首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Trypanosoma cruzi is the causative agent of Chagas disease, which affects more than 9 million people in Latin America. We have generated a draft genome sequence of the TcI strain Sylvio X10/1 and compared it to the TcVI reference strain CL Brener to identify lineage-specific features. We found virtually no differences in the core gene content of CL Brener and Sylvio X10/1 by presence/absence analysis, but 6 open reading frames from CL Brener were missing in Sylvio X10/1. Several multicopy gene families, including DGF, mucin, MASP and GP63 were found to contain substantially fewer genes in Sylvio X10/1, based on sequence read estimations. 1,861 small insertion-deletion events and 77,349 nucleotide differences, 23% of which were non-synonymous and associated with radical amino acid changes, further distinguish these two genomes. There were 336 genes indicated as under positive selection, 145 unique to T. cruzi in comparison to T. brucei and Leishmania. This study provides a framework for further comparative analyses of two major T. cruzi lineages and also highlights the need for sequencing more strains to understand fully the genomic composition of this parasite.  相似文献   

3.

Background

Trypanosoma cruzi is the causal agent of Chagas Disease. Recently, the genomes of representative strains from two major evolutionary lineages were sequenced, allowing the construction of a detailed genetic diversity map for this important parasite. However this map is focused on coding regions of the genome, leaving a vast space of regulatory regions uncharacterized in terms of their evolutionary conservation and/or divergence.

Methodology

Using data from the hybrid CL Brener and Sylvio X10 genomes (from the TcVI and TcI Discrete Typing Units, respectively), we identified intergenic regions that share a common evolutionary ancestry, and are present in both CL Brener haplotypes (TcII-like and TcIII-like) and in the TcI genome; as well as intergenic regions that were conserved in only two of the three genomes/haplotypes analyzed. The genetic diversity in these regions was characterized in terms of the accumulation of indels and nucleotide changes.

Principal Findings

Based on this analysis we have identified i) a core of highly conserved intergenic regions, which remained essentially unchanged in independently evolving lineages; ii) intergenic regions that show high diversity in spite of still retaining their corresponding upstream and downstream coding sequences; iii) a number of defined sequence motifs that are shared by a number of unrelated intergenic regions. A fraction of indels explains the diversification of some intergenic regions by the expansion/contraction of microsatellite-like repeats.  相似文献   

4.

Background

The factors influencing variation in the clinical forms of Chagas disease have not been elucidated; however, it is likely that the genetics of both the host and the parasite are involved. Several studies have attempted to correlate the T. cruzi strains involved in infection with the clinical forms of the disease by using hemoculture and/or PCR-based genotyping of parasites from infected human tissues. However, both techniques have limitations that hamper the analysis of large numbers of samples. The goal of this work was to identify conserved and polymorphic linear B-cell epitopes of T. cruzi that could be used for serodiagnosis and serotyping of Chagas disease using ELISA.

Methodology

By performing B-cell epitope prediction on proteins derived from pair of alleles of the hybrid CL Brener genome, we have identified conserved and polymorphic epitopes in the two CL Brener haplotypes. The rationale underlying this strategy is that, because CL Brener is a recent hybrid between the TcII and TcIII DTUs (discrete typing units), it is likely that polymorphic epitopes in pairs of alleles could also be polymorphic in the parental genotypes. We excluded sequences that are also present in the Leishmania major, L. infantum, L. braziliensis and T. brucei genomes to minimize the chance of cross-reactivity. A peptide array containing 150 peptides was covalently linked to a cellulose membrane, and the reactivity of the peptides was tested using sera from C57BL/6 mice chronically infected with the Colombiana (TcI) and CL Brener (TcVI) clones and Y (TcII) strain.

