首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Chrysoperla agilis Henry et al. is one of the five cryptic species of the carnea group found in Europe. Identification of these species is mainly based on the distinct mating signals produced by both females and males prior to copulation, although there are also morphological traits that can be used to distinguish among different cryptic species. Ecological and physiological cryptic species-specific differences may affect their potential as important biological agents in certain agroecosystems. To understand the effects of temperature on the life-history traits of C. agilis preimaginal development, adult longevity and reproduction were studied at seven temperatures. Temperature affected the development, survival and reproduction of C. agilis. Developmental time ranged from approximately 62 days at 15 °C to 15 days at 30 °C. Survival percentages ranged from 42% at 15 °C to 76% at 27 °C. One linear and five nonlinear models (Briere I, II, Logan 6, Lactin and Taylor) used to model preimaginal development were tested to describe the relationship between temperature and developmental rate. Logan 6 model fitted the data of egg to adult development best according to the criteria adopted for the model evaluation. The predicted lower developmental threshold temperatures were 11.4 °C and 11.8 °C (linear model), whereas the predicted upper threshold temperatures (Logan 6 model) were 36.6 and 36.9 °C for females and males, respectively. Adult life span, preoviposition period and lifetime cumulative oviposition were significantly affected by temperature. The effect of rearing temperature on the demographic parameters is well summarized with the estimated values of the intrinsic rate of increase (rm) which ranged from 0.0269 at 15 °C to 0.0890 at 32 °C and the highest value recorded at 27 °C (0.1530). These results could be useful in mass rearing C. agilis and predicting its population dynamics in the field.  相似文献   

2.
《Journal of Asia》2014,17(4):781-786
The longevity and fecundity of Cnaphalocrocis medinalis were investigated at temperatures of 15.0, 17.5, 20.0, 22.5, 25.0, 27.5, 30.0, 32.5, and 35.0 °C. Adult longevity and fecundity were significantly influenced by temperature. Longevity decreased with increasing temperature: it was highest at 15.0 °C (23.6 ± 3.51 days) and lowest at 35.0 °C (6.4 ± 0.48 days). Fecundity was highest at 25.0 °C (170.5 ± 45.54 eggs) and lowest at 17.5 °C (11.0 ± 3.68 eggs). The oviposition period was longest at 20.0 °C (8.0 ± 1.09 days) and shortest at 35.0 °C (2.3 ± 0.48 days). The oviposition model presented in this study consisted of two reproductive components (total fecundity and age-specific cumulative oviposition rate) and a survival component (age-specific survival rate). The relationship between adult developmental rate and temperature was described by the Lactin 2 model (r2 = 0.98, p < 0.0001). The age-specific survival rate was well explained by a sigmoid function (r2 = 0.97, p < 0.00001). The age-specific cumulative oviposition rate was best described by the three-parameter Weibull function (r2 = 0.99, p < 0.00001). Temperature-dependent fecundity was estimated using the Briere-2 model (r2 = 0.94, p < 0.007). Daily egg production of C. medinalis in relation to adult age and temperature was estimated.  相似文献   

3.
《Biological Control》2003,26(1):1-7
Muscididfurax raptor, a pupal parasitoid of house flies and other filth flies, is commonly infected with the microsporidium Nosema muscidifuracis. To determine the effects of infection on developmental time, uninfected and infected adult M. raptor were allowed to parasitize pupae of the house fly (Musca domestica) for 24 h. Exposed pupae of the two groups (infected and uninfected) were held at 15, 20, 25, 30, 32, and 34 °C with 75–80% relative humidity. Development of infected M. raptor was significantly longer at all temperatures than that of uninfected parasitoids, resulting in approximately 7% extensions of developmental times. Uninfected females completed development in 14.6, 19.6, and 30.4 days at 30, 25, and 20 °C, respectively, compared with 15.8, 20.7, and 32.3 days for infected females at these temperatures. The differences in developmental times provided narrow windows for isolating large proportions of uninfected M. raptor females for disease management programs. This window was greatest at 20 °C; 61% of the uninfected females emerged by day 30, at which time only 10% of the infected females had emerged.  相似文献   

