthropogenic factors caused severe declines and low contemporary numbers in lake sturgeon populations. Contemporary habitat fragmentation by dams may be increasing isolation among habitat patches and local rates of decline, raising concerns for persistence of local populations. We used microsatellite DNA markers to assess population structure and diversity of lake sturgeon in the Ottawa River, and analyzed samples from 10 sites that represent more than 500 km of riverine habitat. To test for evidence of anthropogenic fragmentation, patterns of genetic diversity and connectivity within and among river segments were tested for concordance with geographic location, separation by distance and obstacles to migration, considering both natural and artificial barriers as well as barrier age. Despite extensive habitat fragmentation throughout the Ottawa River, statistical analyses failed to refute panmixia of lake sturgeon in this system. Although the long generation time of lake sturgeon appears to have effectively guarded against the negative genetic impacts of habitat fragmentation and loss so far, evidence from demographic studies indicates that restoring connectivity among habitats is needed for the long-term conservation and management of this species throughout this river system.  相似文献   

19.
Species distribution modelling is gaining popularity due to significant habitat shifts in many plant and animal species caused by climate change. This issue is particularly pressing for species that provide significant ecosystem goods and services. A prominent case is the valuable African rosewood tree (Pterocarpus erinaceus) that is threatened in sub-Saharan Africa, while its present distribution, habitat requirements and the impact of climate change are not fully understood. This native species naturally occurs in various savanna types, but anthropogenic interventions have considerably reduced its natural populations in the past decades. In this study, ensemble modelling was used to predict the current and future distribution potential of the species in Burkina Faso. Fifty-four environmental variables were selected to describe its distribution in the years 2050 and 2070 based on the greenhouse gas concentration trajectories RCP4.5 and 8.5, and the general circulation models CNRM-CM5 and HadGEM2-CC. A network of protected areas in Burkina Faso was also included to assess how many of the suitable habitats may contribute to the conservation of the species. The factors isothermality (31%), minimum temperature of coldest month (31%), pH in H2O at horizon 0–5 cm (11%), silt content at horizon 60–100 cm (9.2%) and precipitation of warmest quarter (8%) were the most influential distribution drivers for the species. Under current climate conditions, potentially highly suitable habitats cover an area of 129,695 km2, i.e., 47% of Burkina Faso. The projected distribution under RCP4.5 and 8.5 showed that this area will decrease, and that the decline of the species will be pronounced. The two models used in this study, forecast a habitat loss of up to 61% for P. erinaceus. Hence, development and implementation of a conservation programme are required to save the species in its native range. This study will help land managers prioritise areas for protection of the species, and avoid introducing it to inappropriate areas unless suitable conditions are artificially created through the management options applied.  相似文献   

20.
Current rates of wildlife habitat loss have placed increasing demands on managers to develop, validate and implement tools aimed at improving our ability to evaluate such impacts on wildlife. Here, we present a case study conducted at the Natural Area of Doñana (SW Spain) where remote sensing and stable isotope (δ13C, δ15N) analyses of individuals were combined to unravel (1) the effect of variations in availability of natural food resources (i.e. from natural marshes) on reproductive performance of a Slender-billed Gull (Chroicocephalus genei) population, and (2) the role of two adjacent, artificial systems (a fish farm and saltmines) as alternate anthropogenic feeding areas. Based on long-term (1983–2004) remote-sensing, we inferred the average extent of flooded area at the marshland (a proxy to natural resource availability) annually. Estimated flooded areas (ranging from extreme drought [ca. 151 ha, 1995] to high moisture [15,049 ha, 2004]) were positively related to reproductive success of gulls (estimated for the 1993–2004 period, and ranging from ca. 0 to 1.7 fledglings per breeding pairs), suggesting that habitat availability played a role in determining their reproductive performance. Based on blood δ13C and δ15N values of fledglings, 2001–2004, and a Bayesian isotopic mixing model, we conclude that saltmines acted as the main alternative foraging habitat for gulls, with relative contributions increasing as the extent of marshland decreased. Although adjacent, anthropogenic systems have been established as the preferred breeding sites for this gull population, dietary switches towards exploitation of alternative (anthropogenic) food resources negatively affected the reproductive output of this species, thus challenging the perception that these man-made systems are necessarily a reliable buffer against loss of natural feeding habitats. The methodology and results derived from this study could be extended to a large suite of threatened natural communities worldwide, thus providing a useful framework for management and conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号