首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The number of biomedical devices (intravascular catheters, heart valves, joint replacements, etc.) that are implanted in our hospitals has increased exponentially in recent years. Candida species are pathogens which are becoming more significant in these kinds of infections. Candida has two forms of development: planktonic and in biofilms. A biofilm is a community of microorganisms which adhere to a surface and are enclosed by an extracellular matrix. This form of development confers a high resistance to the antimicrobial agents. This is the reason why antibiotic treatments usually fail and biomedical devices may have to be removed in most cases. Unspecific adhesion mechanisms, the adhesion-receptor systems, and an intercellular communication system called quorum sensing play an essential role in the development of Candida biofilms. In general, the azoles have poor activity against Candida biofilms, while echinocandins and polyenes show a greater activity. New therapeutic strategies need to be developed due to the high morbidity and mortality and high economic costs associated with these infections. Most studies to date have focused on bacterial biofilms. The knowledge of the formation of Candida biofilms and their composition is essential to develop new preventive and therapeutic strategies.  相似文献   

2.
BackgroundStaphylococcus aureus and Candida albicans have been co-isolated from biofilm-associated diseases such as denture stomatitis, periodontitis, and burn wound infections, as well as from medical devices. However, the polymicrobial biofilm of both microorganisms has not been fully characterized.AimsTo characterize the polymicrobial biofilm of C. albicans and S. aureus in terms of microbial density, synergy, composition, structure, and stability against antimicrobials and chemical agents.MethodsCrystal violet assay was used to measure the biofilm formation. Scanning electron microscopy and confocal microscopy were used to analyze the structure and chemical composition of the biofilms, respectively.ResultsSupplemented media with fetal bovine serum (FBS) decreased the biofilm formation of S. aureus and the polymicrobial biofilm. For C. albicans, depending on the culture media, the addition of glucose or FBS had a positive effect in biofilm formation. FBS decreased the adhesion to polystyrene wells for both microorganisms. Supplementing the media with glucose and FBS enhanced the growth of C. albicans and S. aureus, respectively. It seems that C. albicans contributes the most to the adhesion process and to the general structure of the biofilms on all the surfaces tested, including a catheter model. Interestingly, S. aureus showed a great adhesion capacity to the surface of C. albicans in the biofilms. Proteins and β-1,6-linked polysaccharides seem to be the most important molecules in the polymicrobial biofilm.ConclusionsThe polymicrobial biofilm had a complex structure, with C. albicans serving as a scaffold where S. aureus adheres, preferentially to the hyphal form of the fungus. Detection of polymicrobial infections and characterization of biofilms will be necessary in the future to provide a better treatment.  相似文献   

3.
Navigating novel biological strategies to mitigate bacterial biofilms have great worth to combat bacterial infections. Bacterial infections caused by the biofilm forming bacteria are 1000 times more resistant to antibiotics than the planktonic bacteria. Among the known bacterial infections, more than 70% involve biofilms which severely complicates treatment options. Biofilm formation is mainly regulated by the Quorum sensing (QS) mechanism. Interference with the QS system by the quorum quenching (QQ) enzyme is a potent strategy to mitigate biofilm. In this study, bacterial strains with QQ activity were identified and their anti-biofilm potential was investigated against the Multidrug Resistant (MDR) Pseudomonas aeruginosa. A Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136-based bioassays were used to confirm the degradation of different Acyl Homoserine Lactones (AHLs) by QQ isolates. The 16S rRNA gene sequencing of the isolated strains identified them as Bacillus cereus strain QSP03, B. subtilis strain QSP10, Pseudomonas putida strain QQ3 and P. aeruginosa strain QSP01. Biofilm mitigation potential of QQ isolates was tested against MDR P. aeruginosa and the results suggested that 50% biofilm reduction was observed by QQ3 and QSP01 strains, and around 60% reduction by QSP10 and QSP03 bacterial isolates. The presence of AHL degrading enzymes, lactonases and acylases, was confirmed by PCR based screening and sequencing of the already annotated genes aiiA, pvdQ and quiP. Altogether, these results exhibit that QQ bacterial strains or their products could be useful to control biofilm formation in P.aeruginosa.  相似文献   

