首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When individuals in a population can acquire traits through learning, each individual may express a certain number of distinct cultural traits. These traits may have been either invented by the individual himself or acquired from others in the population. Here, we develop a game theoretic model for the accumulation of cultural traits through individual and social learning. We explore how the rates of innovation, decay, and transmission of cultural traits affect the evolutionary stable (ES) levels of individual and social learning and the number of cultural traits expressed by an individual when cultural dynamics are at a steady‐state. We explore the evolution of these phenotypes in both panmictic and structured population settings. Our results suggest that in panmictic populations, the ES level of learning and number of traits tend to be independent of the social transmission rate of cultural traits and is mainly affected by the innovation and decay rates. By contrast, in structured populations, where interactions occur between relatives, the ES level of learning and the number of traits per individual can be increased (relative to the panmictic case) and may then markedly depend on the transmission rate of cultural traits. This suggests that kin selection may be one additional solution to Rogers's paradox of nonadaptive culture.  相似文献   

2.
In species subject to individual and social learning, each individual is likely to express a certain number of different cultural traits acquired during its lifetime. If the process of trait innovation and transmission reaches a steady state in the population, the number of different cultural traits carried by an individual converges to some stationary distribution. We call this the trait-number distribution. In this paper, we derive the trait-number distributions for both individuals and populations when cultural traits are independent of each other. Our results suggest that as the number of cultural traits becomes large, the trait-number distributions approach Poisson distributions so that their means characterize cultural diversity in the population. We then analyse how the mean trait number varies at both the individual and population levels as a function of various demographic features, such as population size and subdivision, and social learning rules, such as conformism and anti-conformism. Diversity at the individual and population levels, as well as at the level of cultural homogeneity within groups, depends critically on the details of population demography and the individual and social learning rules.  相似文献   

3.
The energetic cost of cognitive functions can lead to either impairments in learning and memory, or to trade-offs with other functions, when the amount of available energy is limited. However, it has been suggested that, under such conditions, social groups such as honeybees might be able to ward off cognitive impairments in individual bees by adjusting resource allocation at the colony level. Using two complementary experiments, one that tests the effect of learning on subsequent energetic state and survival, and another that tests the effect of energetic state on learning and retention, we show that individual bees pay a significant energetic cost for learning and therefore suffer from significant cognitive deficits under energetic stress. We discuss the implications of such cognitive impairments for the recent observations of bees disappearing from their colonies as well as for social life in general.  相似文献   

4.
Alan Rogers (1988) presented a game theory model of the evolution of social learning, yielding the paradoxical conclusion that social learning does not increase the fitness of a population. We expand on this model, allowing for imperfections in individual and social learning as well as incorporating a "critical social learning" strategy that tries to solve an adaptive problem first by social learning, and then by individual learning if socially acquired behavior proves unsatisfactory. This strategy always proves superior to pure social learning and typically has higher fitness than pure individual learning, providing a solution to Rogers's paradox of nonadaptive culture. Critical social learning is an evolutionarily stable strategy (ESS) unless cultural transmission is highly unfaithful, the environment is highly variable, or social learning is much more costly than individual learning. We compare the model to empirical data on social learning and on spatial variation in primate cultures and list three requirements for adaptive culture.  相似文献   

5.
Handedness in the mouse comprises 2 different behaviours. Some strains have a conditional behaviour, in that the mice learn a direction of hand preference in response to reaching for food, whereas other strains have an innate or constitutive behaviour, and prior experience has no measurable effect on their hand preference. However, hybrids from different strains have revealed both recessive and dominant forms of constitutive hand preference. We proposed that kinetic parameters of the learning process would resolve this genetic heterogeneity as well as the phenotypic complexity in the behaviour. We conducted and report here a detailed kinetic analysis of hand-preference training in the C57BL/6J strain. It revealed elements of the fundamental process of learning and long-term memory that underlies the behaviour by documenting consolidation of memory, blocking of this consolidation by an inhibitor of protein synthesis, retention of memory, and speed of learning in response to training reaches. Furthermore, speed of learning is clearly described by 2 parameters that we call "capacity" (or maximum amount of learned preference) and "ability" (or number of training reaches to achieve half the capacity). These 2 kinetic parameters can vary independently among genetically different strains that learn a preference, and we used them to demonstrate that the respective recessive and dominant forms of constitutive hand-preference may be the consequence of a true null or loss of function and a gain of function, possibly a memory regulator, in the learning process. The quantitative measures provide a sensitive and selective method to establish the fundamental learning process underlying mouse hand preference and to demonstrate empirically how genes and contextual environment shape its phenotypic complexity.  相似文献   

