首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schrenk spruce (Picea schrenkiana Fisch. et Mey.) is widely distributed in the Tianshan Mountains. In this study, four Schrenk spruce trees were continuously monitored with dendrometers from 27 April to 30 September 2014 on the northern slopes of the Tianshan Mountains in northwest China. The goal of this monitoring study was to determine the main growing season of Schrenk spruce and to analyze intra-annual radial growth variability and its relation to daily meteorological factors. Our studies have shown that the critical growing season of Schrenk spruce is from late May to late July and that the rapid growth stage is from mid-June to early July. Meanwhile, in the growing season, changes in the radial growth of Schrenk spruce were negatively correlated with daily temperature, evaporation, sunshine hours and vapor pressure deficit (VPD), and were positively correlated with precipitation and relative humidity (RH). The correlation coefficient between radial growth and RH can be as high as 0.750 (Pearson, p < 0.0001, n = 60). Dates in which precipitation occurred corresponded to periods of rapid growth. The results of the climate-growth analysis show that changes in radial growth reflect the effect of water stress on tree growth, whether or not the changes are positively or negatively correlated with the above climatic factors. This indicates that moisture plays a major role in the growth of Schrenk spruce. We suggest that precipitation between late May to late June is a limiting factor for radial growth of Schrenk spruce on the northern slopes of the Tianshan Mountains.  相似文献   

2.
Tree-ring research in the Altai-Sayan Mountains so far only considered a limited number of well-replicated site chronologies. The dendroecological and palaeoclimatological potential and limitations of large parts of south-central Russia therefore remain rather unexplored. Here, we present a newly updated network of 13 larch (Larix sibirica Ldb.) tree-ring width (TRW) chronologies from mid to higher elevations along a nearly 1000 km west-to-east transect across the greater Altai-Sayan region. All data were sampled between 2009 and 2014. The corresponding site chronologies cover periods from 440 to 860 years. The highest TRW agreement is found between chronologies ≥2200 m asl, whereas the material from lower elevations reveals overall less synchronized interannual to longer-term growth variability. While fluctuations in average June–July temperature predominantly contribute to the growth at higher elevations, arid air masses from Mongolia mainly affect TRW formation at lower elevations. Our results are indicative for the dendroclimatological potential of the Altai-Sayan Mountains, where both, variation in summer temperature and hydroclimate can be robustly reconstructed back in time. These findings are valid for a huge region in central Asia where reliable meteorological observations are spatially scarce and temporally restricted to the second half of the 20th century. The development of new high-resolution climate reconstruction over several centuries to millennia will further appear beneficial for timely endeavors at the interface of archaeology, climatology and history.  相似文献   

3.
利用采自额尔齐斯河上游6个采点的西伯利亚云杉(Picea obovata Ledeb)树轮样本建立了区域树轮宽度年表。与气候要素的相关分析表明,该地区树木径向生长主要受降水制约,区域树轮宽度年表与富蕴气象站上年7月至当年6月的降水总量相关显著。在此基础上建立了转换方程,重建了额尔齐斯河上游地区1722—2012年上年7月至当年6月的降水总量,方差解释量高达55.1%(调整自由度后为54.2%)。重建结果显示,该地区过去291年间存在9个降水偏多的时期和8个降水偏少的时期。降水重建序列还存在2.1a和3.2a的显著周期及2.3、21.6、24.3a的较显著周期,并且在1876—1877年及1983年前后发生了降水突变。空间相关分析表明,重建的上年7月至当年6月降水量对额尔齐斯河上游阿勒泰地区的降水量具有很好的空间代表性。此外,重建结果还与周边地区其他基于树轮资料重建的降水序列的干湿变化有较好的一致性。  相似文献   

