首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of serum to density-arrested BALB/c-3T3 cells causes a rapid increase in uptake of Na+ and K+, followed 12 h later by the onset of DNA synthesis. We explored the role of intracellular univalent cation concentrations in the regulation of BALB/c-3T3 cell growth by serum growth factors. As cells grew to confluence, intracellular Na+ and K+ concentrations ([Na+]i and [K+]i) fell from 40 and 180 to 15 and 90 mmol/liter, respectively. Stimulation of growth of density-inhibited cells by the addition of serum growth factors increased [Na]i by 30% and [K+]i by 13-25% in early G0/G1, resulting in an increase in total univalent cation concentration. Addition of ouabain to stimulated cells resulted in a concentration-dependent steady decrease in [K+]i and increase in [Na+]i. Ouabain (100 microM) decreased [K+]i to approximately 60 mmol/liter by 12 h, and also prevented the serum- stimulated increase in 86Rb+ uptake. However, 100 microM ouabain did not inhibit DNA synthesis. A time-course experiment was done to determine the effect of 100 microM ouabain on [K+]i throughout G0/G1 and S phase. The addition of serum growth factors to density-inhibited cells stimulated equal rates of entry into the S phase in the presence or absence of 100 microM ouabain. However, in the presence of ouabain, there was a decrease in [K+]i. Therefore, an increase in [K+]i is not required for entry into S phase; serum growth factors do not regulate cell growth by altering [K+]i. The significance of increased total univalent cation concentration is discussed.  相似文献   

2.
Intracellular Mg2+ concentration ([Mg2+]i) was measured in rat ventricular myocytes with the fluorescent indicator furaptra (25 degrees C). After the myocytes were loaded with Mg2+, the initial rate of decrease in [Mg2+]i (initial Delta[Mg2+]i/Deltat) was estimated upon introduction of extracellular Na+, as an index of the rate of Na+-dependent Mg2+ efflux. The initial Delta[Mg2+]i/Deltat values with 140 mM [Na+]o were essentially unchanged by the addition of extracellular Ca2+ up to 1 mM (107.3+/-8.7% of the control value measured at 0 mM [Ca2+]o in the presence of 0.1 mM EGTA, n=5). Intracellular loading of a Ca2+ chelator, either BAPTA or dimethyl BAPTA, by incubation with its acetoxymethyl ester form (5 microM for 3.5 h) did not significantly change the initial Delta[Mg2+]i/Deltat: 115.2+/-7.5% (seven BAPTA-loaded cells) and 109.5+/-10.9% (four dimethyl BAPTA loaded cells) of the control values measured in the absence of an intracellular chelator. Extracellular and/or intracellular concentrations of K+ and Cl- were modified under constant [Na+]o (70 mM), [Ca2+]o (0 mM with 0.1 mM EGTA), and membrane potential (-13 mV with the amphotericin-B-perforated patch-clamp technique). None of the following conditions significantly changed the initial Delta[Mg2+]i/Deltat: 1), changes in [K+]o between 0 mM and 75 mM (65.6+/-5.0% (n=11) and 79.0+/-6.0% (n=8), respectively, of the control values measured at 140 mM [Na+]o without any modification of extracellular and intracellular K+ and Cl-); 2), intracellular perfusion with K+-free (Cs+-substituted) solution from the patch pipette in combination with removal of extracellular K+ (77.7+/-8.2%, n=8); and 3), extracellular and intracellular perfusion with K+-free and Cl--free solutions (71.6+/-5.1%, n=5). These results suggest that Mg2+ is transported in exchange with Na+, but not with Ca2+, K+, or Cl-, in cardiac myocytes.  相似文献   

