首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PurposeTo compare helical Tomotherapy (HT), two volumetric-modulated arc techniques and conventional fixed-field intensity modulated techniques (S-IMRT) for head-neck (HN) cancers.Methods and materialsEighteen HN patients were considered. Four treatment plans were generated for each patient: HT, S-IMRT optimised with Eclipse treatment planning system and two volumetric techniques using Elekta–Oncentra approach (VMAT) and Varian-RapidArc (RA), using two full arcs. All techniques were optimised to simultaneously deliver 66Gy to PTV1 (GTV and enlarged nodes) and 54Gy to PTV2 (subclinical and electively treated nodes). Comparisons were assessed on several dosimetric parameters and, secondarily, on planned MUs and delivery time.ResultsConcerning PTV coverage, significantly better results were found for HT and RA. HT significantly improved the target coverage both compared to S-IMRT and VMAT. No significant differences were found between S-IMRT and volumetric techniques in terms of dose homogeneity. For OARs, all the techniques were able to satisfy all hard constraints; significantly better results were found for HT, especially in the intermediate dose range (15–30 Gy). S-IMRT reached a significantly better OARs sparing with respect to VMAT and RA. No significant differences were found for body mean dose, excepting higher values of V5–V10 for HT. A reduction of planned MUs and delivery treatment time was found with volumetric techniques.ConclusionsThe objectives of satisfying target coverage and sparing of critical structures were reached with all techniques. S-IMRT techniques were found more advantageous compared to RA and VMAT for OARs sparing. HT reached the best overall treatment plan quality.  相似文献   

2.
BackgroundThis dosimetric study aims to evaluate the dosimetric advantage of the irregular surface compensator (ISC) compared with the intensity-modulated radiotherapy (IMRT).Materials and methodsTen patients with whole breast irradiation were planned with the ISC and IMRT techniques. Six different beam directions were selected for IMRT and ISC plans. The treatment plans were evaluated with respect to planning target coverage, dose homogeneity index (DHI) and organs at risk (OARs) sparing. Monitor units (MUs) and the delivery time were analysed for treatment efficiency.ResultsThe ISC technique provides a better coverage of the PTV and statistically significantly better homogeneity of the dose distribution. For the ipsilateral lung and heart, ISC and IMRT techniques deliver almost the same dose in all plans. However, MU counts and delivery time were significantly lower with the IMRT technique (p < 0.05).ConclusionFor breast radiotherapy, when the ISC method was compared to the IMRT method, ISC provided better dose distribution for the target.  相似文献   

3.
PurposeTo assess the performance of a new optimization system, VOLO, for CyberKnife MLC-based SBRT plans in comparison with the existing Sequential optimizer.MethodsMLC-plans were created for 25 SBRT cases (liver, prostate, pancreas and spine) using both VOLO and Sequential. Monitor units (MU), delivery time (DT), PTV coverage, conformity (nCI), dose gradient (R50%) and OAR doses were used for comparison and combined to obtain a mathematical score (MS) of plan quality for each solution. MS strength was validated by changing parameter weights and by a blinded clinical plan evaluation. The optimization times (OT) and the average segment areas (SA) were also compared.ResultsVOLO solutions offered significantly lower mean DT (−19%) and MU (−13%). OT were below 15 min for VOLO, whereas for Sequential, values spanned from 8 to 160 min. SAs were significantly larger for VOLO: on average 10 cm2 versus 7 cm2. VOLO optimized plans achieved a higher MS than Sequential for all tested parameter combinations. PTV coverage and OAR sparing were comparable for both groups of solutions. Although slight differences in R50% and nCI were found, the parameters most affecting MS were MU and DT. VOLO solutions were selected in 80% of cases by both physicians with 88% inter-observer agreement.ConclusionsThe good performance of the VOLO optimization system, together with the large reduction in OT, make it a useful tool to improve the efficiency of CK SBRT planning and delivery. The proposed methodology for comparing different planning solutions can be applied in other contexts.  相似文献   

