首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
胚胎干细胞诱导分化为雄性生殖细胞的研究进展   总被引:2,自引:0,他引:2  
胚胎干细胞(embryonic stem cells,ES细胞)具有自我更新及无限分化潜能,理论上可以分化为生殖细胞。目前,在人及鼠中已有体外诱导ES细胞分化为成熟精子的报道。系统阐述影响ES细胞分化为雄性生殖细胞的内源性及外源性因素,并结合国内外最新研究进展总结其诱导分化方法,展望应用前景,期望为从事相关研究的学者提供参考。  相似文献   

2.
Mice chimeric for embryonic stem (ES) cells have not always successfully produced ES-derived offspring. Here we show that the male gametes from ES cells could be selected in male chimeric mice testes by labeling donor ES cells or host blastocytes with GFP. Male GFP-expressing ES-derived germ cells occurred as colonies in the chimeric testes, where the seminiferous tubules were separated into green and non-green regions. When mature spermatozoa from green tubules were used for microinsemination, GFP-expressing offspring were efficiently obtained. Using a reverse study, we also obtained ES-derived progeny from GFP-negative ES cells in GFP-labeled host chimeras. Furthermore, we showed this approach could be accelerated by using round spermatids from the testes of 20-day-old chimeric mice. Thus, this technique allowed us to generate the ES cell-derived progeny even from the low contributed chimeric mice, which cannot produce ES-origin offspring by natural mating.  相似文献   

3.
Hepatic differentiation of murine embryonic stem cells.   总被引:49,自引:0,他引:49  
Murine embryonic stem (ES) cells can replicate indefinitely in culture and can give rise to all tissues, including the germline, when reimplanted into a murine blastocyst. ES cells can also be differentiated in vitro into a wide range of cell types. We have utilized a liver-specific marker to demonstrate that murine ES cells can differentiate into hepatocytes in vitro. We have used ES cells carrying a gene trap vector insertion (I.114) into an ankyrin repeat-containing gene (Gtar) that we have previously shown provides an exclusive beta-galactosidase marker for the early differentiation of hepatocytes in vivo. beta-Galactosidase-positive cells were differentiated from I.114 ES cells in vitro. The identity of these cells was confirmed by the expression of the proteins alpha-fetoprotein, albumin, and transferrin and by the fact that they have an ultrastructural appearance consistent with that of embryonic hepatocytes. We propose that this model system of hepatic differentiation in vitro could be used to define factors that are involved in specification of the hepatocyte lineage. In addition, human ES cells have recently been derived and it has been proposed that they may provide a source of differentiated cell types for cell replacement therapies in the treatment of a variety of diseases.  相似文献   

4.
5.
Senescent mice are often infertile, and the cloning success rate decreases with age, making it almost impossible to produce cloned progeny directly from such animals. In this study, we tried to produce offspring from such "unclonable" senescent mice using nuclear transfer techniques. Donor fibroblasts were obtained from the tail tips of mice aged up to 2 years and 9 months. Although most attempts failed to produce cloned mice by direct somatic cell nuclear transfer, we managed to establish nuclear transfer embryonic stem (ntES) cell lines from all aged mice with an establishment rate of 10-25%, irrespective of sex or strain. Finally, cloned mice were obtained from these ntES cells by a second round of nuclear transfer. In addition, healthy offspring was obtained from all aged donors via germline transmission of ntES cells in chimeric mice. This technique is thus applicable to the propagation of a variety of animals, irrespective of age or fertile potential.  相似文献   

6.
7.
8.
Obox genes are preferentially expressed in the ovary, testis and oocyte, and play important roles in many developmental processes. In this study, we report that Obox4 and Obox6 are expressed in mouse embryonic stem cells (mESCs) and that Obox4 regulates histone family gene expression in mESCs. Obox4 protein expressing mESCs formed colonies with a flattened and irregular morphology, and exhibited decreased expression levels of self-renewal related proteins, such as Oct4 and Sox2, as well as reduced alkaline phosphatase activity. The results of microarray analysis and siRNA mediated knockdown experiments suggest that Obox4 is an upstream regulator of the histone gene family.  相似文献   

9.
Generation of insulin-expressing cells from mouse embryonic stem cells   总被引:6,自引:0,他引:6  
The therapeutic potential of transplantation of insulin-secreting pancreatic beta-cells has stimulated interest in using pluripotent embryonic stem (ES) cells as a starting material from which to generate insulin secreting cells in vitro. Mature beta-cells are endodermal in origin so most reported differentiation protocols rely on the identification of endoderm-specific markers. However, endoderm development is an early event in embryogenesis that produces cells destined for the gut and associated organs in the embryo, and for the development of extra-embryonic structures such as the yolk sac. We have demonstrated that mouse ES cells readily differentiate into extra-embryonic endoderm in vitro, and that these cell populations express the insulin gene and other functional elements associated with beta-cells. We suggest that the insulin-expressing cells generated in this and other studies are not authentic pancreatic beta-cells, but may be of extra-embryonic endodermal origin.  相似文献   

