首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
de Visser JA  Rozen DE 《Genetics》2006,172(4):2093-2100
The conventional model of adaptation in asexual populations implies sequential fixation of new beneficial mutations via rare selective sweeps that purge all variation and preserve the clonal genotype. However, in large populations multiple beneficial mutations may co-occur, causing competition among them, a phenomenon called "clonal interference." Clonal interference is thus expected to lead to longer fixation times and larger fitness effects of mutations that ultimately become fixed, as well as to a genetically more diverse population. Here, we study the significance of clonal interference in populations consisting of mixtures of differently marked wild-type and mutator strains of Escherichia coli that adapt to a minimal-glucose environment for 400 generations. We monitored marker frequencies during evolution and measured the competitive fitness of random clones from each marker state after evolution. The results demonstrate the presence of multiple beneficial mutations in these populations and slower and more erratic invasion of mutants than expected by the conventional model, showing the signature of clonal interference. We found that a consequence of clonal interference is that fitness estimates derived from invasion trajectories were less than half the magnitude of direct estimates from competition experiments, thus revealing fundamental problems with this fitness measure. These results force a reevaluation of the conventional model of periodic selection for asexual microbes.  相似文献   

2.
It has increasingly been recognized that adapting populations of microbes contain not one, but many lineages continually arising and competing at once. This process, termed “clonal interference,” alters the rate and dynamics of adaptation and biases winning mutations toward those with the largest selective effect. Here we uncovered a dramatic example of clonal interference between multiple similar mutations occurring at the same locus within replicate populations of Methylobacterium extorquens AM1. Because these mutational events involved the transposition of an insertion sequence into a narrow window of a single gene, they were both readily detectable at low frequencies and could be distinguished due to differences in insertion sites. This allowed us to detect up to 17 beneficial alleles of this type coexisting in a single population. Despite conferring a large selective benefit, the majority of these alleles rose and then fell in frequency due to other lineages emerging that were more fit. By comparing allele-frequency dynamics to the trajectories of fitness gains by these populations, we estimated the fitness values of the genotypes that contained these mutations. Collectively across all populations, these alleles arose upon backgrounds with a wide range of fitness values. Within any single population, however, multiple alleles tended to rise and fall synchronously during a single wave of multiple genotypes with nearly identical fitness values. These results suggest that alleles of large benefit arose repeatedly in failed “soft sweeps” during narrow windows of adaptation due to the combined effects of epistasis and clonal interference.  相似文献   

3.
The accumulation of adaptive mutations is essential for survival in novel environments. However, in clonal populations with a high mutational supply, the power of natural selection is expected to be limited. This is due to clonal interference - the competition of clones carrying different beneficial mutations - which leads to the loss of many small effect mutations and fixation of large effect ones. If interference is abundant, then mechanisms for horizontal transfer of genes, which allow the immediate combination of beneficial alleles in a single background, are expected to evolve. However, the relevance of interference in natural complex environments, such as the gut, is poorly known. To address this issue, we have developed an experimental system which allows to uncover the nature of the adaptive process as Escherichia coli adapts to the mouse gut. This system shows the invasion of beneficial mutations in the bacterial populations and demonstrates the pervasiveness of clonal interference. The observed dynamics of change in frequency of beneficial mutations are consistent with soft sweeps, where different adaptive mutations with similar phenotypes, arise repeatedly on different haplotypes without reaching fixation. Despite the complexity of this ecosystem, the genetic basis of the adaptive mutations revealed a striking parallelism in independently evolving populations. This was mainly characterized by the insertion of transposable elements in both coding and regulatory regions of a few genes. Interestingly, in most populations we observed a complete phenotypic sweep without loss of genetic variation. The intense clonal interference during adaptation to the gut environment, here demonstrated, may be important for our understanding of the levels of strain diversity of E. coli inhabiting the human gut microbiota and of its recombination rate.  相似文献   