4.
AimThe aim of this study was to investigate normal tissue sparing through dosimetric parameters of normal tissue volumes using different irradiation techniques for conventional (CFRT) and simultaneously integrated boost (SIB) schedules.BackgroundSeveral dose-escalation studies for localized prostate cancer (PCa) have shown advanced biochemical relapse-free (bRFS) rates and also better local control for higher total doses using either CFRT or SIB schedules. Besides the most important organs-at-risk, absorbed dose reduction of other surrounding normal tissues are also preferable. In order to analyse the normal tissue sparing, dosimetric parameters of different normal tissue volumes were examined.Materials and methodsTreatment plans for 15 high risk prostate cancer patients were created using RapidArc (RA), Sliding Window (SW) IMRT and 4-field box (3D-CRT) technique. In order to evaluate normal tissue sparing, the volume of pelvic region was divided into six normal tissue cylinders with 1 cm wall thickness, located in each other.ResultsAll plans met the criteria of target coverage (V95%>95%). All techniques provided the same results for OARs except 3D-CRT for rectum and bilateral femoral heads. The values of V5, V10 and V15 increased in cases which included RapidArc technique and decreased for V20 and V30.ConclusionsThe dosimetric parameters for the cylindrical normal tissue volumes show that using RapidArc technique gives equal or slightly better normal tissue sparing and SIB provided the same normal tissue sparing as CFRT planned with RapidArc.  相似文献   

5.
PurposeStereotactic body image guided radiation therapy (SBRT) shows good results for lung cancer treatment. Better normal tissue sparing might be achieved with scanned carbon ion therapy (PT). Therefore an in silico trial was conducted to find potential advantages of and patients suited for PT.MethodsFor 19 patients treated with SBRT, PT plans were calculated on 4D-CTs with simulated breathing motion. Prescribed single fraction dose was 24 Gy and OAR constraints used for photon planning were respected. Motion was mitigated by rescanning and range-adapted ITVs. Doses were compared to the original SBRT plans.ResultsCTV coverage was the same in SBRT and PT. The field-specific PTV including range margins for PT was 1.5 (median, 25–75% 1.3–2.1) times larger than for SBRT. Nevertheless, maximum point dose and mean dose in OARs were higher in SBRT by 2.8 (1.6–3.7) Gy and 0.7 (0.3–1.6) Gy, respectively. Patients with a CTV >2.5 cc or with multiple lung lesions showed larger differences in OAR doses in favor of PT.ConclusionsPatients receive less dose in critical OARs such as heart, spinal cord, esophagus, trachea and aorta with PT, while maintaining the same target coverage. Patients with multiple or larger lesions are particularly suited for PT.  相似文献   

6.
PurposeRestricted studies comparing different dose rate parameters are available while ITV-based VMAT lung SBRT planning leads to perform the analysis of the most suitable parameters of the external beams used. The special emphasis was placed on the impact of dose rate on dose distribution variations in target volumes due to interplay effects.MethodsFour VMAT plans were calculated for 15 lung tumours using 6 MV photon beam quality (flattening filter FF vs. flattening filter free FFF beams) and maximum dose rate of 600 MU/min, 1000 MU/min and 1400 MU/min. Three kinds of motion simulations were performed finally giving 180 plans with perturbed dose distributions.Results6FFF-1400 MUs/min plans were characterized by the shortest beam on time (1.8 ± 0.2 min). Analysing the performed motion simulation results, the mean dose (Dmean) is not a sensitive parameter to related interplay effects. Looking for local maximum and local minimum doses, some discrepancies were found, but their significance was presented for individual patients, not for the whole cohort. The same was observed for other verified dose metrics.ConclusionsGenerally, the evaluation of VMAT robustness between FF and FFF concepts against interplay effect showed a negligible effect of simulated motion influence on tumour coverage among different photon beam quality parameters. Due to the lack of FFF beams, smaller radiotherapy centres are able to perform ITV-based VMAT lung SBRT treatment in a safe way. Radiotherapy department having FFF beams could perform safe, fast and efficient ITV-based VMAT lung SBRT without a concern about significance of interplay effects.  相似文献   

