首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autophagy     
《Autophagy》2013,9(12):2180-2182
Multidisciplinary approaches are increasingly being used to elucidate the role of autophagy in health and disease and to harness it for therapeutic purposes. The broad range of topics included in the program of the Vancouver Autophagy Symposium (VAS) 2013 illustrated this multidisciplinarity: structural biology of Atg proteins, mechanisms of selective autophagy, in silico drug design targeting ATG proteins, strategies for drug screening, autophagy-metabolism interplay, and therapeutic approaches to modulate autophagy. VAS 2013 took place at the British Columbia Cancer Research Centre, and was hosted by the CIHR Team in Investigating Autophagy Proteins as Molecular Targets for Cancer Treatment. The program was designed as a day of research exchanges, featuring two invited keynote speakers, internationally recognized for their groundbreaking contributions in autophagy, Dr Ana Maria Cuervo (Albert Einstein College of Medicine, Bronx, NY) and Dr Jayanta Debnath (University of California, San Francisco). By bringing together international and local experts in cell biology, drug discovery, and clinical translation, the symposium facilitated rich interdisciplinary discussions focused on multiple forms of autophagy and their regulation and modulation in the context of cancer.  相似文献   

2.
Autophagy     
《Current biology : CB》2019,29(14):R671-R677
  相似文献   

3.
Autophagy     
Autophagy describes the degradation of unnecessary or dysfunctional cellular components through the lysosomal machinery. Autophagy is essentially required to prevent accumulation of cellular damage and to ensure cellular homeostasis. Indeed, impaired autophagy has been implicated in a variety of different diseases. We examined the role of autophagy in inflammatory bone loss. We demonstrated that autophagy is activated by the pro-inflammatory cytokine tumor necrosis factor (TNF/TNFα) in osteoclasts of patients with rheumatoid arthritis (RA). Autophagy induces osteoclast differentiation and stimulates osteoclast-mediated bone resorption in vitro and in vivo, thereby highlighting autophagy as a novel mediator of TNF-induced bone resorption.  相似文献   

4.
Autophagy     
《Autophagy》2013,9(10):1477-1493
  相似文献   

5.
Autophagy     
Autophagy is an evolutionarily conserved cellular process through which long-lived proteins and damaged organelles are recycled to maintain energy homeostasis. These proteins and organelles are sequestered into a double-membrane structure, or autophagosome, which subsequently fuses with a lysosome in order to degrade the cargo. Although originally classified as a type of programmed cell death, autophagy is more widely viewed as a basic cell survival mechanism to combat environmental stressors. Autophagy genes were initially identified in yeast and were found to be necessary to circumvent nutrient stress and starvation. Subsequent elucidation of mammalian gene counterparts has highlighted the importance of this process to normal development. This review provides an overview of autophagy, the types of autophagy, its regulation and its known impact on development gleaned primarily from murine models.  相似文献   

6.
Autophagy     
《Autophagy》2013,9(4):545-558
The role of autophagy in the response of human hepatocytes to oxidative stress remains unknown. Understanding this process may have important implications for the understanding of basic liver epithelial cell biology and the responses of hepatocytes during liver disease. To address this we isolated primary hepatocytes from human liver tissue and exposed them ex vivo to hypoxia and hypoxia-reoxygenation (H-R). We showed that oxidative stress increased hepatocyte autophagy in a reactive oxygen species (ROS) and class III PtdIns3K-dependent manner. Specifically, mitochondrial ROS and NADPH oxidase were found to be key regulators of autophagy. Autophagy involved the upregulation of BECN1, LC3A, Atg7, Atg5 and Atg 12 during hypoxia and H-R. Autophagy was seen to occur within the mitochondria of the hepatocyte and inhibition of autophagy resulted in the lowering a mitochondrial membrane potential and onset of cell death. Autophagic responses were primarily observed in the large peri-venular (PV) hepatocyte subpopulation. Inhibition of autophagy, using 3-methyladenine, increased apoptosis during H-R. Specifically, PV human hepatocytes were more susceptible to apoptosis after inhibition of autophagy. These findings show for the first time that during oxidative stress autophagy serves as a cell survival mechanism for primary human hepatocytes.  相似文献   

7.
Autophagy   总被引:2,自引:0,他引:2  
  相似文献   

8.
Autophagy     
  相似文献   

9.
Autophagy     
《Autophagy》2013,9(11):1400-1401
Mammalian target of rapamycin (mTOR) complex 1 (mTORC1), which is activated in tuberous sclerosis complex (TSC) and lymphangioleiomyomatosis (LAM), is a master regulator of cell growth, cellular metabolism, and autophagy. Treatment of TSC and LAM patients with mTORC1 inhibitors partially decreases the size of brain and kidney tumors, and stabilizes pulmonary function. However, the tumors regrow and lung function continues to decline when treatment is discontinued. We hypothesized that dysregulation of autophagy plays a critical role in the pathogenesis of tumors with mTORC1 hyperactivation and in their response to mTORC1-targeted therapy. We found that cells lacking TSC2 have low levels of autophagy under basal and cellular stress conditions. Using genetic and pharmacological approaches, we discovered that the survival of Tsc2-deficient tumor cells is dependent on autophagy induction. Thus, autophagy inhibitors may have therapeutic potential in TSC and LAM, either as single agent therapy or in combination with mTORC1 inhibitors.  相似文献   

10.
《Autophagy》2014,10(7):1149-1152
  相似文献   

11.
《Autophagy》2013,9(1):3-6
Autophagy research continues to expand exponentially. Clearly autophagy and metabolism are intimately connected; however, the rapid expansion of research into this topic inevitably brings the risk that important basic knowledge of metabolism will be overlooked when considering experimental data. Unfortunately, unawareness of possible metabolic complications may sometimes lead to misinterpretation of the data obtained.  相似文献   

12.
《Autophagy》2012,8(11):1553-1556
  相似文献   

13.
《Autophagy》2013,9(7):1006-1008
  相似文献   

14.
《Autophagy》2013,9(11):1553-1556
  相似文献   

15.
《Autophagy》2013,9(2):120-123
  相似文献   

16.
《Autophagy》2012,8(7):1006-1008
  相似文献   

17.
《Autophagy》2013,9(4):447-450
  相似文献   

18.
《Autophagy》2014,10(5):717-720
  相似文献   

19.
《Autophagy》2013,9(10):1411-1414
  相似文献   

20.
《Autophagy》2014,10(3):393-396
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号