4.
《Journal of Asia》2014,17(1):83-91
The developmental time and survival of the immature stages of Cnaphalocrocis medinalis Guenée were studied at nine constant temperatures (15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, and 35 °C), 40 ± 10% relative humidity, and a 16:8 h light:dark cycle. The total developmental time decreased with increasing temperature between 15 (115.6 days) and 32.5 °C (20.9 days), but increased above 32.5 °C. The relationship between the developmental rate and temperature was fitted by a linear model and three nonlinear developmental rate models (Logan 6, Briere 1, and Shi et al.). The nonlinear shape of temperature-dependent development was best described by the Briere 1 model (r2 = 0.99), and this was supported by statistical information criteria. The total mortality of immature C. medinalis was lowest at 25 °C (67.2%) and highest at 35 °C (98.1%). The distribution of the developmental times of each stage was described by the two-parameter Weibull distribution equation (r2 = 0.84–0.96). The predicted date for the cumulative 50% moth emergence was within a variation of one day using the Briere 1 model. The temperature-dependent developmental models for C. medinalis could be applied to determine an optimal management strategy for C. medinalis in paddy fields, and will be helpful in developing a full-cycle phenology model for C. medinalis.  相似文献   

5.
Development of immature Thrips palmi Karny was investigated at 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, and 35 °C, 20–40% RH and a photoperiod of 14:10 (L:D) h. Developmental time decreased with increasing temperature up to 32.5 °C in all stages. The total developmental time was longest at 12.5 °C (64.2 days) and shortest at 32.5 °C (9.2 days). The lower developmental threshold was 10.6, 10.6, 9.1, and 10.7 °C for egg, larva, prepupa, and pupa, respectively. The thermal constant required to complete the respective stage was 71.7, 59.2, 18.1, and 36.8DD. The lower threshold temperature and thermal constant were 10.6 °C and 183.3DD, respectively, for total immature development. The nonlinear relationship between developmental rate and temperature was well described by the modified Sharpe and DeMichele biophysical model (r2 = 0.905–0.998). The distribution of developmental completion of each stage was described by the 3-parameter Weibull function (r2 = 0.855–0.927). The temperature-dependent developmental models of T. palmi developed in this study could be used to predict its seasonal phenology in field and greenhouse vegetable crops.  相似文献   

6.
The influence of temperatures on the life parameters of the solitary oothecal parasitoid Evania appendigaster, was investigated in the laboratory. Parasitized oothecae of Periplaneta americana were left to develop under seven constant temperatures: 15, 17, 20, 25, 30, 35, and 40 °C. At the end, we found that: (i) E. appendigaster was able to complete development within the temperature range of 17–34 °C; (ii) mean adult longevity decreased as temperature increased, with the temperature of 40 °C being fatal in a matter of hours; (iii) males lived longer than females between 15 and 30 °C; (iv) adult emergence rate was the highest at 25 °C, and (v) no wasps emerged at 15 or 40 °C. Non-emerged oothecae contained either unhatched eggs or dead larvae. We determined the theoretical lower developmental threshold and thermal constant for the complete development as 12.9 °C and 584.8 day-degrees for males, and 13.1 °C and 588.2 day-degrees for females, respectively. A good balance between faster development, maximum adult longevity and good egg viability was obtained between 25–30 °C, and that would be the best temperature range for rearing E. appendigaster.  相似文献   