10.
人胚胎干细胞向生殖细胞分化的研究进展   总被引:4,自引:0,他引:4  
小鼠胚胎干细胞体外已成功诱导分化为配子细胞,人胚胎干细胞理论上也具备分化为生殖细胞的潜能。本文从影响人胚胎干细胞体外向生殖系分化的基因调控和干细胞小生境(niche)方面进行综述,并指出胚胎干细胞在生殖医学及不孕治疗中的研究方向和应用前景。  相似文献   

11.
胚胎干细胞向造血干/祖细胞定向诱导分化的研究进展   总被引:1,自引:0,他引:1  
胚胎干细胞(embryonic stem cell,ES细胞)是指由胚胎内细胞团(inner cell mass,ICM)细胞经体外抑制培养而筛选得到的细胞,具有无限增殖潜能,在体外可以向造血细胞分化,有可能为造血干细胞移植和血细胞输注开辟新的来源.此外,ES细胞向造血干/祖细胞的定向诱导分化也为阐明哺乳动物造血发育的细胞和分子机制提供了良好的体外模型.对ES细胞向造血干/祖细胞定向分化的研究进展进行了综述.  相似文献   

12.
13.
Lu SJ  Li F  Yin H  Feng Q  Kimbrel EA  Hahm E  Thon JN  Wang W  Italiano JE  Cho J  Lanza R 《Cell research》2011,21(3):530-545
Platelets play an essential role in hemostasis and atherothrombosis. Owing to their short storage time, there is constant demand for this life-saving blood component. In this study, we report that it is feasible to generate functional megakaryocytes and platelets from human embryonic stem cells (hESCs) on a large scale. Differential-interference contrast and electron microscopy analyses showed that ultrastructural and morphological features of hESC-derived platelets were indistinguishable from those of normal blood platelets. In functional assays, hESC-derived platelets responded to thrombin stimulation, formed microaggregates, and facilitated clot formation/retraction in vitro. Live cell microscopy demonstrated that hESC-platelets formed lamellipodia and filopodia in response to thrombin activation, and tethered to each other as observed in normal blood. Using real-time intravital imaging with high-speed video microscopy, we have also shown that hESC-derived platelets contribute to developing thrombi at sites of laser-induced vascular injury in mice, providing the first evidence for in vivo functionality of hESC-derived platelets. These results represent an important step toward generating an unlimited supply of platelets for transfusion. Since platelets contain no genetic material, they are ideal candidates for early clinical translation involving human pluripotent stem cells.  相似文献   

14.
Somatic cell nuclear transfer (SCNT) has been performed extensively in fish since the 1960s with a generally low efficiency of approximately 1%. Little is known about somatic nuclear reprogramming in fish. Here, we utilized the zebrafish as a model to study reprogramming events of nuclei from tail, liver and kidney cells by SCNT. We produced a total of 4,796 reconstituted embryos and obtained a high survival rate of 58.9-67.4% initially at the 8-cell stage. The survival rate exhibited two steps of dramatic decrease, leading to 8.7-13.9% at the dome stage and to 1.5-2.96% by the shield stage. Concurrently, we observed that SCNT embryos displayed apparently delayed development also at the two stages, namely the dome stage (1:30 ± 0:40) and the shield stage (2:50 ± 0:50), indicating that the dome and shield stage are critical for the SCNT efficiency. Interestingly, we also revealed that an apparent alteration in klf4 and mycb expression occurred at the dome stage in SCNT embryos from all the three donor cell sources. Taken together, these results suggest that the dome stage is critical for the SCNT efficiency, and that alternated gene expression appears to be common to SCNT embryos independently of the donor cell types, suggesting that balanced mycb and klf4 expression at this stage is important for proper reprogramming of somatic nuclei in zebrafish SCNT embryos. Although the significant alteration in klf4 and mycb expression was not identified at the shield stage between ZD and SCNT embryos, the importance of reprogramming processes at the shield stage should not be underestimated in zebrafish SCNT embryos.  相似文献   

15.
16.
Embryonic stem (ES) cells maintain pluripotency by self-renewal. Several homeoproteins, including Oct3/4 and Nanog, are known to be key factors in maintaining the self-renewal capacity of ES cells. However, other genes required for the mechanisms underlying this process are still unclear. Here we report the identification by in silico analysis of a homeobox-containing gene, CrxOS, that is specifically expressed in murine ES cells and is essential for their self-renewal. ES cells mainly express the short isoform of endogenous CrxOS. Using a polyoma-based episomal expression system, we demonstrate that overexpression of the CrxOS short isoform is sufficient for maintaining the undifferentiated morphology of ES cells and stimulating their proliferation. Finally, using RNA interference, we show that CrxOS is essential for the self-renewal of ES cells, and provisionally identify foxD3 as a downstream target gene of CrxOS. To our knowledge, ours is the first delineation of the physiological role of CrxOS in ES cells.  相似文献   