3.
Agonist-specific regulation of [Na+]i in pancreatic acinar cells   总被引:1,自引:1,他引:0  
In a companion paper (Zhao, H., and S. Muallem. 1995), we describe the relationship between the major Na+,K+, and Cl- transporters in resting pancreatic acinar cells. The present study evaluated the role of the different transporters in regulating [Na+]i and electrolyte secretion during agonist stimulation. Cell stimulation increased [Na+]i and 86Rb influx in an agonist-specific manner. Ca(2+)-mobilizing agonists, such as carbachol and cholecystokinin, activated Na+ influx by a tetraethylammonium-sensitive channel and the Na+/H+ exchanger to rapidly increase [Na+]i from approximately 11.7 mM to between 34 and 39 mM. As a consequence, the NaK2Cl cotransporter was largely inhibited and the activity of the Na+ pump increased to mediate most of the 86Rb(K+) uptake into the cells. Secretin, which increases cAMP, activated the NaK2Cl cotransporter and the Na+/H+ exchanger to slowly increase [Na+]i from approximately 11.7 mM to an average of 24.6 mM. Accordingly, secretin increased total 86Rb uptake more than the Ca(2+)- mobilizing agonists and the apparent coupling between the NaK2Cl cotransport and the Na+ pump. All the effects of secretin could be attributed to an increase in cAMP, since forskolin affected [Na+]i and 86Rb fluxes similar to secretin. The signaling pathways mediating the effects of the Ca(2+)-mobilizing agonists were less clear. Although an increase in [Ca2+]i was required, it was not sufficient to account for the effect of the agonists. Activation of protein kinase C stimulated the NaK2Cl cotransporter to increase [Na+]i and 86Rb fluxes without preventing the inhibition of the cotransporter by Ca(2+)-mobilizing agonists. The effects of the agonists were not mediated by changes in cell volume, since cell swelling and shrinkage did not reproduce the effect of the agonists on [Na+]i and 86Rb fluxes. The overall findings of the relationships between the various Na+,K+, and Cl- transporters in resting and stimulated pancreatic acinar cells are discussed in terms of possible models of fluid and electrolyte secretion by these cells.  相似文献   

4.
By altering the Na+/K+ electrochemical gradient, Na+,K(+)-ATPase activity profoundly influences cardiac cell excitability and contractility. The recent finding of mineralocorticoid hormone receptors in the heart implies that Na+,K(+)-ATPase gene expression, and hence cardiac function, is regulated by aldosterone, a corticosteroid hormone associated with certain forms of hypertension and classically involved in regulating Na+,K(+)-ATPase gene expression and transepithelial Na+ transport in tissues such as the kidney. The regulation by aldosterone of the major cardiac Na+,K(+)-ATPase isoform genes, alpha-1 and beta-1, were studied in adult and neonatal rat ventricular cardiocytes grown in defined serum-free media. In both cell types, aldosterone-induced a rapid and sustained 3-fold induction in alpha-1 mRNA accumulation within 6 h. beta-1 mRNA was similarly induced. alpha-1 mRNA induction occurred over the physiological range with an EC50 of 1-2 nM, consistent with binding of aldosterone to the high affinity mineralocorticoid hormone receptor. In adult cardiocytes, this was associated with a 36% increase in alpha subunit protein accumulation and an increase in Na(+)-K(+)-ATPase transport activity. Aldosterone did not alter the 3-h half-life of alpha-1 mRNA, indicating an induction of alpha-1 mRNA synthesis. Aldosterone-dependent alpha-1 mRNA accumulation was not blocked by the protein synthesis inhibitor cycloheximide, whereas amiloride inhibited both an aldosterone-dependent increase in intracellular Na+ [Na+]i) and alpha-1 mRNA accumulation. This demonstrates that aldosterone directly stimulates Na+,K(+)-ATPase alpha-1 subunit mRNA synthesis and protein accumulation in cardiac cells throughout development and suggests that the heart is a mineralocorticoid-responsive organ. An early increase in [Na+]i may be a proximal event in the mediation of the hormone effect.  相似文献   