Findings and Conclusions

A total of 36 peptides were considered reactive, and the cross-reactivity among the strains is in agreement with the evolutionary origin of the different T. cruzi DTUs. Four peptides were tested against a panel of chagasic patients using ELISA. A conserved peptide showed 95.8% sensitivity, 88.5% specificity, and 92.7% accuracy for the identification of T. cruzi in patients infected with different strains of the parasite. Therefore, this peptide, in association with other T. cruzi antigens, may improve Chagas disease serodiagnosis. Together, three polymorphic epitopes were able to discriminate between the three parasite strains used in this study and are thus potential targets for Chagas disease serotyping.  相似文献   

5.
Trypanosoma cruzi the agent of Chagas disease is a monophyletic but heterogeneous group conformed by several Discrete Typing Units (DTUs) named TcI to TcVI characterized by genetic markers. The trans-sialidase (TS) is a virulence factor involved in cell invasion and pathogenesis that is differentially expressed in aggressive and less virulent parasite stocks. Genes encoding TS-related proteins are included in a large family divided in several groups but only one of them contains TS genes. Two closely related genes differing in a T/C transition encode the enzymatically active TS (aTS) and a lectin-like TS (iTS). We quantified the aTS/iTS genes from TcII and TcVI aggressive and TcI low virulent strains and found variable aTS number (1–32) per haploid genome. In spite of being low TS enzyme-expressers, TcI strains carry 28–32 aTS gene copies. The intriguing absence of iTS genes in TcI strains together with the presence of aTS/iTS in TcII and TcVI strains (virulent) were observed. Moreover, after sequencing aTS/iTS from 38 isolates collected along the Americas encompassing all DTUs, the persistent absence of the iTS gene in TcI, TcIII and TcIV was found. In addition, the sequence clustering together with T/C transition analysis correlated to DTUs of T. cruzi. The consistence of TS results with both evolutionary genome models proposed for T. cruzi, namely the “Two Hybridization” and the “Three Ancestor” was discussed and reviewed to fit present findings. Parasite stocks to attempt genetic KO or to assay the involvement of iTS in parasite biology and virulence are finally available.  相似文献   

6.
A century after the discovery of Trypanosoma cruzi in a child living in Lassance, Minas Gerais, Brazil in 1909, many uncertainties remain with respect to factors determining the pathogenesis of Chagas disease (CD). Herein, we simultaneously investigate the contribution of both host and parasite factors during acute phase of infection in BALB/c mice infected with the JG and/or CL Brener T. cruzi strains. JG single infected mice presented reduced parasitemia and heart parasitism, no mortality, levels of pro-inflammatory mediators (TNF-α, CCL2, IL-6 and IFN-γ) similar to those found among naïve animals and no clinical manifestations of disease. On the other hand, CL Brener single infected mice presented higher parasitemia and heart parasitism, as well as an increased systemic release of pro-inflammatory mediators and higher mortality probably due to a toxic shock-like systemic inflammatory response. Interestingly, coinfection with JG and CL Brener strains resulted in intermediate parasitemia, heart parasitism and mortality. This was accompanied by an increase in the systemic release of IL-10 with a parallel increase in the number of MAC-3+ and CD4+ T spleen cells expressing IL-10. Therefore, the endogenous production of IL-10 elicited by coinfection seems to be crucial to counterregulate the potentially lethal effects triggered by systemic release of pro-inflammatory mediators induced by CL Brener single infection. In conclusion, our results suggest that the composition of the infecting parasite population plays a role in the host response to T. cruzi in determining the severity of the disease in experimentally infected BALB/c mice. The combination of JG and CL Brener was able to trigger both protective inflammatory immunity and regulatory immune mechanisms that attenuate damage caused by inflammation and disease severity in BALB/c mice.  相似文献   

7.
A gene coding for a DNA polymerase β from the Trypanosoma cruzi Miranda clone, belonging to the TcI lineage, was cloned (Miranda Tcpolβ), using the information from eight peptides of the T. cruzi β-like DNA polymerase purified previously. The gene encodes for a protein of 403 amino acids which is very similar to the two T. cruzi CL Brener (TcIIe lineage) sequences published, but has three different residues in highly conserved segments. At the amino acid level, the identity of TcI-polβ with mitochondrial polβ and polβ-PAK from other trypanosomatids was between 68–80% and 22–30%, respectively. Miranda Tc-polβ protein has an N-terminal sequence similar to that described in the mitochondrial Crithidia fasciculata polβ, which suggests that the TcI-polβ plays a role in the organelle. Northern and Western analyses showed that this T. cruzi gene is highly expressed both in proliferative and non-proliferative developmental forms. These results suggest that, in addition to replication of kDNA in proliferative cells, this enzyme may have another function in non-proliferative cells, such as DNA repair role similar to that which has extensively been described in a vast spectrum of eukaryotic cells.  相似文献   