4.
For both its climatic and ecological importance, Schrenk spruce (Picea schrenkiana) is a crucial tree species living at mid-altitude on the western area of the Tianshan Mountains. It plays a key role on understanding climatic change in the Tianshan Mountains in the past 500 years. However, whether the relationship between tree growth and limiting climate factors is stable over time is still not well-known. In this study, standard and residual chronologies of four 100-year age classes (AC1 < 110a, 110a < AC2 < 210a, 210a < AC3 < 310a and AC4 > 310a) were established for detecting divergence in climate–growth relationships as well as comparing low-frequency and high-frequency variations. The results show that climate can account for a high amount of variance in tree-ring width and higher climate sensitivity was detected in younger trees. Younger trees (<210a) exhibit significantly negative growth responses to mean monthly air temperature of previous June and positive relationship with total monthly precipitation of current April and May, while mean monthly air temperature of current March may inhibit growth of older trees (>210a). Tree-ring chronology statistics and response function reveal that the age-growth patterns are non-monotonic. Our results together with previous studies demonstrate that the age effects on tree-ring growth–climate response is attributed to a combination of genetic characteristics and site microclimate, which suggests that it is necessary to consider both age-dependent and species-specific climate responses when using tree-ring measurements as a proxy for valid climate reconstructions.  相似文献   

5.
Tree-ring (TR) chronologies are important instruments for the dating and provenance analyses of historical wood, as well as for climate reconstructions. However, radial growth patterns differ between tree species and growing environments. Therefore chronologies are more or less specific for a certain tree species, region and elevation. Chronologies that are restricted to more confined regions could extend the possibilities for dating, dendroprovenancing and regional climate reconstructions.In Southern Germany, the transport of wood by raft – for the supply of towns and cities with timber – has been documented since early mediaeval times. Consequently, not only local timber from the lowlands was used for construction purposes, but also alpine wood originating from sites up to the timberline. Since pronounced altitudinal gradients cause distinct climate differences, elevation-specific chronologies have the potential to improve dating precision in this region.In this contribution, a model is presented and applied in order to separate elevation-specific provenances of Norway spruce (Picea abies L. Karst) and Silver fir (Abies alba Mill.) in Southern Germany. The model is derived from more than 2100 living TR series originating from sites between 200 and 1710 m above see level. Absolute (mean, maximum) ring-width values and the variation of ring-widths (mean sensitivity) show distinct correlations with their altitudinal provenance, reflecting improvements in growth conditions as well as the increase of their yearly variation from high over intermediate to low elevation sites. Mean ring widths and mean sensitivity values were used as independent parameters in an exponential regression model which exhibits a coefficient of determination (r2) of 77% for spruce and 74% for fir. The prediction accuracy of the elevation amounts ±300 m for spruce and ±200 m for fir within the 95% confidence interval.The model was used to estimate the elevation origin of around 5000 historical spruce and 800 historical fir series from buildings located in Southern Germany. The historical TR series covering the AD 990–1800 period were allocated by the model to elevations between 120 and 2090 m. In a second step the individual TR series were combined to elevation-specific chronologies representing low, intermediate, and high altitudinal belts. The chronologies show distinct differences among the altitudinal belts in terms of signatures and pointer years, especially for spruce. Elevation-specific chronologies are assumed to amplify the dating possibilities of ancient timber, to provide valuable evidences for the origin of historical wood, and to offer more specific proxy data for regional climate reconstructions.  相似文献   

6.
Spring (March–June) precipitation has been reconstructed since AD 1840 for the Rara National Park (RNP), western Nepal Himalaya using Abies spectabilis tree-ring width. The reconstruction accounts for 35.8% of the total variance of the instrumental precipitation from 1958 to 2012 and captured distinct wet and dry variability. The longest wet periods occurred during 1850–1862, 1878–1886, 1909–1917, 1971–1984 and 2000–2008 while dry periods were usually shorter and occurred during 1873–1877, 1921–1923, 1925–1929, 1951–1956, 1958–1962 and 1994–1996. Spectral analysis of the reconstruction shows significant peaks at periodicity ranging 2.4–6.5 year, suggesting a covariation in inter-annual variability similar to that of El Niño-Southern Oscillation (ENSO). Spectral analysis of the reconstruction shows significant quasi–cyclic (2.4–3.4 year) and multidecadal (24.8–39.2 year) periodicity, suggesting a potential association with El Niño-Southern Oscillation (ENSO) and Atlantic Multidecadal Oscillation (AMO).  相似文献   