5.
Long term elevation of the intracellular Na+/K+ ratio inhibits macromolecule synthesis and proliferation in the majority of cell types studied so far, including vascular smooth muscle cells (VSMC). We report here that inhibition of the Na+,K+ pump in VSMC by ouabain or a 1-h preincubation in K+-depleted medium attenuated apoptosis triggered by serum withdrawal, staurosporine, or okadaic acid. In the absence of ouabain, both DNA degradation and Caspase-3 activation in VSMC undergoing apoptosis were insensitive to modification of the extracellular Na+/K+ ratio as well as to hyperosmotic cell shrinkage. In contrast, protection of VSMC from apoptosis by ouabain was abolished under equimolar substitution of Na+o with K+o, showing that the antiapoptotic action of Na+,K+ pump inhibition was caused by inversion of the intracellular Na+/K+ ratio. Unlike VSMC, the same level of increment of the [Na+]i/[K+]i ratio caused by a 2-h preincubation of Jurkat cells with ouabain did not affect chromatin cleavage and Caspase-3 activity triggered by treatment with Fas ligand, staurosporine, or hyperosmotic shrinkage. Thus, our results show for the first time that similar to cell proliferation, maintenance of a physiologically low intracellular Na+/K+ ratio is required for progression of VSMC apoptosis.  相似文献   

6.
Effects of the K+ concentration in the bathing fluid ([K+]l) on the intracellular K+, Na+ and Cl- concentrations ([K+]i [Na+]i and [Cl-]i) as well as on the electrical potential were studied in rat duodenum. Changes in the mucosal K+ concentration ([K+]m), bringing the sum of Na+ and K+ concentrations to 147.2 mM constant, had little effect on the transmural potential difference (PDt), but did induce marked changes in the mucosal membrane potential (Vm). As [K+]m increased, Vm was depolarized gradually and obeyed the Nernst equation for a potassium electrode in the range of [K+]m greater than approx. 60 mM. Experiments of ion analyses were carried out on strips of duodenum to determine the effect of changing the external K+ concentrations on [K+] i, [Na+]i and [Cl-]i. An increase in [K+]o resulted in increases in [K+]i and [Cl-]i and a decrease in [Na+]i, [K+]i approaching its maximum at [K+]o greater than 70 mM. Such changes in [K+]i and [Na+]i seem to correlate quantitatively with the changes in [K+]o and [Na+]o. The values of the ratio of permeability coefficients, Pna+/PK+ were estimated using the Vm values and intracellular ion concentrations measured in these experiments. The results suggested that there appeared a rather abrupt increase in the PNa+/PK+ ratio from 0 to approx. 0.1, as [K+]m decreased.  相似文献   

7.
The pumping activity of the plasma membrane-bound Na+,K+-ATPase shows considerable variation during the cell cycle of mouse neuroblastoma Neuro-2A cells. Addition of external ATP at millimolar concentrations, which selectively enhances the plasma membrane permeability of Neuro-2A cells for sodium ions, stimulates the Na+,K+-ATPase pumping activity at all phases of the cell cycle from a factor of 1.05 in mitosis up to 2.2 in G1 phase. Determination of the number of Na+,K+-ATPase copies per cell by direct 3H-ouabain binding studies in the presence of external ATP shows a gradual increase in the number of pump sites on passing from mitosis to the late S/G2-phase by approximately a factor of 2. From these data the pumping activity per copy of Na+,K+-ATPase, optimally stimulated with respect to its various substrate ions, has been determined during the various phases of the cell cycle. This optimally stimulated pumping activity per enzyme copy, which is a reflection of the physicochemical state of the plasma membrane, is high in mitosis, almost twofold lower in early G1 phase, and increases gradually again during the other phases of the cell cycle. This shows that the observed regulation of Na+,K+-ATPase activity during the cell cycle is caused by a combination of three independent factors--namely variation in intracellular substrate availability (Na+), changes in number of enzyme copies per cell, and modulation of the plasma membrane environment of the protein molecules. The modulation of the optimal pumping activity per enzyme copy shows a good correlation (rho = 0.96) with the known modulation of protein lateral mobility during the cell cycle, such that a high protein lateral mobility correlates with a low enzyme activity. It is concluded that changes in plasma membrane properties take place during the Neuro-2A cell cycle that result in changes in the rate of protein lateral diffusion and Na+,K+-ATPase activity in directly correlated way.  相似文献   