8.
9.
Pentamidine is a second-line agent used in the treatment of leishmaniasis and its mode of action and mechanism of resistance is not well understood. It was previously demonstrated that transfection of promastigotes and amastigotes with the ABC transporter PRP1 gene confers resistance to pentamidine. To further clarify this point, we generated Leishmania amazonensis mutants resistant to pentamidine. Our results indicated that this ABC transporter is not associated with pentamidine resistance in lines generated by drug pressure through amplification or overexpression mechanisms of PRP1 gene.  相似文献   

10.
Studies of drug resistance in the protozoan parasites of the genus Leishmania have been helpful in revealing biochemical pathways as potential drug targets. The chlorinated glutamine analogue acivicin has shown good activity against Leishmania cells and was shown to target several enzymes containing amidotransferase domains. We selected a Leishmania tarentolae clone for acivicin resistance. The genome of this resistant strain was sequenced and the gene coding for the amidotransferase domain-containing GMP synthase was found to be amplified. Episomal expression of this gene in wild-type L. tarentolae revealed a modest role in acivicin resistance. The most prominent defect observed in the resistant mutant was reduced uptake of glutamate, and through competition experiments we determined that glutamate and acivicin, but not glutamine, share the same transporter. Several amino acid transporters (AATs) were either deleted or mutated in the resistant cells. Some contributed to the acivicin resistance phenotype although none corresponded to the main glutamate transporter. Through sequence analysis one AAT on chromosome 22 corresponded to the main glutamate transporter. Episomal expression of the gene coding for this transporter in the resistant mutant restored glutamate transport and acivicin susceptibility. Its genetic knockout led to reduced glutamate transport and acivicin resistance. We propose that acivicin binds covalently to this transporter and as such leads to decreased transport of glutamate and acivicin thus leading to acivicin resistance.  相似文献   

11.

Background

The Trypanosoma cruzi genome was sequenced from a hybrid strain (CL Brener). However, high allelic variation and the repetitive nature of the genome have prevented the complete linear sequence of chromosomes being determined. Determining the full complement of chromosomes and establishing syntenic groups will be important in defining the structure of T. cruzi chromosomes. A large amount of information is now available for T. cruzi and Trypanosoma brucei, providing the opportunity to compare and describe the overall patterns of chromosomal evolution in these parasites.

Methodology/Principal Findings

The genome sizes, repetitive DNA contents, and the numbers and sizes of chromosomes of nine strains of T. cruzi from four lineages (TcI, TcII, TcV and TcVI) were determined. The genome of the TcI group was statistically smaller than other lineages, with the exception of the TcI isolate Tc1161 (José-IMT). Satellite DNA content was correlated with genome size for all isolates, but this was not accompanied by simultaneous amplification of retrotransposons. Regardless of chromosomal polymorphism, large syntenic groups are conserved among T. cruzi lineages. Duplicated chromosome-sized regions were identified and could be retained as paralogous loci, increasing the dosage of several genes. By comparing T. cruzi and T. brucei chromosomes, homologous chromosomal regions in T. brucei were identified. Chromosomes Tb9 and Tb11 of T. brucei share regions of syntenic homology with three and six T. cruzi chromosomal bands, respectively.

Conclusions

Despite genome size variation and karyotype polymorphism, T. cruzi lineages exhibit conservation of chromosome structure. Several syntenic groups are conserved among all isolates analyzed in this study. The syntenic regions are larger than expected if rearrangements occur randomly, suggesting that they are conserved owing to positive selection. Mapping of the syntenic regions on T. cruzi chromosomal bands provides evidence for the occurrence of fusion and split events involving T. brucei and T. cruzi chromosomes.  相似文献   

12.

Background

Drug resistance is a major problem in leishmaniasis chemotherapy. RNA expression profiling using DNA microarrays is a suitable approach to study simultaneous events leading to a drug-resistance phenotype. Genomic analysis has been performed primarily with Old World Leishmania species and here we investigate molecular alterations in antimony resistance in the New World species L. amazonensis.