4.
The genus Shewanella comprises about 70 species of Gram-negative, facultative anaerobic bacteria inhabiting various environments, which have shown great potential in various biotechnological applications ranging from environmental bioremediation, metal(loid) recovery and material synthesis to bioenergy generation. Most environmental and energy applications of Shewanella involve the biofilm mode of growth on surfaces of solid minerals or electrodes. In this article, we first provide an overview of Shewanella biofilm biology with the focus on biofilm dynamics, biofilm matrix, and key signalling systems involved in Shewanella biofilm development. Then we review strategies recently exploited to engineer Shewanella biofilms to improve biofilm-mediated bioprocesses.  相似文献   

5.
Most recalcitrant infections are associated with colonization and microbial biofilm development. These biofilms are difficult to eliminate by the immune response mechanisms and the current antimicrobial. Fungi can form biofilms on biomaterials commonly used in clinical practice (intravascular catheters, dentures, heart valves, implanted devices, contact lenses and other devices) and are associated with infections.A variety of in vitro models using different substrates/devices have been described. These models have been used to investigate the effect of different variables, including flow, growth time, nutrients and physiological conditions on fungal biofilm formation, morphology and architecture.The purpose of our study is to analyze biofilm formation capacity by 84 strains of Candida spp. (23 C. albicans, 23 C. parapsilosis, 16 C. tropicalis, 17 C. glabrata and 5 C. krusei) on three materials used in medical devices and its quantification using a method based on viable cell count.Under the conditions of our study, all assayed Candida strains have been able to form biofilms. All species showed greater biofilm formation capacity on Teflon™, with the exception of C. glabrata which displayed higher biofilm formation capacity on PVC. Biofilm formation by Candida spp. varies depending on the type of material on which it grows and on the species and strain of Candida.The method we propose could be of great use to deepen scientific knowledge on this subject of remarkable clinical significance, considering the absence of standard biofilm formation and quantification techniques on the catheters and the level of difficulty associated to those available.  相似文献   

6.
The fields of mycology and bacteriology have traditionally functioned independently of each other despite the fundamental actuality that fungi and bacteria not only co-exist but also interact within several niches. In the clinical context, these interactions commonly occur within biofilms, which can be composed of single-species communities or mixed-species populations and recent studies have shown that the properties of mixed-species populations differ from those of their individual components. The interacting bacteria and fungi can exert effects on microbial behavior, dissemination, survival, the response to antimicrobials and, ultimately, patient prognosis. Microbes within biofilms exhibit increased resistance to antimicrobial agents, and a significant amount of research has thus focused on gaining an understanding of how inter-domain interactions affect biofilm formation and the response to antimicrobial therapies. Candida albicans, a commensal and opportunistic pathogen of humans, is among the fungi most frequently identified in mixed-species biofilms. Here, we review interactions between C. albicans and bacterial species with which it is commonly isolated, namely Pseudomonas aeruginosa and Staphylococcus aureus in order to look into the spectrum of biologically relevant fungal–bacterial interactions that have been described.  相似文献   

7.
The fungus Cryptococcus neoformans possesses a polysaccharide capsule and can form biofilms on medical devices. We describe the characteristics of C. neoformans biofilm development using a microtiter plate model, microscopic examinations, and a colorimetric 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium-hydroxide (XTT) reduction assay to observe the metabolic activity of cryptococci within a biofilm. A strong correlation between XTT and CFU assays was demonstrated. Chemical analysis of the exopolymeric material revealed sugar composition consisting predominantly of xylose, mannose, and glucose, indicating the presence of other polysaccharides in addition to glucurunoxylomannan. Biofilm formation was affected by surface support differences, conditioning films on the surface, characteristics of the medium, and properties of the microbial cell. A specific antibody to the capsular polysaccharide of this fungus was used to stain the extracellular polysaccharide matrix of the fungal biofilms using light and confocal microscopy. Additionally, the susceptibility of C. neoformans biofilms and planktonic cells to environmental stress was investigated using XTT reduction and CFU assays. Biofilms were less susceptible to heat, cold, and UV light exposition than their planktonic counterparts. Our findings demonstrate that fungal biofilm formation is dependent on support surface characteristics and that growth in the biofilm state makes fungal cells less susceptible to potential environmental stresses.  相似文献   