4.
The seasonal influenza A virus undergoes rapid evolution to escape human immune response. Adaptive changes occur primarily in antigenic epitopes, the antibody-binding domains of the viral hemagglutinin. This process involves recurrent selective sweeps, in which clusters of simultaneous nucleotide fixations in the hemagglutinin coding sequence are observed about every 4 years. Here, we show that influenza A (H3N2) evolves by strong clonal interference. This mode of evolution is a red queen race between viral strains with different beneficial mutations. Clonal interference explains and quantifies the observed sweep pattern: we find an average of at least one strongly beneficial amino acid substitution per year, and a given selective sweep has three to four driving mutations on average. The inference of selection and clonal interference is based on frequency time series of single-nucleotide polymorphisms, which are obtained from a sample of influenza genome sequences over 39 years. Our results imply that mode and speed of influenza evolution are governed not only by positive selection within, but also by background selection outside antigenic epitopes: immune adaptation and conservation of other viral functions interfere with each other. Hence, adapting viral proteins are predicted to be particularly brittle. We conclude that a quantitative understanding of influenza’s evolutionary and epidemiological dynamics must be based on all genomic domains and functions coupled by clonal interference.  相似文献   

5.
The accumulation of beneficial mutations on competing genetic backgrounds in rapidly adapting populations has a striking impact on evolutionary dynamics. This effect, known as clonal interference, causes erratic fluctuations in the frequencies of observed mutations, randomizes the fixation times of successful mutations, and leaves distinct signatures on patterns of genetic variation. Here, we show how this form of “genetic draft” affects the forward-time dynamics of site frequencies in rapidly adapting asexual populations. We calculate the probability that mutations at individual sites shift in frequency over a characteristic timescale, extending Gillespie’s original model of draft to the case where many strongly selected beneficial mutations segregate simultaneously. We then derive the sojourn time of mutant alleles, the expected fixation time of successful mutants, and the site frequency spectrum of beneficial and neutral mutations. Finally, we show how this form of draft affects inferences in the McDonald–Kreitman test and how it relates to recent observations that some aspects of genetic diversity are described by the Bolthausen–Sznitman coalescent in the limit of very rapid adaptation.  相似文献   

6.
Understanding the dynamics of molecular adaptation is a fundamental goal of evolutionary biology. While adaptation to constant environments has been well characterized, the effects of environmental complexity remain seldom studied. One simple but understudied factor is the rate of environmental change. Here we used experimental evolution with RNA viruses to investigate whether evolutionary dynamics varied based on the rate of environmental turnover. We used whole‐genome next‐generation sequencing to characterize evolutionary dynamics in virus populations adapting to a sudden versus gradual shift onto a novel host cell type. In support of theoretical models, we found that when populations evolved in response to a sudden environmental change, mutations of large beneficial effect tended to fix early, followed by mutations of smaller beneficial effect; as predicted, this pattern broke down in response to a gradual environmental change. Early mutational steps were highly parallel across replicate populations in both treatments. The fixation of single mutations was less common than sweeps of associated “cohorts” of mutations, and this pattern intensified when the environment changed gradually. Additionally, clonal interference appeared stronger in response to a gradual change. Our results suggest that the rate of environmental change is an important determinant of evolutionary dynamics in asexual populations.  相似文献   

