首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The Monte Carlo technique is considered gold standard when it comes to patient-specific dosimetry. Any newly developed Monte Carlo simulation framework, however, has to be carefully calibrated and validated prior to its use. For many researchers this is a tedious work. We propose a two-step validation procedure for our newly built Monte Carlo framework and provide all input data to make it feasible for future related application by the wider community. The validation was at first performed by benchmarking against simulation data available in literature. The American Association of Physicists in Medicine (AAPM) report of task group 195 (case 2) was considered most appropriate for our application. Secondly, the framework was calibrated and validated against experimental measurements for trunk X-ray imaging protocols using a water phantom. The dose results obtained from all simulations and measurements were compared. Our Monte Carlo framework proved to agree with literature data, by showing a maximal difference below 4% to the AAPM report. The mean difference with the water phantom measurements was around 7%. The statistical uncertainty for clinical applications of the dosimetry model is expected to be within 10%. This makes it reliable for clinical dose calculations in general radiology. Input data and the described procedure allow for the validation of other Monte Carlo frameworks.  相似文献   

2.
AimThe aim of this study is to verify the Prowess Panther jaws-only intensity modulated radiation therapy (JO-IMRT) treatment planning (TP) by comparing the TP dose distributions for head-and-neck (H&N) cancer with the ones simulated by Monte Carlo (MC).BackgroundTo date, dose distributions planned using JO-IMRT for H&N patients were found superior to the corresponding three-dimensional conformal radiotherapy (3D-CRT) plans. Dosimetry of the JO-IMRT plans were also experimentally verified using an ionization chamber, MapCHECK 2, and Octavius 4D and good agreements were shown.Materials and methodsDose distributions of 15 JO-IMRT plans of nasopharyngeal patients were recalculated using the EGSnrc Monte Carlo code. The clinical photon beams were simulated using the BEAMnrc. The absorbed dose to patients treated by fixed-field IMRT was computed using the DOSXYZnrc. The simulated dose distributions were then compared with the ones calculated by the Collapsed Cone Convolution (CCC) algorithm on the TPS, using the relative dose error comparison and the gamma index using global methods implemented in PTW-VeriSoft with 3%/3 mm, 2%/2 mm, 1%/1 mm criteria.ResultsThere is a good agreement between the MC and TPS dose. The average gamma passing rates were 93.3 ± 3.1%, 92.8 ± 3.2%, 92.4 ± 3.4% based on the 3%/3 mm, 2%/2 mm, 1%/1 mm criteria, respectively.ConclusionsAccording to the results, it is concluded that the CCC algorithm was adequate for most of the IMRT H&N cases where the target was not immediately adjacent to the critical structures.  相似文献   

3.
    
Microbeam radiation therapy (MRT), a so far preclinical method in radiation oncology, modulates treatment doses on a micrometre scale. MRT uses treatment fields with a few ten micrometre wide high dose regions (peaks) separated by a few hundred micrometre wide low dose regions (valleys) and was shown to spare tissue much more effectively than conventional radiation therapy at similar tumour control rates. While preclinical research focused primarily on tumours of the central nervous system, recently also lung tumours have been suggested as a potential target for MRT.This study investigates the effect of the lung microstructure, comprising air cavities of a few hundred micrometre diameter, on the microbeam dose distribution in lung. In Monte Carlo simulations different models of heterogeneous lung tissue are compared with pure water and homogeneous air–water mixtures. Experimentally, microbeam dose distributions in porous foam material with cavity sizes similar to the size of lung alveoli were measured with film dosimetry at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France.Simulations and experiments show that the microstructure of the lung has a huge impact on the local doses in the microbeam fields. Locally, material inhomogeneities may change the dose by a factor of 1.7, and also average peak and valley doses substantially differ from those in homogeneous material.Our results imply that accurate dose prediction for MRT in lung requires adequate models of the lung microstructure. Even if only average peak and valley doses are of interest, the assumption of a simple homogeneous air–water mixture is not sufficient. Since anatomic information on a micrometre scale are unavailable for clinical treatment planning, alternative methods and models have to be developed.  相似文献   

4.
    