7.
Few Southern Hemisphere tree-ring chronologies exceed 1000 years in length. We present a ca. 1700 years of indexed values for the long-lived conifer Athrotaxis selaginoides at Cradle Mt in southeastern Australia and compare it with the only other published millennial-plus length tree-ring chronology for Australia: the nearby Mt Read Lagarostrobos franklinii. We use simple correlation function and pointer year analyses to compare the climate responses of the two species (temperature, precipitation and growing degree days). Both chronologies show accelerated growth at their modern ends, but this growth acceleration is not synchronous, beginning approximately a quarter of a century earlier at the Cradle Mt site. This discrepancy may highlight the relevance of chronology composition and/or physiological differences in the species. Although the seasonality of the climatic responses of the two species is similar, that of A. selaginoides is generally weaker than that of L. franklinii. Somewhat paradoxically, the only pointer years in common between the chronologies are 1898 and 1908 CE. The periods from 600 to 900 CE and ∼1200–1450 CE are conspicuous for their absence of positive pointer years while no negative pointer years occur for either site from ∼1200–1350 CE. It is possible that differing patterns of pointer years can be partially explained by a peak in establishment from ∼1150–1850 CE at the Mt Read L. franklinii site compared to continuous establishment at Cradle Mt. Although statistically significant and time-stable climate responses for the A. selaginoides chronology are too weak to base a single-chronology climate reconstruction on, the long chronology will likely make an important contribution to future multi-proxy temperature reconstructions for southeastern Australia.  相似文献   

8.
Tree rings from temperate zones of the world have provided abundant palaeo- ecological and paleo-hydroclimatic information. However, tree rings from subtropical to tropical regions remain relatively scarce, which greatly limit our fully understanding about the climate change issues. In the present work, tree-ring-width (TRW) measurements of Masson pine from Fujian province, the coastal area of subtropical southeast China were successfully crossdated and a TRW STD chronology was developed from 1854 to 2012. Significantly positive correlation was identified between the tree rings and April–November total precipitation (r = 0.71, p < 0.01). The reconstructed April–November precipitation exhibited two comparatively wet (1876–1886 and 1957–1962) and one comparatively dry (1986–2004) periods. An evident drying trend since 1959 was seen and it was mitigated after 1993. Most of the extreme low-precipitation years in the reconstruction were supported by the historical records. As revealed by the spatial correlation patterns, our precipitation reconstruction was also consistent with other hydroclimatic records along the coastal areas of southeast China, proving its ability to capture the large-scale hydrological signal in southeast China (mainly refers to the south of the middle-lower reaches of Yangtze River). The reconstructed precipitation showed significant correlation with the East Asian summer Monsoon (EASM) index. Moreover, it also indicated simultaneous variation with the monsoon precipitation in North China on a decadal scale, implying that growing season precipitation variations in both regions were influenced by the EASM strength. This work highlights the potential of using tree-ring width to reconstruct precipitation in subtropical southeast China, while the relevant issues about precipitation variation in this region is far from resolved.  相似文献   

9.
Tree growth is largely driven by climate conditions in arid and alpine areas. A strong change in climate from warm-dry to warm-wet has already been observed in northwest China. However, little is known about the impacts of regional climate variability on the radial growth of trees along elevations of the eastern Tianshan Mountains. Consequently, we developed three tree-ring width chronologies of Schrenk spruce (Picea schrenkiana Fisch. et Mey.) ranging in elevation from 2159 to 2552 m above sea level (a.s.l.), which play an important role in the forestry ecosystem, agriculture, and local economy of Central Asia. In our study, the correlation analyses of growth-drought using the monthly standardized precipitation-evapotranspiration index (SPEI) at different temporal scales demonstrated that drought in growing season was the main factor limiting tree growth, regardless of elevation. The relationships between radial growth of Schrenk spruce and main climate factors were relatively stable by moving correlation function, and the trend of STD chronologies and basal area increment (BAI) also showed a synchronous decline across the three elevations in recent decades. And meanwhile, slight differences in responses to climate change in radial growth along elevations were examined. The drought stress increased as elevations decreased. Radial growth at the higher elevation depended on moisture availability due to high temperature, as indicated by the significant negative correlation with mean temperature in the late growing season of the previous year (August-September, p < 0.001). However, radial growth at the lower elevation were restricted by drought stress due to less precipitation and higher temperatures, as demonstrated by the significant negative correlation with mean temperature but positive with total precipitation in the early growing season of the current year (April-May, p < 0.05). In addition, the decline of radial growth (BAI) at the higher elevation (3.710 cm2 yr−1/decade, p < 0.001) was faster than that of the middle elevation (2.344 cm2 yr−1/decade, p < 0.001) and the lower elevation (3.005 cm2 yr−1/decade, p < 0.001) since 2000, indicating that the trees at higher elevation of a relatively humid environment were more susceptible to the effects of climate change due to their poor adaptability to water deficit. Therefore, the forest ecosystems would be suppressed as a result of increasing drought stress in the future, especially in the high-elevation forests of arid and semi-arid areas.  相似文献   