7.
PurposeThe dosimetric differences between four radiation therapy techniques for left sided whole breast irradiation were evaluated side by side in the same patient population.MethodsRadiotherapy treatment plans were retrospectively created with Accuray TomoDirect (TD), Elekta Volumetric Modulated Arc Therapy (E-VMAT), Varian RapidArc (RA) and Field-in-field (FinF) technique for 20 patients, who had received left breast irradiation during deep-inspiration breath-hold. Dose characteristics of planning target volume and organs at risk were compared.ResultsThe E-VMAT, TD and RA treatment plans had higher target coverage (V95%) than FinF plans (97.7–98.3% vs. 96.6%). The low-dose spillage to contralateral breast and lung was smaller with FinF and TD (mean 0.1 and 0.3 Gy) compared to E-VMAT and RA (mean 0.6 and 0.9 Gy). E-VMAT, RA and TD techniques were more effective than FinF in sparing left anterior descending artery (mean 4.0, 4.2 and 4.7 Gy vs. 6.1 Gy, respectively).ConclusionsIn whole breast irradiation TD, E-VMAT and RA plans generated in this study achieved higher dose coverage and sparing of organs from the high dose in the vicinity of the PTV. The advantage of calculated FinF plans is the lowest dose on contralateral organs. The choice of the technique used should be weighted by each institution taking into account the dose characteristics of each technique and its fit with patient anatomy bearing in mind the increased workload of using modulated techniques and the increased beam on time.  相似文献   

8.
9.
BackgroundThe objective of the study was to dosimetrically compare the intensity-modulated-arc-therapy (IMAT), Cyber-Knife therapy (CK), single fraction interstitial high-dose-rate (HDR) and low-dose-rate (LDR) brachytherapy (BT) in low-risk prostate cancer.Materials and methodsTreatment plans of ten patients treated with CK were selected and additional plans using IMAT, HDR and LDR BT were created on the same CT images. The prescribed dose was 2.5/70 Gy in IMAT, 8/40 Gy in CK, 21 Gy in HDR and 145 Gy in LDR BT to the prostate gland. EQD2 dose-volume parameters were calculated for each technique and compared.ResultsEQD2 total dose of the prostate was significantly lower with IMAT and CK than with HDR and LDR BT, D90 was 79.5 Gy, 116.4 Gy, 169.2 Gy and 157.9 Gy (p < 0.001). However, teletherapy plans were more conformal than BT, COIN was 0.84, 0.82, 0.76 and 0.76 (p < 0.001), respectively. The D2 to the rectum and bladder were lower with HDR BT than with IMAT, CK and LDR BT, it was 66.7 Gy, 68.1 Gy, 36.0 Gy and 68.0 Gy (p = 0.0427), and 68.4 Gy, 78.9 Gy, 51.4 Gy and 70.3 Gy (p = 0.0091) in IMAT, CK, HDR and LDR BT plans, while D0.1 to the urethra was lower with both IMAT and CK than with BTs: 79.9 Gy, 88.0 Gy, 132.7 Gy and 170.6 Gy (p < 0.001). D2 to the hips was higher with IMAT and CK, than with BTs: 13.4 Gy, 20.7 Gy, 0.4 Gy and 1.5 Gy (p < 0.001), while D2 to the sigmoid, bowel bag, testicles and penile bulb was higher with CK than with the other techniques.ConclusionsHDR monotherapy yields the most advantageous dosimetrical plans, except for the dose to the urethra, where IMAT seems to be the optimal modality in the radiotherapy of low-risk prostate cancer.  相似文献   

10.

Purpose

To assess the performance of a simple optimisation method for improving target coverage and organ-at-risk (OAR) sparing in intensity-modulated radiotherapy (IMRT) for cervical oesophageal cancer.