PurposeUterine fibroids affect women mainly of childbearing age, an alternative for the treatment of these fibroids is uterine artery embolization (UAE), a minimally invasive procedure which uses fluoroscopy, providing radiation doses often high, due to the fact that professionals remain in the room throughout the procedure. In this work, equivalent and effective doses were evaluated for the main physician, for the assistant and for the patient during the UAE procedure.MethodsDoses were calculated using computer simulation with the Monte Carlo Method, and virtual anthropomorphic phantoms, in a typical scenario of interventional radiology with field sizes of 20 × 20, 25 × 25 and 32 × 32 cm2, tube voltages of 70, 80, 90 and 100 kV, and projections of LAO45, RAO45 and PA.ResultsThe results showed that the highest doses received by the professionals were for the LAO45 projection with 32 × 32 cm2 field size and 100 kV tube voltage, which is in accordance with the existing literature. The highest equivalent doses, without the protective equipment, were in the eyes, skin, breast and stomach for the main physician, and for the assistant they were in the eyes, breast, thyroid and skin. When she used the protective equipment, the highest equivalent doses for the main physician were on the skin, brain, bone marrow and bone surface, and for the assistant they were on the skin, brain, red bone marrow and bone surface.ConclusionsEffective doses increased up to 3186% for the main physician, and 2462% for the assistant, without protective equipment, thus showing their importance.  相似文献   

5.
AimExact knowledge of dosimetric parameters is an essential pre-requisite of an effective treatment in radiotherapy. In order to fulfill this consideration, different techniques have been used, one of which is Monte Carlo simulation.Materials and methodsThis study used the MCNP-4Cb to simulate electron beams from Neptun 10 PC medical linear accelerator. Output factors for 6, 8 and 10 MeV electrons applied to eleven different conventional fields were both measured and calculated.ResultsThe measurements were carried out by a Wellhofler-Scanditronix dose scanning system. Our findings revealed that output factors acquired by MCNP-4C simulation and the corresponding values obtained by direct measurements are in a very good agreement.ConclusionIn general, very good consistency of simulated and measured results is a good proof that the goal of this work has been accomplished.  相似文献   

6.
    
PurposeTo quantify the influence of different skin models on mammographic breast dosimetry, based on dosimetric protocols and recent breast skin thickness findings.MethodsBy using an adapted PENELOPE (v. 2014) + PenEasy (v. 2015) Monte Carlo (MC) code, simulations were performed in order to obtain the mean glandular dose (MGD), the normalized MGD by incident air Kerma (DgN), and the glandular depth dose (GDD(z)). The geometry was based on a cranio-caudal mammographic examination. Monoenergetic and polyenergetic beams were implemented, for a breast thickness from 2 cm to 9 cm, with different compositions. Seven skin models were used: a 5 mm adipose layer; a skin layer ranging from 5 mm to 1.45 mm, a 1.45 mm skin thickness with a subcutaneous adipose layer of 2 mm and 3.55 mm.ResultsThe differences, for monoenergetic beams, are higher (up to 200%) for lower energies (8 keV), thicker and low glandular content breasts, decreasing to less than 5% at 40 keV. Without a skin layer, the differences reach a maximum of 1240%. The relative difference in DgN values for 1.45 mm skin and 5 mm adipose layers and polyenergetic beams varies from −14% to 12%.ConclusionsThe implemented MC code is suitable for mammography dosimetry calculations. The skin models have major impacts on MGD values, and the results complement previous literature findings. The current protocols should be updated to include a more realistic skin model, which provides a reliable breast dose estimation.  相似文献   