7.
Notley-McRobb L  Seeto S  Ferenci T 《Genetics》2002,162(3):1055-1062
The kinetics of mutator sweeps was followed in two independent populations of Escherichia coli grown for up to 350 generations in glucose-limited continuous culture. A rapid elevation of mutation rates was observed in both populations within 120-150 generations, as was apparent from major increases in the proportion of the populations with unselected mutations in fhuA. The increase in mutation rates was due to sweeps by mutY mutators. In both cultures, the enrichment of mutators resulted from hitchhiking with identified beneficial mutations increasing fitness under glucose limitation; mutY hitchhiked with mgl mutations in one culture and ptsG in the other. In both cases, mutators were enriched to constitute close to 100% of the population before a periodic selection event reduced the frequency of unselected mutations and mutators in the cultures. The high proportion of mutators persisted for 150 generations in one population but began to be eliminated within 50 generations in the other. The persistence of mutator, as well as experimental data showing that mutY bacteria were as fit as near-isogenic mutY(+) bacteria in competition experiments, suggest that mutator load by deleterious mutations did not explain the rapidly diminishing proportion of mutators in the populations. The nonmutators sweeping out mutators were also unlikely to have arisen by reversion or antimutator mutations; the mutY mutations were major deletions in each case and the bacteria sweeping out mutators contained intact mutY. By following mgl allele frequencies in one population, we discovered that mutators were outcompeted by bacteria that had rare mgl mutations previously as well as additional beneficial mutation(s). The pattern of appearance of mutY, but not its elimination, conforms to current models of mutator sweeps in bacterial populations. A mutator with a narrow mutational spectrum like mutY may be lost if the requirement for beneficial mutations is for changes other than GC --> TA transversions. Alternatively, epistatic interactions between mutator mutation and beneficial mutations need to be postulated to explain mutator elimination.  相似文献   

8.
Fogle CA  Nagle JL  Desai MM 《Genetics》2008,180(4):2163-2173
Two important problems affect the ability of asexual populations to accumulate beneficial mutations and hence to adapt. First, clonal interference causes some beneficial mutations to be outcompeted by more-fit mutations that occur in the same genetic background. Second, multiple mutations occur in some individuals, so even mutations of large effect can be outcompeted unless they occur in a good genetic background that contains other beneficial mutations. In this article, we use a Monte Carlo simulation to study how these two factors influence the adaptation of asexual populations. We find that the results depend qualitatively on the shape of the distribution of the fitness effects of possible beneficial mutations. When this distribution falls off slower than exponentially, clonal interference alone reasonably describes which mutations dominate the adaptation, although it gives a misleading picture of the evolutionary dynamics. When the distribution falls off faster than exponentially, an analysis based on multiple mutations is more appropriate. Using our simulations, we are able to explore the limits of validity of both of these approaches, and we explore the complex dynamics in the regimes where neither one is fully applicable.  相似文献   

9.
We investigate how different rates of environmental change affect adaptive outcomes and dynamics by selecting Chlamydomonas populations for over 200 generations in environments where the rate of change varies. We find that slower rates of environmental change result in end populations that grow faster and pay a lower cost of adaptation than populations that adapt to a sudden change of the same magnitude. We detected partial selective sweeps in adapting populations by monitoring changes in marker frequency in each population. Although populations adapting to a sudden environmental change showed evidence of mutations of large effect segregating early on, populations adapting to slow rates of change showed patterns that were consistent with mutations of relatively small effect occurring at less predictable times. This work suggests that rates of environmental change may fundamentally alter adaptive dynamics and outcomes of adaptation by changing the size and timing of fitness increases. We suggest that using mutations of smaller effect during adaptation may result in lower levels of pleiotropy and historical constraints, which could in turn result in higher fitness by the end of the experiment.  相似文献   

10.
The diversity and infection dynamics of the endosymbiont Wolbachia can be influenced by many factors, such as transmission rate, cytoplasmic incompatibility, environment, selection and genetic drift. The interplay of these factors in natural populations can result in heterogeneous infection patterns with substantial differences between populations and strains. The causes of these heterogeneities are not yet understood, partly due to the complexity of natural environments. We present experimental evolution as a new approach to study Wolbachia infection dynamics in replicate populations exposed to a controlled environment. A natural Drosophila melanogaster population infected with strains of Wolbachia belonging to different clades evolved in two laboratory environments (hot and cold) for 1.5 years. In both treatments, the rate of Wolbachia infection increased until fixation. In the hot environment, the relative frequency of different Wolbachia clades remained stable over 37 generations. In the cold environment, however, we observed marked changes in the composition of the Wolbachia population: within 15 generations, one Wolbachia clade increased more than 50% in frequency, whereas the other two clades decreased in frequency, resulting in the loss of one clade. The frequency change was highly reproducible not only among replicates, but also when flies that evolved for 42 generations in the hot environment were transferred to the cold environment. These results document how environmental factors can affect the composition of Wolbachia in D. melanogaster. The high reproducibility of the pattern suggests that experimental evolution studies can efficiently determine the functional basis of habitat‐specific fitness among Wolbachia strains.  相似文献   