6.
7.
Social/cultural learning is an effective way to reduce uncertainty about the environment, helping individuals adopt an adaptive behavior cheaply. Although this is evident for learning about temporally stable targets, such as acquisition of a skill in avoiding toxic foods, the utility of social/cultural learning in a temporally unstable environment is less clear, since knowledge acquired by social learning may be outdated. This paper addresses the adaptive value of social/cultural learning in a nonstationary environment both theoretically and empirically. We first conducted an evolutionary computer simulation that extended Henrich and Boyd's [Evol. Hum. Behav. 19 (1998) 215.] model of cultural transmission, with the following results. When individual learning about the nonstationary environment is costly, a mixed equilibrium emerges in the population, where members who engage in costly individual learning and members who skip the information search and free-ride on other members' search efforts coexist at a stable ratio. Such a “producer–scrounger” structure qualifies effectiveness of social/cultural learning severely, especially “conformity bias” when using social information. We then tested these propositions by an experiment implementing a nonstationary uncertain environment in a laboratory. The results supported our thesis. Implications of these findings and some future directions are discussed.  相似文献   

8.
A model learning system is constructed, in which an organism samples behaviors from a behavioral repertoire in response to a stimulus and selects the behavior with the highest payoff. The stimulus and most rewarding behavior may be kept in the organism's long-term memory and reused if the stimulus is encountered again. The value of the memory depends on the reliability of the stimulus, that is, how the corresponding payoffs of behaviors change over time. We describe how the inclusion of memory can increase the optimal sampling size in environments with some stimulus reliability. In addition to using memory to guide behavior, our organism may use information in its memory to choose the stimulus to which it reacts. This choice is influenced by both the organism's memory state and how many stimuli the organism can observe (its sensory capability). The number of sampled behaviors, memory length, and sensory capability are the variables that define the learning strategy. When all stimuli have the same reliability, there appears to be only a single optimal learning strategy. However, when there is heterogeneity in stimulus reliability, multiple locally optimal strategies may exist.  相似文献   

9.
The biases of individual language learners act to determine the learnability and cultural stability of languages: learners come to the language learning task with biases which make certain linguistic systems easier to acquire than others. These biases are repeatedly applied during the process of language transmission, and consequently should effect the types of languages we see in human populations. Understanding the cultural evolutionary consequences of particular learning biases is therefore central to understanding the link between language learning in individuals and language universals, common structural properties shared by all the world’s languages. This paper reviews a range of models and experimental studies which show that weak biases in individual learners can have strong effects on the structure of socially learned systems such as language, suggesting that strong universal tendencies in language structure do not require us to postulate strong underlying biases or constraints on language learning. Furthermore, understanding the relationship between learner biases and language design has implications for theories of the evolution of those learning biases: models of gene-culture coevolution suggest that, in situations where a cultural dynamic mediates between properties of individual learners and properties of language in this way, biological evolution is unlikely to lead to the emergence of strong constraints on learning.  相似文献   

10.
Cultural variation in a population is affected by the rate of occurrence of cultural innovations, whether such innovations are preferred or eschewed, how they are transmitted between individuals in the population, and the size of the population. An innovation, such as a modification in an attribute of a handaxe, may be lost or may become a property of all handaxes, which we call “fixation of the innovation.” Alternatively, several innovations may attain appreciable frequencies, in which case properties of the frequency distribution—for example, of handaxe measurements—is important. Here we apply the Moran model from the stochastic theory of population genetics to study the evolution of cultural innovations. We obtain the probability that an initially rare innovation becomes fixed, and the expected time this takes. When variation in cultural traits is due to recurrent innovation, copy error, and sampling from generation to generation, we describe properties of this variation, such as the level of heterogeneity expected in the population. For all of these, we determine the effect of the mode of social transmission: conformist, where there is a tendency for each naïve newborn to copy the most popular variant; pro-novelty bias, where the newborn prefers a specific variant if it exists among those it samples; one-to-many transmission, where the variant one individual carries is copied by all newborns while that individual remains alive. We compare our findings with those predicted by prevailing theories for rates of cultural change and the distribution of cultural variation.  相似文献   

11.
A number of empirical studies have suggested that individual differences in asocial exploration tendencies in animals may be related to those in social information use. However, because the ‘exploration tendency’ in most previous studies has been measured without considering the information-gathering processes, it is yet hard to conclude that the animal asocial exploration strategies may be tied to social information use. Here, we studied human learning behaviour in both asocial and social two-armed bandit tasks. By fitting reinforcement learning models including asocial and/or social decision processes, we measured each individual's (1) asocial exploration tendency and (2) social information use. We found consistent individual differences in the exploration tendency in the asocial tasks. We also found substantive heterogeneity in the adopted learning strategies in the social task: Nearly one-third of participants used predominantly the copy-when-uncertain strategy, while the remaining two-thirds were most likely to have relied only on asocial learning. However, we found no significant individual association between the exploration frequency in the asocial task and the use of the social information in the social task. Our results suggest that the social learning strategies may be independent from the asocial exploration strategies in humans.  相似文献   