7.
Given the substantial literature on the use of Monte Carlo (MC) simulations to verify treatment planning system (TPS) calculations of radiotherapy dose in heterogeneous regions, such as head and neck and lung, this study investigated the potential value of running MC simulations of radiotherapy treatments of nominally homogeneous pelvic anatomy. A pre-existing in-house MC job submission and analysis system, built around BEAMnrc and DOSXYZnrc, was used to evaluate the dosimetric accuracy of a sample of 12 pelvic volumetric arc therapy (VMAT) treatments, planned using the Varian Eclipse TPS, where dose was calculated with both the Analytical Anisotropic Algorithm (AAA) and the Acuros (AXB) algorithm. In-house TADA (Treatment And Dose Assessor) software was used to evaluate treatment plan complexity, in terms of the small aperture score (SAS), modulation index (MI) and a novel exposed leaf score (ELS/ELA). Results showed that the TPS generally achieved closer agreement with the MC dose distribution when treatments were planned for smaller (single-organ) targets rather than larger targets that included nodes or metastases. Analysis of these MC results with reference to the complexity metrics indicated that while AXB was useful for reducing dosimetric uncertainties associated with density heterogeneity, the residual TPS dose calculation uncertainties resulted from treatment plan complexity and TPS model simplicity. The results of this study demonstrate the value of using MC methods to recalculate and check the dose calculations provided by commercial radiotherapy TPSs, even when the treated anatomy is assumed to be comparatively homogeneous, such as in the pelvic region.  相似文献   

8.
9.
10.
    
The present work investigates preliminary feasibility and characteristics of a new type of radiation therapy modality based on a single convergent beam of photons. The proposal consists of the design of a device capable of generating convergent X-ray beams useful for radiotherapy. The main goal is to achieve high concentrated dose delivery. The first step is an analytical approach in order to characterize the dosimetric performance of the hypothetical convergent photon beam. Then, the validated FLUKA Monte Carlo main code is used to perform complete radiation transport to account also for scattering effects. The proposed method for producing convergent X-rays is mainly based on the bremsstrahlung effect. Hence the operating principle of the proposed device is described in terms of bremsstrahlung production. The work is mainly devoted characterizing the effect on the bremsstrahlung yield due to accessories present in the device, like anode material and geometry, filtration and collimation systems among others.The results obtained for in-depth dose distributions, by means of analytical and stochastic approaches, confirm the presence of a high dose concentration around the irradiated target, as expected. Moreover, it is shown how this spot of high dose concentration depends upon the relevant physical properties of the produced convergent photon beam.In summary, the proposed design for producing single convergent X-rays attained satisfactory performance for achieving high dose concentration around small targets depending on beam spot size that may be used for some applications in radiotherapy, like radiosurgery.  相似文献   

11.
    
We have developed a new component module for the BEAMnrc software package, called SMLC, which models the tongue-and-groove structure of the Siemens Optifocus multileaf collimator. The ultimate goal is to perform accurate Monte Carlo simulations of the IMRT treatments carried out with Optifocus. SMLC has been validated by direct geometry checks and by comparing quantitatively the results of simulations performed with it and with the component module VARMLC. Measurements and Monte Carlo simulations of absorbed dose distributions of radiation fields sensitive to the tongue-and-groove effect have been performed to tune the free parameters of SMLC. The measurements cannot be accurately reproduced with VARMLC. Finally, simulations of a typical IMRT field showed that SMLC improves the agreement with experimental measurements with respect to VARMLC in clinically relevant cases.PACS number87.55. K-  相似文献   

12.
Abstract

A Monte Carlo simulation method has been developed for modelling amphiphiles at an oil-water interface. Properties are calculated for the mixture water, benzene and tetraoxyethylene glycol dodecyl ether.  相似文献   

13.
    