8.
Streptococcus mutans (S. mutans) uses a quorum sensing (QS) signaling system, which is dependent on competence stimulating peptide (CSP), to regulate diverse physiological activities including bacteriocin production, genetic transformation, and biofilm formation. However, the mechanism of the QS system-induced biofilm formation remains unclear. Here, we demonstrated that the late-stage biofilm formation was increased by the addition of exogenous CSP in S. mutans. The numbers of dead cells in biofilms formed in presence of CSP was 64.5% higher than that without CSP after 12 h (p < 0.05) and 76.3% higher after 24 h (p < 0.05), the numbers of live cells in biofilms formed in presence of CSP were 89.3% higher than that without CSP after 24 h (p < 0.01). The expression of QS-associated genes was increased 3.4-5.3-fold by CSP in biofilms. Our results revealed that cell viability of S. mutans grown in biofilms is affected by the CSP-dependent QS system.  相似文献   

9.
In contrast to yeast biofilms, those of filamentous fungi are relatively poorly understood, in particular with respect to their regulation. Cunninghamella elegans is a filamentous fungus that is of biotechnological interest as it catabolises drugs and other xenobiotics in an analogous manner to animals; furthermore, it can grow as a biofilm enabling repeated batch biotransformations. Precisely how the fungus switches from planktonic to biofilm growth is unknown and the aim of this study was to shed light on the possible mechanism of biofilm regulation. In dimorphic yeasts, alcohols such as tyrosol and 2-phenylethanol are known to control the yeast-to-hypha switch, and a similar molecule might be involved in regulating biofilm in C. elegans. Gas chromatography-mass spectrometry analysis of crude ethyl acetate extracts from supernatants of 72 h planktonic and biofilm cultures revealed 3-hydroxytyrosol as a prominent metabolite. Further quantification revealed that the amounts of the compound in planktonic cultures were substantially higher (>10-fold) than in biofilm cultures. In the presence of exogenous 3-hydroxytyrosol the growth of aerial mycelium was inhibited, and there was selective inhibition of biofilm when it was added to culture medium. There was no biotransformation of the compound when it was added to 72 h-old cultures, in contrast to the related compounds tyrosol and 2-phenylethanol, which were oxidised to a number of products. Therefore, we propose that 3-hydroxytyrosol is a new signalling molecule in fungi, which regulates biofilm growth.  相似文献   

10.
The fungal pathogen Cryptococcus neoformans can grow as a biofilm on a range of synthetic and prosthetic materials. Cryptococcal biofilm formation can complicate the placement of shunts used to relieve increased intracranial pressure in cryptococcal meningitis and can serve as a nidus for chronic infection. Biofilms are generally advantageous to pathogens in vivo, as they can confer resistance to antimicrobial compounds, including fluconazole and voriconazole in the case of C. neoformans. EDTA can inhibit biofilm formation by several microbes and enhances the susceptibility of biofilms to antifungal drugs. In this study, we evaluated the effect of sublethal concentrations of EDTA on the growth of cryptococcal biofilms. EDTA inhibited biofilm growth by C. neoformans, and the inhibition could be reversed by the addition of magnesium or calcium, implying that the inhibitory effect was by divalent cation starvation. EDTA also reduced the amount of the capsular polysaccharide glucuronoxylomannan shed into the biofilm matrix and decreased vesicular secretion from the cell, thus providing a potential mechanism for the inhibitory effect of this cation-chelating compound. Our data imply that the growth of C. neoformans biofilms requires the presence of divalent metals in the growth medium and suggest that cations are required for the export of materials needed for biofilm formation, possibly including extracellular vesicles.  相似文献   