7.
Predation is a key source of seed mortality in many weed species and thus is a part of natural control. In the field, the intensity of seed predation by invertebrates varies during the course of a year. One source of this variation is fluctuations in ambient temperature. Here, the effect of temperature on seed consumption is investigated for the first time, using two abundant carabid seed predators, Pseudoophonus rufipes and Harpalus affinis (Coleoptera: Carabidae), and dandelion (Taraxacum officinale) as a model system. Field collected individuals were sexed, kept at one of six constant temperatures between 10 and 28 °C and provided with a surplus of seed. Seed consumption was recorded over a period of 4 days. Averaged over all the temperatures, the smaller H. affinis consumed 12.2 seeds day?1 and larger P. rufipes 29 seeds day?1. On average, females consumed more seeds than males. Seed consumption by both species increased with temperature. In H. affinis the increase was linear and different for males and females. In P. rufipes the consumption was similar in both sexes but curvilinear because there was no further increase in consumption above 20 °C. Assuming a linear relationship between temperature and consumption at up to 20 °C we calculated the temperature at which seed consumption ceased (?0.1 to 0.3 °C in H. affinis and 6.3–6.9 °C in P. rufipes) and the increment in seed consumption per 1 °C increase in temperature above this threshold (0.4–1.0 and 1.5–4.2 seeds individual?1 day?1, respectively) for the two species. Thus, it is possible to calculate the average daily consumption of each species over a range of temperatures up to 20 °C.  相似文献   

8.
《Journal of Asia》2014,17(3):349-354
Temperature-dependent development of Spodoptera exigua (Hübner) were evaluated at eight constant temperatures of 12, 15, 20, 25, 30, 33, 34 and 36 °C with a variation of 0.5 °C on sugar beet leaves. No development occurred at 12 °C and 36 °C. Total developmental time varied from 120.50 days at 15 °C to 14.50 days at 33 °C. As temperature increased from 15 °C to 33 °C, developmental rate (1/developmental time) of S. exigua increased but declined at 34 °C. The lower temperature threshold (Tmin) was estimated to be 12.98 °C and 12.45 °C, and the thermal constant (K) was 294.99 DD and 311.76 DD, using the traditional and Ikemoto–Takai linear models, respectively. The slopes of the Ikemoto–Takai linear model for different immature stages were different, violating the assumption of rate isomorphy. Data were fitted to three nonlinear models to predict the developmental rate and estimate the critical temperatures. The Tmin values estimated by Lactin-2 (12.90 °C) and SSI (13.35 °C) were higher than the value estimated by Briere-2 (8.67 °C). The estimated fastest development temperatures (Tfast) by the Briere-2, Lactin-2 and SSI models for overall immature stages development of S. exigua were 33.4 °C, 33.9 °C and 32.4 °C, respectively. The intrinsic optimum temperature (TΦ) estimated from the SSI model was 28.5 °C, in which the probability of enzyme being in its native state is maximal. The upper temperature threshold (Tmax) values estimated by these three nonlinear models varied from 34.00 °C to 34.69 °C. These findings on thermal requirements can be used to predict the occurrence, number of generations and population dynamics of S. exigua.  相似文献   

9.
The development of the predatory mites, Neoseiulus womersleyi (Schicha) and Euseius ovalis (Evans), feeding on four tetranychid mites (Tetranychus urticae, Tetranychus kanzawai, Oligonychus mangiferus, Panonychus citri), maize pollen or Chinese loofah pollen was studied at 25 °C. Immature stages of N. womersleyi feeding on T. urticae and T. kanzawai had shorter developmental duration (4.71 and 5.02 days for females, 4.77 and 5.19 days for males, respectively) than those feeding on other food sources. Immature stages of E. ovalis females feeding on O. mangiferus and T. urticae developed in 4.99 and 5.13 days, respectively, the shortest developmental duration measured. Immature stages of E. ovalis males feeding on O. mangiferus and T. urticae developed in 5.12 and 5.37 days, respectively. The longevity of N. womersleyi males (13.31 to 14.51 days) and females (17.67 to 21.81 days) feeding on T. urticae, T. kanzawai or maize pollen was longer than the longevity of N. womersleyi feeding on O. mangiferus, P. citri or loofah pollen. E. ovalis males (12.91 to 16.74 days) and females (16.24 to 23.77 days) feeding on O. mangiferus, T. urticae or maize pollen lived longer than E. ovalis males and females feeding on T. kanzawai, P. citri or loofah pollen.  相似文献   