8.
The effect of inhibition of the cell membrane Na+-K+ pump on the Balb/c-3T3 cell growth cycle was studied. Inhibition of the Na+-K+ pump resulted in a dose-dependent reduction of intracellular K+ concentration ((K+)i). However, inhibition of protein synthesis in Go/G1 and of subsequent entry into S phase occurred only after (K+)i fell below a critical threshold (50-60 mmoles/liter). Thus, when the (K+)i falls below a critical threshold, protein synthesis is inhibited, preventing cells from entering the S phase. The platelet-derived growth factor (PDGF) induces cells to become "competent" to traverse the cell cycle; the platelet-poor plasma component of serum allows competent cells to progress through G0/G1 and enter S phase. Inhibition of the Na+-K+ pump did not prevent the induction of competence by PDGF, but it did reversibly inhibit plasma-mediated events in early G0/G1. Similarly, cycloheximide inhibited plasma-mediated events but did not prevent PDGF-induced competence. Thus, protein synthesis may not be required for induction of competence; alternatively, the induction of the competent state may occur in these cells after removal of PDGF and protein synthesis inhibitor. Protein synthesis is required for subsequent plasma-mediated events in G0/G1.  相似文献   

9.
Activation of neutrophils by most soluble stimuli is associated with a marked increase in intracellular free Ca2+ ([Ca2+]i). However, under physiological conditions (Na+-rich media), the potent activator 12-O-tetradecanoylphorbol-13-acetate (TPA) causes no change or a decrease in [Ca2+]i. We report here that the [Ca2+]i response to phorbol esters varies depending on the ionic composition of the medium. A marked increase in [Ca2+]i was detected in Na+-free solutions. Maximal effects were observed when N-methyl-D-glucammonium+ or choline+ were substituted for Na+, whereas an intermediate response was recorded in K+ medium. The increase in [Ca2+]i was substantially (approximately 65%) inhibited by removal of external Ca2+. A [Ca2+]i increase was also elicited by other beta-phorbol diesters and by diacylglycerol, but not by unesterified phorbol or by alpha-phorbol diesters, indicating involvement of protein kinase C. The increase in [Ca2+]i observed in Na+-free media is not due to inhibition of Na+/Ca2+ exchange, since no change in [Ca2+]i in response to TPA was observed in: 1) cells suspended in Li+, which is not countertransported for Ca2+; 2) cells preloaded with Na+ to eliminate the driving force for Na+/Ca2+ exchange; and 3) cells treated with 3',4'-dichlorobenzamyl, an inhibitor of Na+/Ca2+ exchange. Similarly, the [Ca2+]i increase in Na+-free media is not linked to the absence of Na+/H+ exchange and the associated cytoplasmic acidification since: 1) it was not observed in Na+ media in the presence of inhibitors of the Na+/H+ antiport and 2) it was not mimicked by inducing acidification with nigericin. Pretreatment with pertussis toxin largely inhibited the phorbol ester-induced change in [Ca2+]i, while activation of protein kinase C under these conditions was unaffected. It is concluded that in the absence of extracellular Na+ (or Li+), activation of protein kinase C leads to a net Ca2+ influx into the cytoplasm through a process mediated by a GTP-binding or G protein. Opening of a Na+-sensitive Ca2+ channel could partially explain these observations. Alternatively, the nature of the monovalent cation could conceivably affect the conformation of a G protein or of an associated receptor, inducing the appearance of a site susceptible to an activating phosphorylation by protein kinase C.  相似文献   