PurposeTo characterize the dose distribution in water of a novel beta-emitting brachytherapy source for use in a Conformal Superficial Brachytherapy (CSBT) device.Methods and materialsYttrium-90 (90Y) sources were designed for use with a uniquely designed CSBT device. Depth dose and planar dose measurements were performed for bare sources and sources housed within a 3D printed source holder. Monte Carlo simulated dose rate distributions were compared to film-based measurements. Gamma analysis was performed to compare simulated and measured dose rates from seven 90Y sources placed simultaneously using the CSBT device.ResultsThe film-based maximum measured surface dose rate for a bare source in contact with the surface was 3.35 × 10–7 cGy s−1 Bq−1. When placed in the source holder, the maximum measured dose rate was 1.41 × 10–7 cGy s−1 Bq−1. The Monte Carlo simulated depth dose rates were within 10% or 0.02 cm of the measured dose rates for each depth of measurement. The maximum film surface dose rate measured using a seven-source configuration within the CSBT device was 1.78 × 10−7 cGy s−1 Bq−1. Measured and simulated dose rate distribution of the seven-source configuration were compared by gamma analysis and yielded a passing rate of 94.08%. The gamma criteria were 3% for dose-difference and 0.07056 cm for distance-to-agreement. The estimated measured dose rate uncertainty was 5.34%.Conclusions90Y is a unique source that can be optimally designed for a customized CSBT device. The rapid dose falloff provided a high dose gradient, ideal for treatment of superficial lesions. The dose rate uncertainty of the 90Y-based CSBT device was within acceptable brachytherapy standards and warrants further investigation.  相似文献   

14.
15.
The force-biased extension of the Metropolis Monte Carlo method [1] improves convergence by sampling moves preferentially along the directions of force (and torque) [2]. For solvated systems it is particularly effective [3] when coupled with the preferential sampling scheme [4] that attempts to move solvents near the solute more frequently. However, in recent force-biased simulations of aqueous ionic solutions [5] some of the water molecules in the vicinity of the solute remained essentially stationary. Only significant reduction in the stepsize produced some accepted moves.  相似文献   

16.
    
PurposeTo estimate the mean glandular dose of contrast enhanced digital mammography, using the EGSnrc Monte Carlo code and female adult voxel phantom.MethodsAutomatic exposure control of full field digital mammography system was used for the selection of the X-ray spectrum and the exposure settings for dual energy imaging. Measurements of the air-kerma and of the half value layers were performed and a Monte Carlo simulation of the digital mammography system was used to compute the mean glandular dose, for breast phantoms of various thicknesses, glandularities and for different X-ray spectra (low and high energy).ResultsFor breast phantoms of 2.0–8.0 cm thick and 0.1–100% glandular fraction, CC view acquisition, from AEC settings, can result in a mean glandular dose of 0.450 ± 0.022 mGy −2.575 ± 0.033 mGy for low energy images and 0.061 ± 0.021 mGy – 0.232 ± 0.033 mGy for high energy images. In MLO view acquisition mean glandular dose values ranged between 0.488 ± 0.007 mGy – 2.080 ± 0.021 mGy for low energy images and 0.065 ± 0.012 mGy – 0.215 ± 0.010 mGy for high energy images.ConclusionThe low kV part of contrast enhanced digital mammography is the main contributor to total mean glandular breast dose. The results of this study can be used to provide an estimated mean glandular dose for individual cases.  相似文献   