17.
18.
Zhang Q  Jiang J  Han P  Yuan Q  Zhang J  Zhang X  Xu Y  Cao H  Meng Q  Chen L  Tian T  Wang X  Li P  Hescheler J  Ji G  Ma Y 《Cell research》2011,21(4):579-587
Although myocyte cell transplantation studies have suggested a promising therapeutic potential for myocardial infarction, a major obstacle to the development of clinical therapies for myocardial repair is the difficulties associated with obtaining relatively homogeneous ventricular myocytes for transplantation. Human embryonic stem cells (hESCs) are a promising source of cardiomyocytes. Here we report that retinoid signaling regulates the fate specification of atrial versus ventricular myocytes during cardiac differentiation of hESCs. We found that both Noggin and the pan-retinoic acid receptor antagonist BMS-189453 (RAi) significantly increased the cardiac differentiation efficiency of hESCs. To investigate retinoid functions, we compared Noggin+RAi-treated cultures with Noggin+RA-treated cultures. Our results showed that the expression levels of the ventricular-specific gene IRX-4 were radically elevated in Noggin+RAi-treated cultures. MLC-2V, another ventricular-specific marker, was expressed in the majority of the cardiomyocytes in Noggin+RAi-treated cultures, but not in the cardiomyocytes of Noggin+RA-treated cultures. Flow cytometry analysis and electrophysiological studies indicated that with 64.7 ± 0.88% (mean ±s.e.m) cardiac differentiation efficiency, 83% of the cardiomyocytes in Noggin+RAi-treated cultures had embryonic ventricular-like action potentials (APs). With 50.7 ± 1.76% cardiac differentiation efficiency, 94% of the cardiomyocytes in Noggin+RA-treated cultures had embryonic atrial-like APs. These results were further confirmed by imaging studies that assessed the patterns and properties of the Ca(2+) sparks of the cardiomyocytes from the two cultures. These findings demonstrate that retinoid signaling specifies the atrial versus ventricular differentiation of hESCs. This study also shows that relatively homogeneous embryonic atrial- and ventricular-like myocyte populations can be efficiently derived from hESCs by specifically regulating Noggin and retinoid signals.  相似文献   

19.
Embryonic stem (ES) cells are pluripotent cells that can differentiate into all three main germ layers: endoderm, mesoderm, and ectoderm. Although a number of methods have been developed to differentiate ES cells into neuronal phenotypes such as sensory and motor neurons, the efficient generation of GABAergic interneurons from ES cells still presents an ongoing challenge. Because the main output of inhibitory GABAergic interneurons is the gamma-aminobutyric-acid (GABA), a neurotransmitter whose controlled homeostasis is required for normal brain function, the efficient generation in culture of functional interneurons may have future implications on the treatment of neurological disorders such as epilepsy, autism, and schizophrenia. The goal of this work was to examine the generation of GABAergic neurons from mouse ES cells by comparing an embryoid body-based methodology versus a hydrogel-based encapsulation protocol that involves the use of all-trans-retinoid acid (RA). We observed that (1) there was a 2-fold increase in neuronal differentiation in encapsulated versus non-encapsulated cells and (2) there was an increase in the specificity for interneuronal differentiation in encapsulated cells, as assessed by mRNA expression and electrophysiology approaches. Furthermore, our results indicate that most of the neurons obtained from encapsulated mouse ES cells are GABA-positive (∼87%). Thus, these results suggest that combining encapsulation of ES cells and RA treatment provide a more efficient and scalable differentiation strategy for the generation in culture of functional GABAergic interneurons. This technology may have implications for future cell replacement therapies and the treatment of CNS disorders.  相似文献   

20.
Brain regeneration from pluripotent stem cells in planarian   总被引:3,自引:0,他引:3  
How can planarians regenerate their brain? Recently we have identified many genes critical for this process. Brain regeneration can be divided into five steps: (1) anterior blastema formation, (2) brain rudiment formation, (3) pattern formation, (4) neural network formation, and (5) functional recovery. Here we will describe the structure and process of regeneration of the planarian brain in the first part, and then introduce genes involved in brain regeneration in the second part. Especially, we will speculate about molecular events during the early steps of brain regeneration in this review. The finding providing the greatest insight thus far is the discovery of the nou-darake (ndk; ‘brains everywhere’ in Japanese) gene, since brain neurons are formed throughout the entire body as a result of loss of function of the ndk gene. This finding provides a clue for elucidating the molecular and cellular mechanisms underlying brain regeneration. Here we describe the molecular action of the nou-darake gene and propose a new model to explain brain regeneration and restriction in the head region of the planarians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号