11.
Miller CR  Joyce P  Wichman HA 《Genetics》2011,187(1):185-202
Adaptation in haploid organisms has been extensively modeled but little tested. Using a microvirid bacteriophage (ID11), we conducted serial passage adaptations at two bottleneck sizes (10(4) and 10(6)), followed by fitness assays and whole-genome sequencing of 631 individual isolates. Extensive genetic variation was observed including 22 beneficial, several nearly neutral, and several deleterious mutations. In the three large bottleneck lines, up to eight different haplotypes were observed in samples of 23 genomes from the final time point. The small bottleneck lines were less diverse. The small bottleneck lines appeared to operate near the transition between isolated selective sweeps and conditions of complex dynamics (e.g., clonal interference). The large bottleneck lines exhibited extensive interference and less stochasticity, with multiple beneficial mutations establishing on a variety of backgrounds. Several leapfrog events occurred. The distribution of first-step adaptive mutations differed significantly from the distribution of second-steps, and a surprisingly large number of second-step beneficial mutations were observed on a highly fit first-step background. Furthermore, few first-step mutations appeared as second-steps and second-steps had substantially smaller selection coefficients. Collectively, the results indicate that the fitness landscape falls between the extremes of smooth and fully uncorrelated, violating the assumptions of many current mutational landscape models.  相似文献   

12.
In large populations, many beneficial mutations may be simultaneously available and may compete with one another, slowing adaptation. By finding the probability of fixation of a favorable allele in a simple model of a haploid sexual population, we find limits to the rate of adaptive substitution, [Formula: see text], that depend on simple parameter combinations. When variance in fitness is low and linkage is loose, the baseline rate of substitution is [Formula: see text], where [Formula: see text] is the population size, [Formula: see text] is the rate of beneficial mutations per genome, and [Formula: see text] is their mean selective advantage. Heritable variance [Formula: see text] in log fitness due to unlinked loci reduces [Formula: see text] by [Formula: see text] under polygamy and [Formula: see text] under monogamy. With a linear genetic map of length [Formula: see text] Morgans, interference is yet stronger. We use a scaling argument to show that the density of adaptive substitutions depends on [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] only through the baseline density: [Formula: see text]. Under the approximation that the interference due to different sweeps adds up, we show that [Formula: see text], implying that interference prevents the rate of adaptive substitution from exceeding one per centimorgan per 200 generations. Simulations and numerical calculations confirm the scaling argument and confirm the additive approximation for [Formula: see text]; for higher [Formula: see text], the rate of adaptation grows above [Formula: see text], but only very slowly. We also consider the effect of sweeps on neutral diversity and show that, while even occasional sweeps can greatly reduce neutral diversity, this effect saturates as sweeps become more common-diversity can be maintained even in populations experiencing very strong interference. Our results indicate that for some organisms the rate of adaptive substitution may be primarily recombination-limited, depending only weakly on the mutation supply and the strength of selection.  相似文献   

13.
Understanding evolutionary dynamics within microbial populations requires the ability to accurately follow allele frequencies through time. Here we present a rapid, cost-effective method (FREQ-Seq) that leverages Illumina next-generation sequencing for localized, quantitative allele frequency detection. Analogous to RNA-Seq, FREQ-Seq relies upon counts from the >105 reads generated per locus per time-point to determine allele frequencies. Loci of interest are directly amplified from a mixed population via two rounds of PCR using inexpensive, user-designed oligonucleotides and a bar-coded bridging primer system that can be regenerated in-house. The resulting bar-coded PCR products contain the adapters needed for Illumina sequencing, eliminating further library preparation. We demonstrate the utility of FREQ-Seq by determining the order and dynamics of beneficial alleles that arose as a microbial population, founded with an engineered strain of Methylobacterium, evolved to grow on methanol. Quantifying allele frequencies with minimal bias down to 1% abundance allowed effective analysis of SNPs, small in-dels and insertions of transposable elements. Our data reveal large-scale clonal interference during the early stages of adaptation and illustrate the utility of FREQ-Seq as a cost-effective tool for tracking allele frequencies in populations.  相似文献   