10.
《Ecological Complexity》2007,4(1-2):34-41
The conventional view of the environment – consisting of discrete patches that repeat themselves across the landscape – has seldom been tested. Across a wide spatial scope in southern Ontario, Canada, we investigated the spatial structure of physical and biological features of the environment: vegetation communities, moisture, pH, and organic content of soil at local scales (10–1250 m), and mammalian communities, mean annual temperature and precipitation at regional scales (10–650 km). Spatial structure was quantified using log–log regression of variance (V) with distance (D), according to the power formula, V = aDz. All these ecosystem components exhibited gradients. Slopes (z) of log–log regressions were positive (0.065 < z < 0.703) and were significantly steeper at the regional scale than the local scale. Variance appeared to increase without bound as distance between sampling locations increased. The results support the view of landscapes as continua and gradients. These patterns represent a challenge to the conventional view of how the natural environment is organised.  相似文献   

11.
The first dendrochronological network of European beech (Fagus sylvatica L.) from eastern limit of its distribution was established covering the species’ altitudinal range (210–1160 m a.s.l.) and three eco-regions. Statistical analysis revealed spatial trends among the 14 chronologies, with increasing tree-ring variability and synchronicity towards the east, particularly expressed by rBAR (mean interseries correlation). By means of HCA (Hierarchical Cluster Analysis) and PCA (Principal Component Analysis), the chronologies were divided into three main groups: a Mountain, Plateau and Eastern class. These correspond to the Alpine South, Continental and Pannonian bioclimatological zones. Dendroclimatological analysis revealed a general climate response pattern, with summer temperatures, April–May precipitation and April–June drought being the main limiting factors in the study area. The intensity of the correlations increases towards the eastern distribution limits and decreases towards the upper treeline of European beech. Similarly, the length of the climate-sensitive period changes, with the precipitation window increasing from April in the Mountains region to March–May in the East region and the scPDSI (self-calibrated Palmer drought severity index) window increasing from April–June in the Mountains to the previous July to the current September in the East. The western and uppermost site shows signs of being limited by low July temperatures. This chronology network represents a sensitive monitoring instrument to quantify the impact and adaptability of European beech to actual and future climatic change.  相似文献   

12.
This study addressed distribution of calcium and strontium in Siberian spruce (Picea obovata Ledeb.) and Siberian fir (Abies sibirica Ledeb.) tree-rings and its dependence on these woody species cell structure. Calcium concentration was found to decrease gradually from earlywood to latewood, whereas strontium showed an opposite trend. However, their trends at the scale of several rings are co-directed in the samples analyzed. A strong linear relationship was identified between the distribution of Sr/Ca concentration ratio and tree-ring density profile for both woody species. Radiographic density of Siberian spruce tree-ring cell walls and Ca and Sr concentrations in them were determined to have negative correlation with cell wall thickness. In earlywood of annual rings of a spruce the radiographic density of cell wall reaches 2.0 g/cm3 and decreases to 1.2 g/cm3 in latewood. The hypothesis put forward in this study to explain these strontium and calcium distributions in the tree-rings is that the concentrations of the element ions change with development of different cell wall layers. The high value of radiographic density of a cellular wall in earlywood and its relationship with cell wall thickness can be explained by the presence of ions of calcium in a cellular wall. Ions of calcium absorb X-ray radiation more strongly in comparison with light chemical elements. It can become the reason of observable relationship between radiographic density of cell wall and cell wall thickness.  相似文献   