Methods

For 20 selected patients, clinically acceptable original IMRT plans (Original plans) were created, and two optimisation methods were adopted to improve the plans: 1) a base dose function (BDF)-based method, in which the treatment plans were re-optimised based on the original plans, and 2) a dose-controlling structure (DCS)-based method, in which the original plans were re-optimised by assigning additional constraints for hot and cold spots. The Original, BDF-based and DCS-based plans were compared with regard to target dose homogeneity, conformity, OAR sparing, planning time and monitor units (MUs). Dosimetric verifications were performed and delivery times were recorded for the BDF-based and DCS-based plans.

Results

The BDF-based plans provided significantly superior dose homogeneity and conformity compared with both the DCS-based and Original plans. The BDF-based method further reduced the doses delivered to the OARs by approximately 1–3%. The re-optimisation time was reduced by approximately 28%, but the MUs and delivery time were slightly increased. All verification tests were passed and no significant differences were found.

Conclusion

The BDF-based method for the optimisation of IMRT for cervical oesophageal cancer can achieve significantly better dose distributions with better planning efficiency at the expense of slightly more MUs.  相似文献   

11.
PurposeThis study measured to which extent RapidPlan can drive a reduction of the human-caused variability in prostate cancer treatment planning.MethodsSeventy clinical prostate plans were used to train a RapidPlan model. Seven planners, with different levels of planning experience, were asked to plan a VMAT treatment for fifteen prostate cancer patients with and without RapidPlan assistance. The plans were compared on the basis of target coverage, conformance and OAR sparing. Inter-planner and intra-planner variability were assessed on the basis of the Plan Quality Metric formalism. Differences in mean values and InterQuartile Ranges between patients and operators were assessed.ResultsRapidPlan-assisted plans matched manual planning in terms of target coverage, homogeneity, conformance and bladder sparing but outperformed it for rectum and femoral heads sparing. 8 out of 15 patients showed a statistically significant increase in overall quality. Inter-planner variability is reduced in RapidPlan-assisted planning for rectum and femoral heads while bladder variability was constant. The inter-planner variability of the overall plan quality, IQR of PQM%, was approximately halved for all patients. RapidPlan assistance induced a larger increase in plan quality for less experienced planners. At the same time, a reduction in intra-planner variability is measured with a significant overall reduction.ConclusionsThe assistance of RapidPlan during the optimization of treatments for prostate cancer induces a significant increase of plan quality and a contextual reduction of plan variability. RapidPlan is proven to be a valuable tool to leverage the planning skills of less experienced planners ensuring a better homogeneity of treatment plan quality.  相似文献   

12.
BackgroundIn order to consider potential positioning errors there are different recipes for safety-margins for CTV-to-PTV expansion. The aim of this study is to simulate the effect of positioning inaccuracy with clinically realistic patient treatment plans.MethodsFor a collective of 40 prostate patients, the isocenter was shifted back appropriately to the applied table shifts after positioning verification, simulating that no positioning correction had been performed and the treatment plans were recalculated. All the treatment fractions with the appropriate isocenter-shifts were added to yield a new plan considering two scenarios:
  • 1)Extreme scenario: summation of only shifted plans.
  • 2)Realistic scenario: consideration of the original treatment plan for the fractions with verification imaging.
Afterwards all plans were analysed and compared with each other regarding target coverage, sparing of organs at risk (OAR) and normal tissue complication probability (NTCP).ResultsDose distributions and especially DVH show a deterioration of the target-coverage caused by the positioning inaccuracy. Deviations in dose at a single point can reach values of over 10 Gy. In single cases minimum plan agreement only achieved 66% pass within 3% local dose for the realistic case. Organs at risk and NTCP analysis result in a slightly better sparing of the rectum. Measures of quality like homogeneity and conformity differ just minimally regarding the different scenarios.ConclusionPTV-coverage suffers markedly by the positioning uncertainties, the shifted plans are in large parts clinically not acceptable. Surprisingly sparing of the OAR is not negatively affected by potential positioning errors for this prostate collective.  相似文献   