11.
Biofilm is bacterial population adherent to each other and to surfaces or interfaces, often enclosed by a matrix. Various biomolecules contribute to the establishment of biofilms, yet the process of building a biofilm is still under active investigation. Indole is known as a metabolite of amino acid tryptophan, which, however, has recently been proved to participate in various aspects of bacterial life including virulence induction, cell cycle regulation, acid resistance, and especially, signaling biofilm formation. Moreover, indole is also proposed to be a novel signal involved in quorum sensing, a bacterial cooperation behavior sometimes concerning the biofilm formation. Here the signaling role and molecular mechanism of indole on bacterial biofilm formation are reviewed, as well discussed is its relation to bacterial living adaptivity.  相似文献   

12.
In recent years, increasing evidence has been collated on the contributions of fungal species, particularly Candida, to medical device infections. Fungal species can form biofilms by themselves or by participating in polymicrobial biofilms with bacteria. Thus, there is a clear need for effective preventative measures, such as thin coatings that can be applied onto medical devices to stop the attachment, proliferation, and formation of device-associated biofilms.However, fungi being eukaryotes, the challenge is greater than for bacterial infections because antifungal agents are often toxic towards eukaryotic host cells. Whilst there is extensive literature on antibacterial coatings, a far lesser body of literature exists on surfaces or coatings that prevent attachment and biofilm formation on medical devices by fungal pathogens. Here we review strategies for the design and fabrication of medical devices with antifungal surfaces. We also survey the microbiology literature on fundamental mechanisms by which fungi attach and spread on natural and synthetic surfaces. Research in this field requires close collaboration between biomaterials scientists, microbiologists and clinicians; we consider progress in the molecular understanding of fungal recognition of, and attachment to, suitable surfaces, and of ensuing metabolic changes, to be essential for designing rational approaches towards effective antifungal coatings, rather than empirical trial of coatings.  相似文献   

13.
BackgroundMost recalcitrant infections are associated to colonization and microbial biofilm development. These biofilms are difficult to eliminate by the immune response mechanisms and the current antimicrobial therapy.AimTo describe the antifungal of micafungin against fungal biofilms based in the scientific and medical literature of recent years.MethodsWe have done a bibliographic retrieval using the scientific terms “micafungin”, “activity”, “biofilm”, “Candida”, “Aspergillus”, “fungi”, “mycos”*, susceptibility, in PubMed/Medline from the National Library of Medicine from 2006 to 2009.ResultsMost current antifungal agents (amphotericin B and fluconazole) and the new azole antifungals have no activity against fungal biofilms. However, micafungin and the rest of echinocandins are very active against Candida albicans, Candida dubliniensis, Candida glabrata, and Candida krusei biofilms but their activities are variable and less strong against Candida tropicalis and Candida parapsilosis biofilms. Moreover, they have not activities against the biofilms of Cryptococcus y Trichosporon.ConclusionsThe activity of micafungin against Candida biofilms gives more strength to its therapeutic indication for candidaemia and invasive candidiasis associated to catheter, prosthesis and other biomedical devices.  相似文献   