13.
为定量并分离关键气候因子对新疆阿尔泰山不同海拔树木径向生长的影响,通过对高、中和低海拔的西伯利亚落叶松(Larixsibirica)树轮宽度标准年表与气候因子分别进行相关、多元线性回归等统计分析,并进一步计算了线性模型中不同气候因素的绝对和相对贡献率。结果表明,高海拔地区,当年6月温度和上年7月降水分别与径向生长呈显著正相关和负相关,两者共同解释西伯利亚落叶松径向生长变异的33.1%,相对贡献率分别为66.2%和33.8%;中海拔地区,当年6月温度和上年6月降水分别与径向生长呈显著正相关和负相关,两者共同解释径向生长变异的26.8%,相对贡献率分别为40.1%和59.9%;低海拔地区,上年6月温度和7月降水分别与径向生长呈显著负相关和正相关,两者共同解释径向生长变异的29.4%,相对贡献率分别为31.9%和68.1%。这表明限制树木径向生长的主要影响因子随海拔的不同而异,在高海拔地区,温度是主要限制因子;而在低海拔地区,降雨是主要限制因子。  相似文献   

14.
We examine the climate significance in tree-ring chronologies retrieved from Sabina tibetica Kom. (Tibetan juniper) at two sites ranging in elevation from 4124 to 4693 m above sea level (a.s.l.) in the Namling region, south Tibet. The study region is under the control of semi-arid plateau temperate climate. The samples were grouped into high- and low-elevation classes and standard ring-width chronologies for both classes were developed. Statistical analysis revealed a decreasing growth rate yet increasing chronology reliability with increasing elevation. Overall, correlation analyses showed that radial growth in S. tibetica at the study sites was controlled by similar climatic factors, regardless of elevation; these factors comprised early winter (November) and early summer (May–June) temperatures as well as annual precipitation (July–June). Slight differences in the correlation between tree growth along the elevation gradient and climate variables were examined. The correlations with early winter temperature varied from significantly positive at the low-elevation site to weakly positive at the high-elevation site, whereas the correlations between radial growth and early summer temperature increased from weakly negative at the low-elevation sites to strongly negative at the high-elevation sites. The abundant precipitation through the year may have masked variations in tree growth on different elevation aspects. Our results will aid future dendroclimatological studies of Namling tree rings in south Tibet and demonstrate the potential of S. tibetica Kom. for improving our understanding of environmental impacts on tree growth.  相似文献   

15.
Tree core samples of larch (Larix sibirica Ledeb.), spruce (Picea obovata Ledeb.) and pine (Pinus sibirica Du-Tour.) from the northern taiga of West Siberia were collected to assess their potential for summer temperature reconstructions in the Ob River region. Bootstrapped response functions showed that annual growth was mainly influenced by May to June temperatures in pine and by June to July temperatures in spruce and larch. Spruce and pine chronologies showed high positive correlations with previous October temperature. June–July temperatures were reconstructed based on spruce (1795–1996) and larch (1615–1999) tree ring chronologies. The pine chronology could not be used for a reliable temperature reconstruction, due to low values of explained May–June temperature variance (11–15%) but the species has a high potential to help clarify the May–June and October climatic influence on ring width observed in all three species. We explained the effect of the early vegetation period (May–July) and the differences in the temperature signals between spruce and larch tree ring chronologies with the influence of previous September and October temperature on tree growth with the warming effect of the Ob River and differences of the species’ photosynthetic possibilities and the activity of chloroplasts and bud meristem tissues.  相似文献   