10.
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is a worldwide emerging pest of soft fruits, but its cold tolerance has not been thoroughly explored. We determined the cold tolerance strategy, low temperature thermal limits, and plasticity of cold tolerance in both male and female adult D. suzukii. We reared flies under common conditions (long days, 21 °C; control) and induced plasticity by rapid cold-hardening (RCH, 1 h at 0 °C followed by 1 h recovery), cold acclimation (CA, 5 days at 6 °C) or acclimation under fluctuating temperatures (FA). D. suzukii had supercooling points (SCPs) between −16 and −23 °C, and were chill-susceptible. 80% of control flies were killed after 1 h at −7.2 °C (males) or −7.5 °C (females); CA and FA improved survival of this temperature in both sexes, but RCH did not. 80% of control flies were killed after 70 h (male) or 92 h (female) at 0 °C, and FA shifted this to 112 h (males) and 165 h (females). FA flies entered chill coma (CTmin) at approximately −1.7 °C, which was ca. 0.5 °C colder than control flies; RCH and CA increased the CTmin compared to controls. Control and RCH flies exposed to 0 °C for 8 h took 30–40 min to recover movement, but this was reduced to <10 min in CA and FA. Flies placed outside in a field cage in London, Ontario, were all killed by a transient cold snap in December. We conclude that adult phenotypic plasticity is not sufficient to allow D. suzukii to overwinter in temperate habitats, and suggest that flies could overwinter in association with built structures, or that there may be additional cold tolerance imparted by developmental plasticity.  相似文献   

11.
《Journal of Asia》2014,17(2):135-142
This study was carried out to develop temperature-driven models for immature development and oviposition of the pink citrus rust mite Aculops pelekassi (Keifer). A. pelekassi egg development times decreased as the temperature increased, ranging from 6.6 days at 16 °C to 1.9 days at 35 °C. Total nymph development times decreased from 8.2 days at 16 °C to 3.3 days at 35 °C. The egg-to-adult development durations were 14.8, 11.6, 9.7, 8.0, 7.3, 6.1, and 5.2 days at 16, 20, 24, 26, 28, 32, and 35 °C, respectively. The lower developmental threshold temperatures for eggs, nymphs, and total egg-to-adult development were calculated as 9.3, 4.3, and 6.9 °C, respectively. The thermal constants were 54.0, 101.8, and 153.8 degree days for each of the above stages. The non-linear biophysical model fitted well for the relationship between the development rate and temperature for all stages. The Weibull function provided a good fit for the distribution of development times of each stage. Temperature affected the longevity and fecundity of A. pelekassi. Adult longevity decreased as the temperature increased and ranged from 24.2 days at 16 °C to 14.6 days at 35.0 °C. A. pelekassi had a maximum fecundity of 33.1 eggs per female at 28 °C, which declined to 18.8 eggs per female at 16 °C. In addition, three temperature-dependent components for an oviposition model of A. pelekassi were developed with sub-models estimated: total fecundity, age-specific cumulative oviposition rate, and age-specific survival rate. The oviposition model, coupled with the stage emergence model, should be useful to construct a population model for A. pelekassi in the future.  相似文献   

12.
Chrysoperla genanigra Freitas is a common green lacewing associated with melon pests in the Northeastern Brazil. All life stages of this recently described species were studied under a range of constant temperature conditions (17, 21, 25, 29, 33, 35 and 37 °C), a photoperiod of 12 h:12 h (L:D) and 70 ± 10% relative humidity. Adults of C. genanigra were fed on a diet consisting of a 1:1 (v/v) mixture of brewer’s yeast and honey, while larvae were provided with eggs of Sitotroga cerealella (Olivier) ad libitum. The duration of preimaginal development of the species was inversely proportional to temperature and ranged from approximately 63 days at 17 °C to 15 days at 35 °C. The percentage of adult emergence varied from 6.7% at 17 °C to 76.7% at 25 °C, although no larvae were able to complete development at 37 °C. The lower thermal threshold for total preimaginal development was approximately 10.8 °C and the thermal requirement was 336.7 degree-days. Egg production, along with the longevity of both males and females, were significantly affected by temperature. It is concluded that the best temperature for rearing C. genanigra is 25 °C, with the lowest preimaginal mortality and the highest egg production (992.7 eggs/female).  相似文献   