14.
Ferenci T 《Heredity》2008,100(5):446-452
The spread of beneficial mutations through populations is at the core of evolutionary change. A long-standing hindrance to understanding mutational sweeps was that beneficial mutations have been slow to be identified, even in commonly studied experimental populations. The lack of information on what constitutes a beneficial mutation has led to many uncertainties about the frequency, fitness benefit and fixation of beneficial mutations. A more complete picture is currently emerging for a limited set of identified mutations in bacterial populations. In turn, this will allow quantitation of several features of mutational sweeps. Most importantly, the 'benefit' of beneficial mutations can now be explained in terms of physiological function and how variations in the environment change the selectability of mutations. Here, the sweep of rpoS mutations in Escherichia coli, in both experimental and natural populations, is described in detail. These studies reveal the subtleties of physiology and regulation that strongly influence the benefit of a mutation and explain differences in sweeps between strains and between various environments.  相似文献   

15.
Mutators have been shown to hitchhike in asexual populations when the anticipated beneficial mutation supply rate of the mutator subpopulation, NU(b) (for subpopulation of size N and beneficial mutation rate U(b)) exceeds that of the wild-type subpopulation. Here, we examine the effect of total population size on mutator dynamics in asexual experimental populations of Saccharomyces cerevisiae. Although mutators quickly hitchhike to fixation in smaller populations, mutator fixation requires more and more time as population size increases; this observed delay in mutator hitchhiking is consistent with the expected effect of clonal interference. Interestingly, despite their higher beneficial mutation supply rate, mutators are supplanted by the wild type in very large populations. We postulate that this striking reversal in mutator dynamics is caused by an interaction between clonal interference, the fitness cost of the mutator allele, and infrequent large-effect beneficial mutations in our experimental populations. Our work thus identifies a potential set of circumstances under which mutator hitchhiking can be inhibited in natural asexual populations, despite recent theoretical predictions that such populations should have a net tendency to evolve ever-higher genomic mutation rates.  相似文献   

16.
The rate at which a population adapts to its environment is a cornerstone of evolutionary theory, and recent experimental advances in microbial populations have renewed interest in predicting and testing this rate. Efforts to understand the adaptation rate theoretically are complicated by high mutation rates, to both beneficial and deleterious mutations, and by the fact that beneficial mutations compete with each other in asexual populations (clonal interference). Testable predictions must also include the effects of population bottlenecks, repeated reductions in population size imposed by the experimental protocol. In this contribution, we integrate previous work that addresses each of these issues, developing an overall prediction for the adaptation rate that includes: beneficial mutations with probabilistically distributed effects, deleterious mutations of arbitrary effect, population bottlenecks, and clonal interference.  相似文献   

17.
Tanaka MM  Bergstrom CT  Levin BR 《Genetics》2003,164(3):843-854
Recent studies have found high frequencies of bacteria with increased genomic rates of mutation in both clinical and laboratory populations. These observations may seem surprising in light of earlier experimental and theoretical studies. Mutator genes (genes that elevate the genomic mutation rate) are likely to induce deleterious mutations and thus suffer an indirect selective disadvantage; at the same time, bacteria carrying them can increase in frequency only by generating beneficial mutations at other loci. When clones carrying mutator genes are rare, however, these beneficial mutations are far more likely to arise in members of the much larger nonmutator population. How then can mutators become prevalent? To address this question, we develop a model of the population dynamics of bacteria confronted with ever-changing environments. Using analytical and simulation procedures, we explore the process by which initially rare mutator alleles can rise in frequency. We demonstrate that subsequent to a shift in environmental conditions, there will be relatively long periods of time during which the mutator subpopulation can produce a beneficial mutation before the ancestral subpopulations are eliminated. If the beneficial mutation arises early enough, the overall frequency of mutators will climb to a point higher than when the process began. The probability of producing a subsequent beneficial mutation will then also increase. In this manner, mutators can increase in frequency over successive selective sweeps. We discuss the implications and predictions of these theoretical results in relation to antibiotic resistance and the evolution of mutation rates.  相似文献   