16.
Dendroclimatic investigations of subfossil Scots pine (Pinus sylvestris) from two raised bogs in southern Sweden yielded a continuous floating 1492-year long tree-ring record. By cross-dating with bog-pine chronologies from Lower Saxony, Germany, the South Swedish record was assigned an absolute age of 5219–3728 BC. The cross-match between ring-width chronologies from these two regions, separated by 500–700 km, is remarkably strong and the correlation positive, which indicates that large-scale climate dynamics had a significant impact on the growth of bog pines during the Holocene Thermal Maximum (HTM) when bog-pine distribution reached a maximum in both regions. However, local population dynamics were also influenced by peatland ontogeny and competition, as shown by differences in replication and mean tree age between the Swedish and German records. Comparisons with chronologies developed from modern bog pines in southern Sweden indicate that more coherent climate was controlling pine growth on natural peatlands during warm periods in the past. This study demonstrates the usefulness of Swedish subfossil bog-pine material as a climate proxy, with particular potential for decadal- to centennial-scale reconstructions of humidity fluctuations.  相似文献   

17.
We have studied the presence of the foliar endophtye of Picea glauca (white spruce) Phialocephala scopiformis CBS 120377 and its affect on the growth of Choristoneura fumiferana (spruce budworm). Here we examine the transmission of this fungus from 50 trees planted in a test field site to 250 P. glauca seedlings planted under the emerging canopies. After 3 y, the endophyte spread to 40 % of these trees (now 20–30 cm) with an average rugulosin (an anti-insect toxin) concentration of 1 μg g?1. All woody plants within 2 m of the test trees were collected. These were all shown to be negative for P. scopiformis except for some spruce seedlings that arose from seeds (natural generation). This is positive evidence for the horizontal transmission of P. scopiformis and its apparent specificity to P. glauca under field conditions.  相似文献   

18.
In arid and semi-arid regions of the world, such as Mongolia, the future of water resources under a warming climate is of particular concern. The influence of increasing temperatures on precipitation is difficult to predict because precipitation trends in coming decades could have a high degree of spatial variability. In this study, we applied a rotated principal component analysis (RPCA) to a network of 20 tree-ring chronologies across central Mongolia from 1790 to 1994 to evaluate spatial hydroclimatic variability and to place recent variability in the context of the past several centuries. The RPCA results indicate that the network consists of four tree-growth anomaly regions, which were found to be relatively stable through time and space. Correlation analyses reveal spatial linkages between the tree-growth anomalies and instrumental data, where annual streamflow variability was strongly associated with tree-growth anomalies from their respective regions from 1959 to 1994 (r = 0.52–0.64, p < 0.05). This study highlights the extent of spatial variability in hydroclimate across central Mongolia and emphasizes the value of using tree-ring networks in locations with limited instrumental records.  相似文献   

19.
20.
Recent fire years 2002 and 2005 have been, in the context of the past 40 years, exceptional in Quebec, with area burned totalling over 1.8 million hectares. Without prolonged fire statistics and meteorological records, it remains difficult to place these events in the contexts of climate change and variability. How frequently does this type of year occur? In this study, chronologies of radial increment measurements of Pinus spp., considered reliable back to at least 1821, were calibrated to develop an index of past moisture in ground surface fuels in the Baie-Comeau area of the Central Laurentians ecoregion, Quebec (namely the Canadian Drought Code (CDC)). Over 37% of the variance in CDC observations (period 1901–2000) was recovered by the tree-ring estimates. These estimates in turn correlated well (R2=0.39) with annual area burned (AAB) by large forest fires (size >200 ha; 1959–1999) in the Central Laurentians ecoregion. The smoothed reconstruction showed the prevalence of periods of drier conditions than average from the 1840s to the 1920s, followed by an episode of moister conditions from the 1930s to the 1960s. The minimum occurrence rate of years of extreme wildfire risk in the Baie-Comeau area was estimated in the 1940s at 0.04 yr?1, while the maximum was estimated in the 1910s at 0.21 yr?1. Occurrence rate at the turn of the 21st century (0.21 yr?1) was closely similar to that recorded during the 1890–1910s (within the uncertainty bands). These long-term variations matched temporal variations in a previously published time-since-fire distribution. The combined information from these ecological sources of data provides meaningful insights for future management of wildfire risk in the Baie-Comeau area, notably to increasing adaptation capacity in response to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号