14.
Acinetobacter baumannii is an opportunistic Gram-negative bacterial pathogen that poses a threat for frail patients worldwide. The high ability to withstand environmental stresses as well as its resistance towards a broad range of antibiotics make A. baumannii an effective hard-to-eradicate pathogen. One of the key mechanisms mediating tolerance against antibiotic treatment is the formation of biofilms, a process that is controlled by a multitude of different regulatory mechanisms. A key factor with major impact on biofilm formation is cell-to-cell communication by quorum-sensing, which in A. baumannii is mediated by acyl homoserine lactone signaling molecules. Here we show that the Ntn-Hydrolase PvdQ from Pseudomonas aeruginosa can reduce biofilm formation by the A. baumannii ATCC 17978 type strain and several clinical isolates on abiotic surfaces. Further, our study shows that a combination treatment of PvdQ-mediated quorum-quenching with the antibiotic gentamicin has a synergistic effect on the clearance of A. baumannii biofilms and possible biofilm dispersal. Moreover, we demonstrate in a Galleria mellonella larval infection model that PvdQ administration significantly prolongs survival of the larvae. Altogether, we conclude that the acylase-mediated irreversible cleavage of quorum-sensing signaling molecules as exemplified with PvdQ can set a profound limit to the progression of A. baumannii infections.  相似文献   

15.
Foodborne pathogens are one of the major cause of food-related diseases and food poisoning. Bacterial biofilms and quorum sensing (QS) mechanism of cell–cell communication have also been found to be associated with several outbreaks of foodborne diseases and are great threat to food safety. Therefore, In the present study, we investigated the activity of three tetrahedrally coordinated copper(I) complexes against quorum sensing and biofilms of foodborne bacteria. All the three complexes demonstrated similar antimicrobial properties against the selected pathogens. Concentration below the MIC i.e. at sub-MICs all the three complexes interfered significantly with the quorum sensing regulated functions in C. violaceum (violacein), P. aeruginosa (elastase, pyocyanin and alginate production) and S. marcescens (prodigiosin). The complexes demonstrated potent broad-spectrum biofilm inhibition in Pseudomonas aeruginosa, E. coli, Chromobacterium violaceum, Serratia marcescens, Klebsiella pneumoniae and Listeria monocytogenes. Biofilm inhibition was visualized using SEM and CLSM images. Action of the copper(I) complexes on two key QS regulated functions contributing to biofilm formation i.e. EPS production and swarming motility was also studied and statistically significant reduction was recorded. These results could form the basis for development of safe anti-QS and anti-biofilm agents that can be utilized in the food industry as well as healthcare sector to prevent food-associated diseases.  相似文献   

16.
K. Ajesh  K. Sreejith 《Mycopathologia》2012,174(5-6):409-419
A great number of fungal infections are related to biofilm formation on inert or biological surfaces, which are recalcitrant to most treatments and cause human mortality. Cryptococcus laurentii has been diagnosed as the aetiological pathogen able to cause human infections mainly in immunosuppressed patients and the spectrum of clinical manifestations ranges from skin lesions to fungaemia. The effect of temperature, pH and surface preconditioning on C. laurentii biofilm formation was determined by 2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide (XTT) reduction assay. Scanning electron microscopic (SEM) analysis of C. laurentii biofilms demonstrated surface topographies of profuse growth and dense colonization with extensive polymeric substances around the cells. In this study, we determined the activity of amphotericin B, itraconazole and fluconazole against C. laurentii free-living cells and biofilms. The activity of antifungals tested was greater against free-living cells, but sessile cells fell into the resistant range for these antifungal agents. Extracellular polymeric substances (EPS), comprising the matrix of C. laurentii biofilms, were isolated by ultrasonication. Fourier transform infrared spectroscopy (FT-IR) was performed with ethanol-precipitated and dried samples. Also, the multielement analysis of the EPS was performed by inductively coupled plasma optical emission spectroscopy (ICP-OES).  相似文献   