10.
The earliest known ionic event during Friend murine erythroleukemic (MEL) cell differentiation along the erythroid pathway is a 45% drop in intracellular sodium concentration ([Na+]i) due to a decrease in Na+ influx (Lannigan, D. A., and Knauf, P. A. (1985) J. Biol. Chem. 260, 7322-7324). We have analyzed the mechanism of the decreased Na+ influx. The Na+ influx in uninduced cells was insensitive to dimethylamiloride, bumetanide, and diisothiocyanostilbene disulfonate. The intracellular pH (pHi) did not change up to 15 h after dimethyl sulfoxide induction, at which time Na+ influx has decreased by approximately 40%; thus, the decrease in Na+ influx is not coupled to a change in pHi. A substantial amount of the decrease in Na+ influx seems to result from a drop in amino acid-dependent Na+ transport. This reduction in amino acid-dependent Na+ influx reflects a decrease in net Na+ influx rather than solely in Na+/Na+ exchange and can account for an appreciable portion of the reduction in [Na+]i seen during differentiation. The drop in amino acid-dependent Na+ influx could not be explained by membrane depolarization but was correlated with a decrease in protein synthesis. Inhibition of protein synthesis in uninduced cells by cycloheximide also caused a decrease in Na+ influx. We conclude that during differentiation the reduction in protein synthesis decreases amino acid-dependent Na+ influx which in turn causes a drop in [Na+]i leading to a reduction in the Na+/K+ pump rate.  相似文献   

11.
31P-NMR spectra have been recorded on erythrocytes stored at 4 degrees C in various preservation media. Storage was always associated with an upfield shift of the inorganic phosphate (Pi) resonance and a pronounced upfield shift of the ATP beta resonance, indicating decreased intracellular pH (pHi) and decreased intracellular free magnesium ([Mg2+]i). The decreased [Mg2+]i occurred in preservation media not containing citrate and even in media supplemented with Mg2+. It could not be attributed to the changes in pHi, Na+, K+, lactate, Pi or 2,3-diphosphoglycerate, that occur with storage. The decrease in [Mg2+]i was largely reversed when stored cells were incubated for 1 h at 37 degrees C in fresh plasma. Stored cells were found to contain significant amounts of inorganic pyrophosphate, up to about 200 mumol per liter cell water. Being a tight binder of Mg2+, pyrophosphate could account for some of the observed decrease in [Mg2+]i. Additional mechanisms may involve precipitation of some other Mg2+ complex during cold storage or enhancement of Mg2+ binding to membrane components.  相似文献   

12.
The interaction of the cardiac glycoside [3H]ouabain with the Na+, K+ pump of resealed human erythrocyte ghosts was investigated. Binding of [3H]ouabain to high intracellular Na+ ghosts was studied in high extracellular Na+ media, a condition determined to produce maximal ouabain binding rates. Simultaneous examination of both the number of ouabain molecules bound per ghost and the corresponding inhibition of the Na+, K+-ATPase revealed that one molecule of [3H]ouabain inhibited one Na+, K+-ATPase complex. Intracellular magnesium or magnesium plus inorganic phosphate produced the lowest ouabain binding rate. Support of ouabain binding by adenosine diphosphate (ADP) was negligible, provided synthesis of adenosine triphosphate (ATP) through the residual adenylate kinase activity was prevented by the adenylate kinase inhibitor Ap5A. Uridine 5'-triphosphate (UTP) alone did not support ouabain binding after inhibition of the endogenous nucleoside diphosphokinase by trypan blue and depletion of residual ATP by the incorporation of hexokinase and glucose. ATP acting solely at the high- affinity binding site of the Na+, K+ pump (Km approximately 1 microM) promoted maximal [3H]ouabain binding rates. Failure of 5'-adenylyl-beta- gamma-imidophosphate (AMP-PNP) to stimulate significantly the rate of ouabain binding suggests that phosphorylation of the pump was required to expose the ouabain receptor.  相似文献   