13.
Temperature is a key environmental factor for ectotherms and affects a large number of life history traits. In the present study, development time from hatching to pupation and adult eclosion, pupal and adult weights of the rice stem borer, Chilo suppressalis were examined at 22, 25, 28 and 31 °C under L18:D 6. Larval and pupal times were significantly decreased with increasing rearing temperature and growth rate was positively correlated with temperature. Larval and pupal developmental times were not significantly different between females and males. The relationship between body weight and rearing temperature in C. suppressalis did not follow the temperature–size rule (TSR), both males and females gained the highest body weight at 31 °C. Females were significantly larger than males at all temperatures, showing a female biased sex size dimorphism (SSD). Contrary to Rensch's rule, SSD and body weight in C. suppressalis tended to increase with rising temperature. Male pupae lost significantly more weight at metamorphosis compared to females. We discuss the adaptive significance of the reverse-TSR in the moth's life history.  相似文献   

14.
The carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae), is the most important pest of pomegranate orchards (in terms of economic damage) within Iran, and hence, several control procedures, including biological methods of control, have been attempted as a means of controlling populations of this insect. This research was carried out in order to study the biology of Apanteles myeloenta (Hymenoptera: Braconidae), a larval parasitoid of the carob moth. Laboratory studies were conducted to determine larval developmental time, adult longevity, sex ratio, parasite progeny production, and host stage preference of A. myeloenta. At 25 ± 1 °C, immature developmental time (egg to pupa; mean ± SE) was 28.33 ± 0.85 days and 27.46 ± 0.37 days for male and females, respectively. Adult females survived on average 17.5 ± 0.14, 11.7 ± 0.22, 3.4 ± 0.18, and 2.8 ± 0.12 days at 25 C when provided with honey and water, honey only, water only or no food source, respectively. The sex ratio (females to males) of A. myeloenta was 1:3.5 from hosts parasitized in the first instar, 1:3 for second instars and 1:2 for third instar carob moth larvae. Female A. myeloenta typically preferred to parasitize second instar over third or first instar. The oviposition activity peaked on the 7th and 8th days following emergence, when provided with honey, and 10% sucrose solution, respectively.  相似文献   

15.
Cicadulina bipunctata was originally distributed in tropical and subtropical regions of the Old World. This leafhopper recently expanded its distribution area to southern parts of temperate Japan. In this study, factors affecting the overwintering ability of C. bipunctata were examined. A series of laboratory experiments revealed that cold acclimation at 15 °C for 7 days enhanced the cold tolerance of C. bipunctata to the same level as an overwintering population, adult females were more tolerant of cold temperature than adult males, and survival of acclimated adult females was highly dependent on temperature from −5 to 5 °C and exposure duration to the temperature. The temperature of crystallization of adult females was approximately −19 °C but temperatures in southern temperate Japan rarely dropped below −10 °C in the winter, indicating that overwintering C. bipunctata adults in temperate Japan are not killed by freezing injury but by indirect chilling injury caused by long-term exposure to moderately low temperatures. An overwintering generation of C. bipunctata had extremely low overwinter survival (<1%) in temperate Japan; however, based on winter temperature ranges, there are additional areas amenable to expansion of C. bipunctata in temperate Japan.  相似文献   