17.
The newly described green-pigmented bacterium Pseudoalteromonas tunicata (D2) produces target-specific inhibitory compounds against bacteria, algae, fungi, and invertebrate larvae and is frequently found in association with living surfaces in the marine environment. As part of our studies on the ecology of P. tunicata and its interaction with marine surfaces, we examined the ability of P. tunicata to form biofilms under continuous culture conditions within the laboratory. P. tunicata biofilms exhibited a characteristic architecture consisting of differentiated microcolonies surrounded by water channels. Remarkably, we observed a repeatable pattern of cell death during biofilm development of P. tunicata, similar to that recently reported for biofilms of Pseudomonas aeruginosa (J. S. Webb et al., J. Bacteriol. 185:4585-4595, 2003). Killing and lysis occurred inside microcolonies, apparently resulting in the formation of voids within these structures. A subpopulation of viable cells was always observed within the regions of killing in the biofilm. Moreover, extensive killing in mature biofilms appeared to result in detachment of the biofilm from the substratum. A novel 190-kDa autotoxic protein produced by P. tunicata, designated AlpP, was found to be involved in this biofilm killing and detachment. A ΔalpP mutant derivative of P. tunicata was generated, and this mutant did not show cell death during biofilm development. We propose that AlpP-mediated cell death plays an important role in the multicellular biofilm development of P. tunicata and subsequent dispersal of surviving cells within the marine environment.  相似文献   

18.
The emergence of multidrug resistance has become an alarming and lifethreatening phenomenon for humans. Various mechanisms are involved in the development of resistance in bacteria towards antimicrobial compounds and immune system. Bacterial biofilm is a complicated, selfdefensive, rigid structure of bacteria crowded together to develop a selfrecessive nature, which enhances the ability to cause infections much easier in the living host. P. aeruginosa biofilm formation is supported by extracellular polymeric substances (EPS) such as exopolysaccharides, extracellular DNA (eDNA), proteins and biomolecules. Published evidences suggest that biofilm formation can also be the result of several other mechanisms such as cell signaling or communication. Bacterial biofilm is also regulated by strong intercellular communication known as Quorum Sensing (QS). It is a cellular communication mechanism involving autoinducers and regulators. In P. aeruginosa, Acyl Homoserine Lactone, the prime signaling molecule, controls approximately 300 genes responsible for various cellular functions, including its pathogenesis. The surrounding environment and metabolism have a specific effect on the biofilm and QS, thus, understanding the involvement of QS in the biofilm developing mechanism is still complicated and complex to understand. Therefore, this review will include basic knowledge of the biofilmforming mechanism and other regulatory factors involved in causing infections and diseases in the host organisms.  相似文献   

19.
李瑞莲  王倬  杜昱光 《微生物学报》2017,57(8):1206-1218
难治性真菌感染的临床分析发现,病灶感染病原常以生物被膜的形态存在。生物被膜的形成可帮助真菌躲避宿主细胞免疫系统清除和药物的攻击,所造成的持续性感染严重威胁人类健康,因此,认识研究真菌生物被膜及其耐药机理对于防治临床真菌感染有着重大意义。白色念珠菌是一种临床感染常见的条件性致病菌,也是目前真菌生物被膜研究的主要研究模型。白色念珠菌生物被膜主要由多糖、蛋白质和DNA构成,其形成由微生物间的群体感应调控,并受到环境中营养成分及其附着物表面性质影响。研究发现,胞外基质的屏障作用、耐药基因的表达等机制与生物被膜耐药性的产生密切相关。本文就白色念珠菌生物被膜的形成过程、结构组成、形成的影响因素、现有研究模型、耐药机制和治疗策略等几个方面介绍近年来的研究进展。  相似文献   

20.
China remains by far the largest aquaculture producer in the world. However, biofilms formed by pathogenic Vibrio strains pose serious problems to marine aquaculture. To provide a strategy for biofilm prevention, control, and eradication, extracts from 88 marine actinomycetes were screened. Thirty-five inhibited the biofilm formation of Vibrio harveyi, Vibrio vulnificus, and Vibrio anguillarum at a concentration of 2.5% (v/v). Thirty-three of the actinomycete extracts dispersed the mature biofilm. Six extracts inhibited the quorum-sensing system of V. harveyi by attenuating the signal molecules N-acylated homoserine lactones’ activity. Strain A66, which was identified as Steptomyces albus, both attenuated the biofilms and inhibited their quorum-sensing system. It is suggested that strain A66 is a promising candidate to be used in future marine aquaculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号