13.
Adenosine 3',5'-cyclic monophosphate (cAMP) and CaCl2 were injected by a fast and quantitative pressure injection technique into voltage-clamped, identified Helix neurons. Intracellular elevation of cAMP as well as of Ca2+ activated an inward current (IcAMP and IN). To identify the ionic fluxes during IcAMP and IN changes in [Na+]i, [K+]o, [H+]i, and [Cl-]i were measured with ion-selective microelectrodes (ISMs). Near resting potential, Na+ was the main carrier of IcAMP. K+, and less effectively Ca2+, could substitute for Na+ in carrying IcAMP. H+ and Cl- were excluded as current carriers for IcAMP by means of ISMs. Simultaneous to this action, cAMP decreased a K+ conductance. This decrease was associated with a reduction of the K+ efflux activated by long-lasting depolarizing voltage steps, as directly measured with ISMs located near the external membrane surface. The nearly compensatory increase and decrease of two membrane conductances in the same neuron left the cell input resistance unchanged despite the considerable depolarizing action of intracellularly elevated cAMP. IN was also of nonspecific nature. However, our findings indicate less selectivity for the Ca2+-activated nonspecific channels. Large cations such as choline, TEA, and Tris passed nearly as well as Na+ through the channels. Measurements with ISMs showed that [H+]i and [Cl-]i were unchanged during IN. IN was largest in bursting pacemaker neurons compared with other cells of similar size. It was found to be essential for the burst production in these cells. IcAMP, on the other hand, might be involved in the presynaptic facilitatory action of cAMP, which as yet was attributed solely to a reduction of a K+ conductance.  相似文献   

14.
The Ca2+ indicator photoprotein, aequorin, was used to estimate and monitor intracellular Ca2+ levels in Limulus ventral photoreceptors during procedures designed to affect Na+/Ca2+ exchange. Dark levels of [Ca2+]i were estimated at 0.66 +/- 0.09 microM. Removal of extracellular Na+ caused [Ca2+]i to rise transiently from an estimated 0.5-0.6 microM in a typical cell to approximately 21 microM; [Ca2+]i approached a plateau level in 0-Na+ saline of approximately 5.5 microM; restoration of normal [Na+]o lowered [Ca2+]i to baseline with a time course of 1 log10 unit per 9 s. The apparent rate of Nao+-dependent [Ca2+]i decline decreased with decreasing [Ca2+]i. Reintroduction of Ca2+ to 0-Na+, 0-Ca2+ saline in a typical cell caused a transient rise in [Ca2+]i from an estimated 0.36 microM (or lower) to approximately 16.5 microM. This was followed by a decline in [Ca2+]i approaching a plateau of approximately 5 microM; subsequent removal of Cao2+ caused [Ca2+]i to decline slowly (1 log unit in approximately 110 s). Intracellular injection of Na+ in the absence of extracellular Na+ caused a transient rise in [Ca2+]i in the presence of normal [Ca2+]o; in 0-Ca2+ saline, however, no such rise in [Ca2+]i was detected. Under constant voltage clamp (-80 mV) inward currents were measured after the addition of Nao+ to 0-Na+ 0-Ca2+ saline and outward currents were measured after the addition of Cao2+ to 0-Na+ 0-Ca2+ saline. The results suggest the presence of an electrogenic Na+/Ca2+ exchange process in the plasma membrane of Limulus ventral photoreceptors that can operate in forward (Nao+-dependent Ca2+ extrusion) or reverse (Nai+-dependent Ca2+ influx) directions.  相似文献   