12.
Memory is essential to many cognitive tasks including language. Apart from empirical studies of memory effects on language acquisition and use, there lack sufficient evolutionary explorations on whether a high level of memory capacity is prerequisite for language and whether language origin could influence memory capacity. In line with evolutionary theories that natural selection refined language-related cognitive abilities, we advocated a coevolution scenario between language and memory capacity, which incorporated the genetic transmission of individual memory capacity, cultural transmission of idiolects, and natural and cultural selections on individual reproduction and language teaching. To illustrate the coevolution dynamics, we adopted a multi-agent computational model simulating the emergence of lexical items and simple syntax through iterated communications. Simulations showed that: along with the origin of a communal language, an initially-low memory capacity for acquired linguistic knowledge was boosted; and such coherent increase in linguistic understandability and memory capacities reflected a language-memory coevolution; and such coevolution stopped till memory capacities became sufficient for language communications. Statistical analyses revealed that the coevolution was realized mainly by natural selection based on individual communicative success in cultural transmissions. This work elaborated the biology-culture parallelism of language evolution, demonstrated the driving force of culturally-constituted factors for natural selection of individual cognitive abilities, and suggested that the degree difference in language-related cognitive abilities between humans and nonhuman animals could result from a coevolution with language.  相似文献   

13.
Cognitive scientists have increasingly turned to cultural transmission to explain the widespread nature of religion. One key hypothesis focuses on memory, proposing that that minimally counterintuitive (MCI) content facilitates the transmission of supernatural beliefs. We propose two caveats to this hypothesis. (1) Memory effects decrease as MCI concepts become commonly used, and (2) people do not believe counterintuitive content readily; therefore additional mechanisms are required to get from memory to belief. In experiments 1–3 (n?=?283), we examined the relationship between MCI, belief, and memory. We found that increased tendencies to anthropomorphize predicted poorer memory for anthropomorphic-MCI content. MCI content was found less believable than intuitive content, suggesting different mechanisms are required to explain belief. In experiment 4 (n?=?70), we examined the non-content-based cultural learning mechanism of credibility-enhancing displays (CREDs) and found that it increased participants’ belief in MCI content, suggesting this type of learning can better explain the transmission of belief.  相似文献   

14.
Hippocampal inhibitory interneurons exert a powerful influence on learning and memory. Inhibitory interneurons are known to play a major role in many diseases that affect memory, and to strongly influence brain functions required for memory-related tasks. While previous studies involving genetic, optogenetic, and pharmacological manipulations have shown that hippocampal interneurons play essential roles in spatial and episodic learning and memory, exactly how interneurons affect local circuit computations during spatial navigation is not well understood. Given the significant anatomical, morphological, and functional heterogeneity in hippocampal interneurons, one may suspect cell-type specific roles in circuit computations. Here, we review emerging evidence of CA1 hippocampal interneurons’ role in local circuit computations that support spatial learning and memory and discuss open questions about CA1 interneurons in spatial learning.  相似文献   

15.
Darwinian processes should favour those individuals that deploy the most effective strategies for acquiring information about their environment. We organized a computer-based tournament to investigate which learning strategies would perform well in a changing environment. The most successful strategies relied almost exclusively on social learning (here, learning a behaviour performed by another individual) rather than asocial learning, even when environments were changing rapidly; moreover, successful strategies focused learning effort on periods of environmental change. Here, we use data from tournament simulations to examine how these strategies might affect cultural evolution, as reflected in the amount of culture (i.e. number of cultural traits) in the population, the distribution of cultural traits across individuals, and their persistence through time. We found that high levels of social learning are associated with a larger amount of more persistent knowledge, but a smaller amount of less persistent expressed behaviour, as well as more uneven distributions of behaviour, as individuals concentrated on exploiting a smaller subset of behaviour patterns. Increased rates of environmental change generated increases in the amount and evenness of behaviour. These observations suggest that copying confers on cultural populations an adaptive plasticity, allowing them to respond to changing environments rapidly by drawing on a wider knowledge base.  相似文献   