16.
《Journal of Asia》2014,17(4):803-810
The effect of constant temperatures on development and survival of Lista haraldusalis (Walker) (Lepidoptera: Pyralidae), a newly reported insect species used to produce insect tea in Guizhou province (China), was studied in laboratory conditions at seven temperatures (19 °C, 22 °C, 25 °C, 28 °C, 31 °C, 34 °C, and 37 °C) on Platycarya strobilacea. Increasing the temperature from 19 °C to 31 °C led to a significant decrease in the developmental time from egg to adult emergence, and then the total developmental time increased at 34 °C. Egg incubation was the stage where L. haraldusalis experienced the highest mortality at all temperatures. The survival of L. haraldusalis was significantly higher at 25 °C and 28 °C, whereas none of the eggs hatched at 37 °C. Common and Ikemoto linear models were used to describe the relationship between the temperature and the developmental rate for each immature stage of L. haraldusalis. The estimated values of the lower temperature threshold and thermal constant of the total immature stages using Common and Ikemoto linear models were 11.34 °C and 11.20 °C, and 939.85 and 950.41 degree-days, respectively. Seven nonlinear models were used to fit the experimental data to estimate the developmental rate of L. haraldusalis. Based on the biological significance for model evaluation, Ikemoto linear, Logan-6, and SSI were the best models that fitted each immature stage of L. haraldusalis and they were used to estimate the temperature thresholds. These thermal requirements and temperature thresholds are crucial for facilitating the development of factory-based mass rearing of L. haraldusalis.  相似文献   

17.
《Biological Control》2006,36(2):232-237
Adults of Trissolcus basalis and Telenomus podisi were stored either at 15 or 18 °C after their immature development had been completed at 18 or 25 °C. Longevity of the parasitoids in the storage temperatures was evaluated, as well as fecundity and longevity following their return to 25 °C after different periods in reproductive diapause. Temperature during immature development influenced female longevity and highest mean longevity was obtained for females that developed to the adult stage at 25 °C and then were stored at 15 °C (ca. 13 months for T. basalis and 10 months for Te. podisi). For adults of T. basalis that developed at 25 °C, storage periods of 120 or 180 days at 15 or 18 °C did not affect fecundity. The fecundity of T. basalis females that developed at 18 °C and were stored for 120 days at 15 or 18 °C was not affected; however, after remaining for 180 days, fecundity was reduced in ca. 30 and 50%, respectively. Storage of Te. podisi adults at 15 or 18 °C significantly reduced fecundity. It is concluded that adults of T. basalis can be stored in the adult stage at 15 or 18 °C between two soybean crop seasons for mass production purposes, aiming the biological control of stink bugs.  相似文献   

18.
The biocontrol activity of Rhodotorula glutinis on gray mold decay and blue mold decay of apple caused by Botrytis cinerea and Penicillium expansum, respectively, was investigated, as well as its effects on postharvest quality of apple fruits. The results show there was a significant negative correlation between concentrations of the yeast cells and the disease incidence of the pathogens. The higher concentration of the R. glutinis, the better effect of the biocontrol capacity. At concentrations of R. glutinis 1 × 108 CFU ml?1, the amount of gray mold decay was completely inhibited after 5 days incubation at 20 °C, after challenge with B. cinerea spores suspension of 1 × 105 spores ml?1; While the blue mold decay was completely inhibited at concentrations of 5 × 108 CFU ml?1, at challenged with P. expansum spores suspension of 5 × 104 spores ml?1. These results demonstrated that the efficacy of R. glutinis in controlling of gray mold decay of apples was better than the efficacy of controlling blue mold. R. glutinis within inoculated wounds on apples increased in numbers at 20 °C from an initial level of 9.5 × 105 CFU per wound to 2.24 × 107 CFU at 20 °C after 1 day. The highest population of the yeast was recovered 4 days after inoculation, the yeast population in wounds increased by 56.9 times. After that, the population of the yeast began to decline very slowly. R. glutinis significantly reduced the incidence of natural infections on intact fruit from 75% in the control fruit to 28.3% after 5 days at 20 °C, and from 58.3 to 6.7% after 30 days at 4 °C followed by 4 days at 20 °C. R. glutinis treatment had no deleterious effect on quality parameters after 5 days at 20 °C or after 30 days at 4 °C followed by 4 days at 20 °C.  相似文献   