Methods/Principal Findings

We selected populations of L. amazonensis promastigotes for resistance to antimony by step-wise drug pressure. Gene expression of highly resistant mutants was studied using DNA microarrays. RNA expression profiling of antimony-resistant L. amazonensis revealed the overexpression of genes involved in drug resistance including the ABC transporter MRPA and several genes related to thiol metabolism. The MRPA overexpression was validated by quantitative real-time RT-PCR and further analysis revealed that this increased expression was correlated to gene amplification as part of extrachromosomal linear amplicons in some mutants and as part of supernumerary chromosomes in other mutants. The expression of several other genes encoding hypothetical proteins but also nucleobase and glucose transporter encoding genes were found to be modulated.

Conclusions/Significance

Mechanisms classically found in Old World antimony resistant Leishmania were also highlighted in New World antimony-resistant L. amazonensis. These studies were useful to the identification of resistance molecular markers.  相似文献   

13.
Multidrug-resistant Escherichia coli is one of the most important public health concern worldwide that can be transferred through the food of animal origin to human being causing serious infection. The genetic responsibility of such resistant genes (Plasmids, integrons, and transposons) can be easily transmitted from the resistant strain to another. Therefore, the main objectives of the study is the molecular characterization of the resistant Escherichia coli isolates recovered from food samples and human isolates collected from outpatient clinics, KSA especially the resistance strains against aminoglycoside resistance genes which are responsible for the resistance against gentamicin and the resistance caused β-lactamases genes. Examination of food samples revealed 120 Escherichia coli isolates (22.22%) (30 strains O26: K60, 28 strains O128: K67, 20 strains O111: K58, 18 strains O126: K58, 10 strains O55: K59, 9 strains O86: K61 and 5 strains O157: H7). All the strains were highly resistance to penicillin, amoxicillin-clavulanic and erythromycin with a percentage of 100%, while the resistance to gentamicin, ampicillin, oxytetracycline, chloramphenicol, norfloxacin, trimethoprim, and nalidixic acid were 83%, 75%, 65.3%, 55.8%, 36.5%, 30.7% and 26.9% respectively. On the other hand, 59.6% of tested strains were sensitive to ciprofloxacin. Positive amplification of 896?bp fragments specific for aacC2 genes were observed by PCR designated for the detection of the aminoglycoside resistance genes. Meanwhile, multiplex PCR designed to detect the ampicillin and amoxicillin-clavulanic acid resistant E. coli isolates revealed positive amplification of 516?bp fragments specific for BlaTEM gene with all the resistant strains to ampicillin and amoxicillin-clavulanic acid. Moreover, positive amplification of 392?bp fragments specific for BlaSHV resistant gene were observed with (60.52%) of E. coli isolate. While all the tested strains were negative for amplification of BlaOXA_1.  相似文献   

14.
The multidrug-resistant rate of Klebsiella pneumoniae has risen rapidly worldwide. To better understand the multidrug resistance situation and molecular characterization of Klebsiella pneumoniae, a total of 153 Klebsiella pneumoniae isolates were collected, and drug susceptibility test was performed to detect its susceptibility patterns to 13 kinds of antibiotics. Phenotypic tests for carbapenemases ESBLs and AmpC enzyme-producing strains were performed to detect the resistance phenotype of the isolates. Then PCR amplification and sequencing analysis were performed for the drug resistance determinants. The results showed that 63 strains harbored bla CTX-M gene, and 14 strains harbored bla DHA gene. Moreover, there were 5 strains carrying bla KPC gene, among which 4 strains carried bla CTX-M, bla DHA and bla KPC genes, and these 4 strains were also resistant to imipenem. Our data indicated that drug-resistant Klebsiella pneumoniae were highly prevalent in the hospital. Thus it is warranted that surveillance of epidemiology of those resistant isolates should be a cause for concern, and appropriate drugs should be chosen.  相似文献   

15.
Two clones of Leishmania mexicana resistant to 5 μM (LmR5CL2) and 20 μ M (LmR20CLl) pentamidine, derived from a parental wild-type clone (LmWTCL3) were selected in vitro using a continuons drug pressure protocol. Both resistant clones expressed a cross-resistance to diminazene aceturate. No differences in their in-vitro infectivity for mouse peritoneal macrophages between wild-type and pentamidine-resistant promastigotes were observed. During these experiments, promastigotes of LmR20CL1 derived from intramacrophagic amastigote forms reverted to the pentamidine-sensitive phenotype, unlike the lower resistant ones. In the same way, when a complete developmental sequence of L. mexicana was achieved in axenic cultures, LmR20CL1 promastigotes derived from axenically growing amastigotes expressed an IC50 value close to the wild-type one, whereas resulting LmR5CL2 promastigotes remained pentamidine resistant. This modulation of the chemoresistance during the developmental life cycle could be significant in the transmission of drug-resistant strains by Phlebotominae as well as in basic research to follow drug resistance during the in-vitro and in-vivo life cycle of Leishmania.  相似文献   