16.
Today, we know that demographic rates can be greatly influenced by differences among individuals in their capacity to survive and reproduce. These intrinsic differences, commonly known as individual heterogeneity, can rarely be measured and are thus treated as latent variables when modeling mortality. Finite mixture models and mixed effects models have been proposed as alternative approaches for inference on individual heterogeneity in mortality. However, in general models assume that individual heterogeneity influences mortality proportionally, which limits the possibility to test hypotheses on the effect of individual heterogeneity on other aspects of mortality such as ageing rates. Here, we propose a Bayesian model that builds upon the mixture models previously developed, but that facilitates making inferences on the effect of individual heterogeneity on mortality parameters other than the baseline mortality. As an illustration, we apply this framework to the Gompertz–Makeham mortality model, commonly used in human and wildlife studies, by assuming that the Gompertz rate parameter is affected by individual heterogeneity. We provide results of a simulation study where we show that the model appropriately retrieves the parameters used for simulation, even for low variances in the heterogeneous parameter. We then apply the model to a dataset on captive chimpanzees and on a cohort life table of 1751 Swedish men, and show how model selection against a null model (i.e., without heterogeneity) can be carried out.  相似文献   

17.
We consider a model of a neural network where the individual cells interact only by releasing and absorbing the molecules of a neuromediator. We show that such a system can realize the function of associative memory. A learning mechanism based on the chemotaxis is proposed and numerically investigated.  相似文献   

18.
We describe an interdisciplinary comparison of the effects of acute and chronic alcohol exposure in terms of their disturbance of light, dark and color preferences and the occurrence of Parkinson-like behavior in zebrafish through computer visual tracking, data mining, and behavioral and physiological analyses. We found that zebrafish in anxiolytic and anxious states, which are induced by acute and chronic repeated alcohol exposure, respectively, display distinct emotional reactions in light/dark preference tests as well as distinct learning and memory abilities in color-enhanced conditional place preference (CPP) tests. Additionally, compared with the chronic alcohol (1.0%) treatment, acute alcohol exposure had a significant, dose-dependent effect on anxiety, learning and memory (color preference) as well as locomotive activities. Acute exposure doses (0.5%, 1.0%, and 1.5%) generated an “inverted V” dose-dependent pattern in all of the behavioral parameters, with 1.0% having the greatest effect, while the chronic treatment had a moderate effect. Furthermore, by measuring locomotive activity, learning and memory performance, the number of dopaminergic neurons, tyrosine hydroxylase expression, and the change in the photoreceptors in the retina, we found that acute and chronic alcohol exposure induced varying degrees of Parkinson-like symptoms in zebrafish. Taken together, these results illuminated the behavioral and physiological mechanisms underlying the changes associated with learning and memory and the cause of potential Parkinson-like behaviors in zebrafish due to acute and chronic alcohol exposure.  相似文献   

19.
Why do societies collapse? We use an individual-based evolutionary model to show that, in environmental conditions dominated by low-frequency variation (“red noise”), extirpation may be an outcome of the evolution of cultural capacity. Previous analytical models predicted an equilibrium between individual learners and social learners, or a contingent strategy in which individuals learn socially or individually depending on the circumstances. However, in red noise environments, whose main signature is that variation is concentrated in relatively large, relatively rare excursions, individual learning may be selected from the population. If the social learning system comes to lack sufficient individual learning or cognitively costly adaptive biases, behavior ceases tracking environmental variation. Then, when the environment does change, fitness declines and the population may collapse or even be extirpated. The modeled scenario broadly fits some human population collapses and might also explain nonhuman extirpations. Varying model parameters showed that the fixation of social learning is less likely when individual learning is less costly, when the environment is less red or more variable, with larger population sizes, and when learning is not conformist or is from parents rather than from the general population. Once social learning is fixed, extirpation is likely except when social learning is biased towards successful models. Thus, the risk of population collapse may be reduced by promoting individual learning and innovation over cultural conformity, or by preferential selection of relatively fit individuals as models for social learning.  相似文献   

20.
Cumulative cultural change requires organisms that are capable of both exploratory individual learning and faithful social learning. In our model, an organism's phenotype is initially determined innately (by its genotypic value) or by social learning (copying a phenotype from the parental generation), and then may or may not be modified by individual learning (exploration around the initial phenotype). The environment alternates periodically between two states, each defined as a certain range of phenotypes that can survive. These states may overlap, in which case the same phenotype can survive in both states, or they may not. We find that a joint social and exploratory individual learning strategy-the strategy that supports cumulative culture-is likely to spread when the environmental states do not overlap. In particular, when the environmental states are contiguous and mutation is allowed among the genotypic values, this strategy will spread in either moderately or highly stable environments, depending on the exact nature of the individual learning applied. On the other hand, natural selection often favors a social learning strategy without exploration when the environmental states overlap. We find only partial support for the "consensus" view, which holds that individual learning, social learning, and innate determination of behavior will evolve at short, intermediate, and long environmental periodicities, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号