13.
AimTo assess target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment and to assess possibility of safety margin reduction.BackgroundImplementation of IGRT should influence safety margins. Utilization of cone-beam CT provides current 3D anatomic information directly in irradiation position. Such information enables reconstruction of the actual dose distribution.Materials and methodsSeventeen prostate patients were treated with daily bony anatomy image-guidance. Cone-beam CT (CBCT) scans were acquired once a week immediately after bony anatomy alignment. After the prostate, seminal vesicles, rectum and bladder were contoured, the delivered dose distribution was reconstructed. Target dose coverage was evaluated by the proportion of the CTV encompassed by the 95% isodose. Original plans employed a 1 cm safety margin. Alternative plans assuming a smaller 7 mm margin between CTV and PTV were evaluated in the same way. Rectal and bladder volumes were compared with the initial ones. Rectal and bladder volumes irradiated with doses higher than 75 Gy, 70 Gy, 60 Gy, 50 Gy and 40 Gy were analyzed.ResultsIn 12% of reconstructed plans the prostate coverage was not sufficient. The prostate underdosage was observed in 5 patients. Coverage of seminal vesicles was not satisfactory in 3% of plans. Most of the target underdosage corresponded to excessive rectal or bladder filling. Evaluation of alternative plans assuming a smaller 7 mm margin revealed 22% and 11% of plans where prostate and seminal vesicles coverage, respectively, was compromised. These were distributed over 8 and 7 patients, respectively.ConclusionSufficient dose coverage of target volumes was not achieved for all patients. Reducing of safety margin is not acceptable. Initial rectal and bladder volumes cannot be considered representative for subsequent treatment.  相似文献   

14.
AimThe aim was to provide a dosimetric comparison between IMRT and RapidArc treatment plans with RPI index with simultaneous comparison of the treatment delivery time.BackgroundIMRT and RapidArc provide highly conformal dose distribution with good sparing of normal tissues. However, a complex spatial dosimetry of IMRT and RapidArc plans hampers the evaluation and comparison between plans calculated for the two modalities. RPI was used in this paper for treatment plan comparisons. The duration of the therapeutic session in RapidArc is reported to be shorter in comparison to therapeutic time of the other dynamic techniques. For this reasons, total treatment delivery time in both techniques was compared and discussed.Materials and methods15 patients with prostate carcinoma were randomly selected for the analysis. Two competitive treatment plans using respectively the IMRT and RapidArc techniques were computed for each patient in Eclipse planning system v. 8.6.15. RPIwin® application was used for RPI calculations for each treatment plan.Additionally, total treatment time was compared between IMRT and RapidArc plans. Total treatment time was a sum of monitor units (MU) for each treated field.ResultsThe mean values of the RPI indices were insignificantly higher for IMRT plans in comparison to rotational therapy. Comparison of the mean numbers of monitor units confirmed that the use of rotational technique instead of conventional static field IMRT can significantly reduce the treatment time.ConclusionAnalysis presented in this paper, demonstrated that RapidArc can compete with the IMRT technique in the field of treatment plan dosimetry reducing the time required for dose delivery.  相似文献   

15.
ObjectiveTo determine the optimum energy and beam arrangement for prostate intensity-modulated radiation therapy (IMRT) delivery using an Elekta Beam Modulator? linear accelerator, in order to inform decisions when commissioning IMRT for prostate cancer.MethodsCMS XiO was used to create IMRT plans for a prostate patient. Arrangements with 3, 5, 7, 9 and 11 equally spaced fields, containing both a direct anterior and a direct posterior beam were used, with both 6 MV and 10 MV photons. The effects of varying the maximum number of iterations, leaf increment, number of intensity levels and minimum segment size were investigated. Treatment plans were compared using isodose distributions, conformity indices for targets and critical structures, target dose homogeneity, body dose and plan complexity.ResultsTarget dose conformity and homogeneity and sparing of critical structures improved with an increasing number of beams, although any improvements were small for plans containing more than five fields. Set-ups containing a direct posterior field provided superior conformality around the rectum to anterior beam arrangements. Mean non-target dose and total number of monitor units were higher with 6 MV for all beam arrangements. The dose distribution resulting from seven 6 MV beams was considered clinically equivalent to that with five 10 MV beams.ConclusionMethods have been developed to plan IMRT treatments using XiO for delivery with a Beam Modulator? that fulfil demanding dose criteria, using many different set-ups. This study suggests that 6 MV photons can produce prostate IMRT plans that are comparable to those using 10 MV. Work is ongoing to develop a complete class solution.  相似文献   