15.
An electrophysiologic technique was used to measure changes in cell water volume in response to isosmotic luminal solution ion replacement. Intracellular Cl- activity (aCl-i) was measured and net flux determined from the changes in volume and activity. Reduction of luminal solution [Cl-] from 98 to 10 mM (Cl- replaced with cyclamate) resulted in a large fall in aCl-i with no significant change in cell water volume. Elevation of luminal solution [K+] from 2.5 to 83.5 mM (K+ replaced Na+) caused a small increase in aCl-i with no change in cell water volume. Exposure of the Necturus gallbladder epithelium to agents that increase intracellular cAMP levels (forskolin and/or theophylline) induces an apical membrane electrodiffusive Cl- permeability accompanied by a fall in aCl-i and cell shrinkage. In stimulated tissues, reduction of luminal solution [Cl-] resulted in a large fall in aCl-i and rapid cell shrinkage, whereas elevation of luminal solution [K+] caused a large, rapid cell swelling with no significant change in aCl-i. The changes in cell water volume of stimulated tissues elicited by lowering luminal solution [Cl-] or by elevating luminal solution [K+] were reduced by 60 and 70%, respectively, by addition of tetraethylammonium (TEA+) to the luminal bathing solution. From these results, we conclude that: (a) In control tissues, the fall in aCl-i upon reducing luminal solution [Cl-], without concomitant cell shrinkage, indicates that the Cl- entry mechanism is electroneutral (Cl-/HCO3-) exchange. (b) Also in control tissues, the small increase in aCl-i upon elevating luminal solution [K+] is consistent with the recent demonstration of a basolateral Cl- conductance. (c) The cell shrinkage elicited by elevation of intracellular cAMP levels results from conductive loss of Cl- (and probably K+). (d) Elevation of cAMP inhibits apical membrane Cl-/HCO-3-exchange activity by 70%. (e) The cell shrinkage in response to the reduction of mucosal solution [Cl-] in stimulated tissues results from net K+ and Cl- efflux via parallel electrodiffusive pathways. (f) A major fraction of the K+ flux is via a TEA(+)-sensitive apical membrane K+ channel.  相似文献   

16.
Synthesis of Na+/K+ ATPase by the preimplantation rabbit blastocyst   总被引:1,自引:0,他引:1  
The rates of incorporation of [35S]methionine into Na+/K+ ATPase, actin (beta- and gamma-isoforms), and total protein of the preimplantation rabbit blastocyst were determined between Days 4 and 7 of development. Blastocyst proteins were metabolically radiolabelled with [35S]methionine and subsequently analysed by co-isolation with purified Na+/K+ ATPase using two-dimensional polyacrylamide gel electrophoresis, immunoprecipitation, immunoblotting, fluorography, and liquid scintillation spectroscopy. The rate of [35S]methionine incorporation into acid-soluble total protein increased 24-fold between Days 4 and 6 post coitum (p.c.), then diminished approximately 79% on Day 7. In-vitro incorporation of [35S]methionine was linear at each stage of blastocyst development. [35S]methionine incorporation rates were unaffected by low free intracellular methionine concentration (less than 0.06 mM) and stage-related differences in blastocoele volume. Analysis of beta- and gamma-actin synthesis revealed patterns of [35S]methionine incorporation rates which were similar to those of total protein. In contrast, synthesis of blastocyst Na+/K+ ATPase was characterized by a 90-fold increase (P less than 0.001) in the rate of [35S]methionine incorporation between Days 4 and 6 p.c. The results demonstrate that Na+/K+ ATPase is actively synthesized at a high and increasing rate during preimplantation development in the rabbit at a period which is characterized by rapid fluid accumulation by the blastocyst.  相似文献   

17.
The neuropeptide somatostatin causes membrane hyperpolarization and reduces the intracellular free calcium ion concentration ([Ca2+]i) in GH pituitary cells. In this study, we have used the fluorescent dyes bisoxonol (bis,-(1,3-diethylthiobarbiturate)-trimethineoxonol) and quin2 to elucidate the mechanisms by which these ionic effects are triggered. Addition of 100 nM somatostatin to GH4C1 cells caused a 3.4 mV hyperpolarization and a 26% decrease in [Ca2+]i within 30 s. These effects were not accompanied by changes in intracellular cAMP concentrations and occurred in cells containing either basal or maximally elevated cAMP levels. To determine which of the major permeant ions were involved in these actions of somatostatin, we examined its ability to elicit changes in the membrane potential and the [Ca2+]i when the transmembrane concentration gradients for Na+, Cl-, Ca2+, and K+ were individually altered. Substitution of impermeant organic ions for Na+ or Cl- did not block either the hyperpolarization or the decrease in [Ca2+]i induced by somatostatin. Decreasing extracellular Ca2+ from 1 mM to 250 nM abolished the reduction in [Ca2+]i but did not prevent the hyperpolarization response. These results show that hyperpolarization was not primarily due to changes in the conductances of Na+, Cl-, or Ca2+. Although the somatostatin-induced decrease in [Ca2+]i did require Ca2+ influx, it was independent of changes in Na+ or Cl- conductance. In contrast, elevating the extracellular [K+] from 4.6 to 50 mM completely blocked both the somatostatin-induced hyperpolarization and the reduction in [Ca2+]i. Furthermore, hyperpolarization of the cells with gramicidin mimicked the effect of somatostatin to decrease the [Ca2+]i and prevented any additional effect by the hormone. These results indicate that somatostatin increases a K+ conductance, which hyperpolarizes GH4C1 cells, and thereby secondarily decreases Ca2+ influx. Since the somatostatin-induced decrease in [Ca2+]i is independent of changes in intracellular cAMP levels, it may be responsible for somatostatin inhibition of hormone secretion by its cAMP-independent mechanism.  相似文献   