17.
The traditional q1 * methodology for constructing upper confidence limits (UCLs) for the low-dose slopes of quantal dose-response functions has two limitations: (i) it is based on an asymptotic statistical result that has been shown via Monte Carlo simulation not to hold in practice for small, real bioassay experiments (Portier and Hoel, 1983); and (ii) it assumes that the multistage model (which represents cumulative hazard as a polynomial function of dose) is correct. This paper presents an uncertainty analysis approach for fitting dose-response functions to data that does not require specific parametric assumptions or depend on asymptotic results. It has the advantage that the resulting estimates of the dose-response function (and uncertainties about it) no longer depend on the validity of an assumed parametric family nor on the accuracy of the asymptotic approximation. The method derives posterior densities for the true response rates in the dose groups, rather than deriving posterior densities for model parameters, as in other Bayesian approaches (Sielken, 1991), or resampling the observed data points, as in the bootstrap and other resampling methods. It does so by conditioning constrained maximum-entropy priors on the observed data. Monte Carlo sampling of the posterior (constrained, conditioned) probability distributions generate values of response probabilities that might be observed if the experiment were repeated with very large sample sizes. A dose-response curve is fit to each such simulated dataset. If no parametric model has been specified, then a generalized representation (e.g., a power-series or orthonormal polynomial expansion) of the unknown dose-response function is fit to each simulated dataset using “model-free” methods. The simulation-based frequency distribution of all the dose-response curves fit to the simulated datasets yields a posterior distribution function for the low-dose slope of the dose-response curve. An upper confidence limit on the low-dose slope is obtained directly from this posterior distribution. This “Data Cube” procedure is illustrated with a real dataset for benzene, and is seen to produce more policy-relevant insights than does the traditional q1 * methodology. For example, it shows how far apart are the 90%, 95%, and 99% limits and reveals how uncertainty about total and incremental risk vary with dose level (typically being dominated at low doses by uncertainty about the response of the control group, and being dominated at high doses by sampling variability). Strengths and limitations of the Data Cube approach are summarized, and potential decision-analytic applications to making better informed risk management decisions are briefly discussed.  相似文献   

18.

Background

During a proper execution of dMLC plans, there occurs an undesired but frequent effect of the dose locally accumulated by tissue being significantly different than expected. The conventional dosimetric QA procedures give only a partial picture of the quality of IMRT treatment, because their solely quantitative outcomes usually correspond more to the total area of the detector than the actually irradiated volume.

Aim

The aim of this investigation was to develop a procedure of dynamic plans verification which would be able to visualize the potential anomalies of dose distribution and specify which tissue they exactly refer to.

Materials & methods

The paper presents a method discovered and clinically examined in our department. It is based on a Gamma Evaluation concept and allows accurate localization of deviations between predicted and acquired dose distributions, which were registered by portal as well as film dosimetry. All the calculations were performed on the self-made software GammaEval, the γ-images (2-dimensional distribution of γ-values) and γ-histograms were created as quantitative outcomes of verification.

Results

Over 150 maps of dose distribution have been analyzed and the cross-examination of the gamma images with DRRs was performed.

Conclusions

It seems, that the complex monitoring of treatment would be possible owing to the images obtained as a cross-examination of γ-images and corresponding DRRs.  相似文献   

19.

Aim

The aim of the present study is to develop and verify the single film calibration procedure used in intensity-modulated radiation therapy (IMRT) quality assurance.

Background

Radiographic films have been regularly used in routine commissioning of treatment modalities and verification of treatment planning system (TPS). The radiation dosimetery based on radiographic films has ability to give absolute two-dimension dose distribution and prefer for the IMRT quality assurance. However, the single therapy verification film gives a quick and significant reliable method for IMRT verification.

Materials and methods

A single extended dose rate (EDR 2) film was used to generate the sensitometric curve of film optical density and radiation dose. EDR 2 film was exposed with nine 6 cm × 6 cm fields of 6 MV photon beam obtained from a medical linear accelerator at 5-cm depth in solid water phantom. The nine regions of single film were exposed with radiation doses raging from 10 to 362 cGy. The actual dose measurements inside the field regions were performed using 0.6 cm3 ionization chamber. The exposed film was processed after irradiation using a VIDAR film scanner and the value of optical density was noted for each region. Ten IMRT plans of head and neck carcinoma were used for verification using a dynamic IMRT technique, and evaluated using the gamma index method with TPS calculated dose distribution.

Results

Sensitometric curve has been generated using a single film exposed at nine field region to check quantitative dose verifications of IMRT treatments. The radiation scattered factor was observed to decrease exponentially with the increase in the distance from the centre of each field region. The IMRT plans based on calibration curve were verified using the gamma index method and found to be within acceptable criteria.

Conclusion

The single film method proved to be superior to the traditional calibration method and produce fast daily film calibration for highly accurate IMRT verification.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号