16.
IntroductionThe stereotactic irradiation is a new approach for low-risk prostate cancer. The aim of the present study was to evaluate a schema of stereotactic irradiation of the prostate with an integrated-boost into the tumor.Material and methodsThe prostate and the tumor were delineated by a radiologist on CT/MRI fusion. A 9-coplanar fields IMRT plan was optimized with three different dose levels: 1) 5 × 6.5 Gy to the PTV1 (plan 1), 2) 5 × 8 Gy to the PTV1 (plan 2) and 3) 5 × 6.5 Gy on the PTV1 with 5 × 8 Gy on the PTV2 (plan 3). The maximum dose (MaxD), mean dose (MD) and doses received by 2% (D2), 5% (D5), 10% (D10) and 25% (D25) of the rectum and bladder walls were used to compare the 3 IMRT plans.ResultsA dose escalation to entire prostate from 6.5 Gy to 8 Gy increased the rectum MD, MaxD, D2, D5, D10 and D25 by 3.75 Gy, 8.42 Gy, 7.88 Gy, 7.36 Gy, 6.67 Gy and 5.54 Gy. Similar results were observed for the bladder with 1.72 Gy, 8.28 Gy, 7.01 Gy, 5.69 Gy, 4.36 Gy and 2.42 Gy for the same dosimetric parameters. An integrated SBRT boost only to PTV2 reduced by about 50% the dose difference for rectum and bladder compared to a homogenous prostate dose escalation. Thereby, the MD, D2, D5, D10 and D25 for rectum were increased by 1.51 Gy, 4.24 Gy, 3.08 Gy, 2.84 Gy and 2.37 Gy in plan 3 compared to plan 1.ConclusionsThe present planning study of an integrated SBRT boost limits the doses received by the rectum and bladder if compared to a whole prostate dose escalation for SBRT approach.  相似文献   

17.
AimTo evaluate the target dose coverage for lung stereotactic body radiotherapy (SBRT) using helical tomotherapy (HT) with the internal tumor volume (ITV) margin settings adjusted according to the degree of tumor motion.BackgroundLung SBRT with HT may cause a dosimetric error when the target motion is large.Materials and methodsTwo lung SBRT plans were created using a tomotherapy planning station. Using these original plans, five plans with different ITV margins (4.0–20.0 mm for superior-inferior [SI] dimension) were generated. To evaluate the effects of respiratory motion on HT, an original dynamic motion phantom was developed. The respiratory wave of a healthy volunteer was used for dynamic motion as the typical tumor respiratory motion. Five patterns of motion amplitude that corresponded to five ITV margin sizes and three breathing cycles of 7, 14, and 28 breaths per minute were used. We evaluated the target dose change between a static delivery and a dynamic delivery with each motion pattern.ResultsThe target dose difference increased as the tumor size decreased and as the tumor motion increased. Although a target dose difference of <5 % was observed at ≤10 mm of tumor motion for each condition, a maximum difference of -9.94 % ± 7.10 % was observed in cases of small tumors with 20 mm of tumor motion under slow respiration.ConclusionsMinimizing respiratory movement is recommended as much as possible for lung SBRT with HT, especially for cases involving small tumors.  相似文献   