18.
Desai MM  Fisher DS 《Genetics》2007,176(3):1759-1798
When beneficial mutations are rare, they accumulate by a series of selective sweeps. But when they are common, many beneficial mutations will occur before any can fix, so there will be many different mutant lineages in the population concurrently. In an asexual population, these different mutant lineages interfere and not all can fix simultaneously. In addition, further beneficial mutations can accumulate in mutant lineages while these are still a minority of the population. In this article, we analyze the dynamics of such multiple mutations and the interplay between multiple mutations and interference between clones. These result in substantial variation in fitness accumulating within a single asexual population. The amount of variation is determined by a balance between selection, which destroys variation, and beneficial mutations, which create more. The behavior depends in a subtle way on the population parameters: the population size, the beneficial mutation rate, and the distribution of the fitness increments of the potential beneficial mutations. The mutation-selection balance leads to a continually evolving population with a steady-state fitness variation. This variation increases logarithmically with both population size and mutation rate and sets the rate at which the population accumulates beneficial mutations, which thus also grows only logarithmically with population size and mutation rate. These results imply that mutator phenotypes are less effective in larger asexual populations. They also have consequences for the advantages (or disadvantages) of sex via the Fisher-Muller effect; these are discussed briefly.  相似文献   

19.
When a beneficial mutation is fixed in a population that lacks recombination, the genetic background linked to that mutation is fixed. As a result, beneficial mutations on different backgrounds experience competition, or "clonal interference," that can cause asexual populations to evolve more slowly than their sexual counterparts. Factors such as a large population size (N) and high mutation rates (mu) increase the number of competing beneficial mutations, and hence are expected to increase the intensity of clonal interference. However, recent theory suggests that, with very large values of Nmu, the severity of clonal interference may instead decline. The reason is that, with large Nmu, genomes including both beneficial mutations are rapidly created by recurrent mutation, obviating the need for recombination. Here, we analyze data from experimentally evolved asexual populations of a bacteriophage and find that, in these nonrecombining populations with very large Nmu, recurrent mutation does appear to ameliorate this cost of asexuality.  相似文献   

20.
Su-Chan Park  Joachim Krug 《Genetics》2013,195(3):941-955
The adaptation of large asexual populations is hampered by the competition between independently arising beneficial mutations in different individuals, which is known as clonal interference. In classic work, Fisher and Muller proposed that recombination provides an evolutionary advantage in large populations by alleviating this competition. Based on recent progress in quantifying the speed of adaptation in asexual populations undergoing clonal interference, we present a detailed analysis of the Fisher–Muller mechanism for a model genome consisting of two loci with an infinite number of beneficial alleles each and multiplicative (nonepistatic) fitness effects. We solve the deterministic, infinite population dynamics exactly and show that, for a particular, natural mutation scheme, the speed of adaptation in sexuals is twice as large as in asexuals. This result is argued to hold for any nonzero value of the rate of recombination. Guided by the infinite population result and by previous work on asexual adaptation, we postulate an expression for the speed of adaptation in finite sexual populations that agrees with numerical simulations over a wide range of population sizes and recombination rates. The ratio of the sexual to asexual adaptation speed is a function of population size that increases in the clonal interference regime and approaches 2 for extremely large populations. The simulations also show that the imbalance between the numbers of accumulated mutations at the two loci is strongly suppressed even by a small amount of recombination. The generalization of the model to an arbitrary number L of loci is briefly discussed. If each offspring samples the alleles at each locus from the gene pool of the whole population rather than from two parents, the ratio of the sexual to asexual adaptation speed is approximately equal to L in large populations. A possible realization of this scenario is the reassortment of genetic material in RNA viruses with L genomic segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号