19.
Lesser mulberry pyralid, Glyphodes pyloalis Walker, is a monophagous pest of mulberry and has recently been reported in northern Iran. The biology and life table of this pest were studied in controlled conditions (24 ± 1 °C, 75 ± 5% RH and 16:8 LD). Mortality rate, metamorphosis, appearance of adult insects and adult sex ratio were recorded daily. Data were analyzed based on an age-stage, two-sex life table. Developmental rate among individuals and between sexes were also considered. The developmental periods for the egg, first through fifth instar larvae, prepupae and pupae were 4.06 ± 0.03, 2.93 ± 0.03, 2.03 ± 0.02, 2.01 ± 0.01, 2.10 ± 0.03, 4.09 ± 0.03, 2.04 ± 0.02 and 9.7 ± 0.09 days, respectively. The mean total developmental period from egg to adult was 35.40 ± 0.37 days. The maximum adult longevity was 7 and 11 days for males and females, respectively. The pre-oviposition period lasted 2.14 ± 0.04 days. Laboratory observation showed that adults are nocturnal and female lay eggs at night. The intrinsic rate of increase (rm) and the finite rate of increase (λ) were 0.14 ± 0.005 d? 1 and 1.15 ± 0.01 d? 1. The net reproductive rate (R0), gross reproductive rate (GRR) and mean generation time (T) were 134.67 ± 20.6 female offspring, 294.71 ± 4.07 eggs/female and 34.44 ± 0.2 days, respectively. Life expectancy of freshly laid egg was 32.15 days.  相似文献   

20.
To test the hypothesis that impaired mitochondrial respiration limits cardiac performance at warm temperatures, and examine if any effect(s) are sex-related, the consequences of high temperature on cardiac mitochondrial oxidative function were examined in 10 °C acclimated, sexually immature, male and female Atlantic cod. Active (State 3) and uncoupled (States 2 and 4) respiration were measured in isolated ventricular mitochondria at 10, 16, 20, and 24 °C using saturating concentrations of malate and pyruvate, but at a submaximal (physiological) level of ADP (200 µM). In addition, citrate synthase (CS) activity was measured at these temperatures, and mitochondrial respiration and the efficiency of oxidative phosphorylation (P:O ratio) were determined at [ADP] ranging from 25–200 µM at 10 and 20 °C. Cardiac morphometrics and mitochondrial respiration at 10 °C, and the thermal sensitivity of CS activity (Q10=1.51), were all similar between the sexes. State 3 respiration at 200 µM ADP increased gradually in mitochondria from females between 10 and 24 °C (Q10=1.48), but plateaued in males above 16 °C, and this resulted in lower values in males vs. females at 20 and 24 °C. At 10 °C, State 4 was ~10% of State 3 values in both sexes [i.e. a respiratory control ratio (RCR) of ~10] and P:O ratios were approximately 1.5. Between 20 and 24 °C, State 4 increased more than State 3 (by ~70 vs. 14%, respectively), and this decreased RCR to ~7.5. The P:O ratio was not affected by temperature at 200 μM ADP. However, (1) the sensitivity of State 3 respiration to increasing [ADP] (from 25 to 200 μM) was reduced at 20 vs. 10 °C in both sexes (Km values 105±7 vs. 68±10 μM, respectively); and (2) mitochondria from females had lower P:O values at 25 vs. 100 μM ADP at 20 °C, whereas males showed a similar effect at 10 °C but a much more pronounced effect at 20 °C (P:O 1.05 at 25 μM ADP vs. 1.78 at 100 μM ADP). In summary, our results demonstrate several sex-related differences in ventricular mitochondrial function in Atlantic cod, and suggest that myocardial oxidative function and possibly phosphorylation efficiency may be limited at temperatures of 20 °C or above, particularly in males. These observations could partially explain why cardiac function in Atlantic cod plateaus just below this species׳ critical thermal maximum (~22 °C) and may contribute to yet unidentified sex differences in thermal tolerance and swimming performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号