16.
Pentavalent antimonial compounds have been the first line therapy for leishmaniasis; unfortunately the rate of treatment failure of anthroponotic cutaneous leishmaniasis (ACL) is increasing due to emerging of drug resistance. Elucidation of the molecular mechanisms operating in antimony resistance is critical for development of new strategies for treatment. Here, we used a cDNA-AFLP approach to identify gene(s) which are differentially expressed in resistant and sensitive Leishmania tropica field isolates. We identified five genes, aquaglyceroporin (AQP1) acts in drug uptake, ATP-binding cassette (ABC) transporter (MRPA) involved in sequestration of drug, phosphoglycerate kinase (PGK) implicated in glycolysis metabolism, mitogen activated protein kinase (MAPK) and protein tyrosine phosphatase (PTP) responsible for phosphorylation pathway. The results were confirmed using real time RT-PCR which revealed an upregulation of MRPA, PTP and PGK genes and downregulation of AQP1 and MAPK genes in resistant isolate. To our knowledge, this is the first report of identification of PTP and PGK genes potentially implicated in resistance to antimonials. Our findings support the idea that distinct biomolecules might be involved in antimony resistance in L. tropica field isolates.  相似文献   

17.
18.
Previous studies of adaptation to the glucose analog, 2-deoxyglucose, by Saccharomyces cerevisiae have utilized haploid cells. In this study, diploid cells were used in the hope of identifying the distinct genetic mechanisms used by diploid cells to acquire drug resistance. While haploid cells acquire resistance to 2-deoxyglucose primarily through recessive alleles in specific genes, diploid cells acquire resistance through dominant alleles, haploinsufficiency, gene duplication and aneuploidy. Dominant-acting, missense alleles in all three subunits of yeast AMP-activated protein kinase confer resistance to 2-deoxyglucose. Dominant-acting, nonsense alleles in the REG1 gene, which encodes a negative regulator of AMP-activated protein kinase, confer 2-deoxyglucose resistance through haploinsufficiency. Most of the resistant strains isolated in this study achieved resistance through aneuploidy. Cells with a monosomy of chromosome 4 are resistant to 2-deoxyglucose. While this genetic strategy comes with a severe fitness cost, it has the advantage of being readily reversible when 2-deoxyglucose selection is lifted. Increased expression of the two DOG phosphatase genes on chromosome 8 confers resistance and was achieved through trisomies and tetrasomies of that chromosome. Finally, resistance was also mediated by increased expression of hexose transporters, achieved by duplication of a 117 kb region of chromosome 4 that included the HXT3, HXT6 and HXT7 genes. The frequent use of aneuploidy as a genetic strategy for drug resistance in diploid yeast and human tumors may be in part due to its potential for reversibility when selection pressure shifts.  相似文献   

19.
20.
S-Adenosylmethionine (AdoMet) is an important methyl group donor that plays a central role in many essential biochemical processes. The parasite Leishmania can both synthesize and transport AdoMet. Leishmania cells resistant to the antifolate methotrexate due to a rearrangement in folate biopterin transporter (FBT) genes were cross-resistant to sinefungin, an AdoMet analogue. FBT gene rearrangements were also observed in Leishmania major cells selected for sinefungin resistance. One of the rearranged FBT genes corresponded to the main AdoMet transporter (AdoMetT1) of Leishmania as determined by gene transfection and gene inactivation experiments. AdoMetT1 was determined to be a high affinity plasma membrane transporter expressed constitutively throughout the growth phases of the parasite. Leishmania cells selected for resistance or naturally insensitive to sinefungin had lower expression of AdoMetT1. A new function in one carbon metabolism, also a pathway of interest for chemotherapeutic interventions, is described for a novel class of membrane proteins found in diverse organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号