18.
PurposeThe purpose of this work was to present a new single-arc mixed photon (6&18MV) VMAT (SAMP) optimization framework that concurrently optimizes for two photon energies with corresponding partial arc lengths.Methods and materialsOwing to simultaneous optimization of energy dependent intensity maps and corresponding arc locations, the proposed model poses nonlinearity. Unique relaxation constraints based on McCormick approximations were introduced for linearization. Energy dependent intensity maps were then decomposed to generate apertures. Feasibility of the proposed framework was tested on a sample of ten prostate cancer cases with lateral separation ranging from 34 cm (case no.1) to 52 cm (case no.6). The SAMP plans were compared against single energy (6MV) VMAT (SE) plans through dose volume histograms (DVHs) and radiobiological parameters including normal tissue complication probability (NTCP) and equivalent uniform dose (EUD).ResultsThe contribution of higher energy photon beam optimized by the algorithm demonstrated an increase for cases with a lateral separation >40 cm. SAMP–VMAT notably improved bladder and rectum sparing in large size cases. Compared to single energy, SAMP–VMAT plans reduced bladder and rectum NTCP in cases with large lateral separation. With the exception of one case, SAMP–VMAT either improved or maintained femoral heads compared to SE–VMAT. SAMP–VMAT reduced the nontarget tissue integral dose in all ten cases.ConclusionsA single-arc VMAT optimization framework comprising mixed photon energy partial arcs was presented. Overall results underline the feasibility and potential of the proposed approach for improving OAR sparing in large size patients without compromising the target homogeneity and coverage.  相似文献   

19.
AimThis study compared volumetric-modulated arc therapy (VMAT) plans for head and neck cancers with and without an external body contour extended technique (EBCT).BackgroundDose calculation algorisms for VMAT have limitations in the buildup region.Materials and methodsThree VMAT plans were enrolled, with one case having a metal artifact from an artificial tooth. The proper dose was calculated using Eclipse version 11.0. The body contours were extended 2 cm outward from the skin surface in three-dimensional space, and the dose was recalculated with an anisotropic analytical algorithm (AAA) and Acuros XB (AXB). Monitor units (MUs) were set, and the dose distributions in the planning target volume (PTV), clinical target volume, and organ at risk (OAR) and conformity index (CI) with and without an EBCT were compared. The influence of a metal artifact outside of the thermoplastic head mask was also compared.ResultsThe coverage of PTV by the 95% dose line near the patient’s skin was increased drastically by using an EBCT. Plan renormalization had a negligible impact on MUs and doses delivered to OARs. CI of PTV with a 6-MV photon beam was closer to 1 than that with a 10-MV photon beam when both AAA and AXB were used in all cases. Metal artifacts outside the head mask had no effect on dose distribution.ConclusionsAn EBCT is needed to estimate the proper dose at object volumes near the patient’s skin and can improve the accuracy of the calculated dose at target volumes.  相似文献   

20.
BackgroundThe aim of this study was to clarify factors predicting the performance of knowledge-based planning (KBP) models in volume modulated arc therapy for prostate cancer in terms of sparing the organ at risk (OAR).Materials and methodsIn three institutions, each KBP model was trained by more than 20 library plans (LP) per model. To validate the characterization of each KBP model, 45 validation plans (VP) were calculated by the KBP system. The ratios of overlap between the OAR volume and the planning target volume (PTV) to the whole organ volume (Voverlap/Vwhole) were analyzed for each LP and VP. Regression lines between dose–volume parameters (V90, V75, and V50) and Voverlap/Vwhole were evaluated. The mean OAR dose, V90, V75, and V50 of LP did not necessarily match those of VP.ResultsIn both the rectum and bladder, the dose–volume parameters for VP were strongly correlated with Voverlap/Vwhole at institutes A, B, and C (R > 0.74, 0.85, and 0.56, respectively). Except in the rectum at institute B, the slopes of the regression lines for LP corresponded to those for VP. For dose–volume parameters for the rectum, the ratios of slopes of the regression lines in VP to those in LP ranged 0.51–1.26. In the bladder, most ratios were less than 1.0 (mean: 0.77).ConclusionFor each OAR, each model made distinct dosimetric characterizations in terms of Voverlap/Vwhole. The relationship between dose–volume parameters and Voverlap/Vwhole of OARs in LP predicts the KBP models’ performance sparing OARs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号