18.
The ouabain-induced suppression of glutamine synthesis and retention in incubating rat brain cortex slices was found to be mimicked by changes in the cationic content of the incubation medium, which cause an increase in the intracellular [Na+] and a decrease in the intracellular [K+]. The suppression of glutamine synthesis (and fixation of ammonia) was also found to take place when Ca2+ was omitted from the incubation medium. This occurred whether endogenous or exogenous glutamate was the substrate for glutamine synthesis. The suppressions cannot be due solely to an effect on glutamate uptake, because the uptake is not markedly affected by these conditions. The results show that Na+, K+, and Ca2+ influence the synthesis and distribution of glutamine in the brain. They suggest that Ca2+ and the Na+, K+ pump may serve a role in regulating the activity of ATP-dependent glutamine synthetase, a key enzyme of the glutamate-glutamine cycle, located in the astrocytes. This may be mediated via a direct effect on the enzyme or through an effect on the production of ATP.  相似文献   

19.
The bacterium Vitreoscilla generates an electrical potential gradient due to sodium ion (delta psi Na+) across its membrane via respiratory-driven primary Na+ pump(s). The role of the delta psi Na+ as a driving force for ATP synthesis was, therefore, investigated. In respiring starved cells pulsed with 100 mM external Na+ [( Na+]o) there was a 167% net increase in cellular ATP concentration over basal levels compared with 0, 56, 78, and 78% for no addition, choline, Li+, and K+ controls, respectively. Doubling the [Na+]o to 200 mM boosted the net increase to 244% but a similar doubling of the choline caused only an increase to 78%. When the initial condition was intracellular Na+ ([Na+]i) = [Na+]o = 100 mM, there was a 94% net increase in cellular ATP compared with only 18 and 11% for Li+ and K+ controls, respectively, indicating that Nai+ may be the only cation tested that the cells extruded to generate the electrochemical gradient required to drive ATP synthesis. The Na(+)-dependent ATP synthesis was inhibited completely by monensin (12 microM), but only transiently by the protonophore 3,5-di-tert-butyl-4-hydroxybenzaldehyde (100 microM), further evidence that the Na+ gradient and not a H+ gradient was driving the ATP synthesis. ATP synthesis in response to an artificially imposed H+ gradient (delta pH approximately 3) in the absence of an added cation, or in the presence of Li+, K+, or choline, yielded similar delta ATP/delta pH ratios of 0.98-1.22. In the presence of Na+, however, this ratio dropped to 0.23, indicating that Na+ inhibited H(+)-coupling to ATP synthesis and possibly that H+ and Na+ coupling to ATP synthesis share a common catalyst. The above evidence adds to previous findings that under normal growth conditions Na+ is probably the main coupling cation for ATP synthesis in Vitreoscilla.  相似文献   

20.
The Gibbs-Donnan near-equilibrium system of heart   总被引:3,自引:0,他引:3  
The gradients of the major inorganic ions across the plasma membrane of heart were examined to determine the factors controlling the extent and direction of the changes induced during injury, certain diseases, and electrolyte disturbances. The ionic environment was altered by changing only the concentration of inorganic phosphate, [sigma Pi]o, from 0 to 1.2 to 5 mM in the Krebs-Henseleit buffer perfusing working rat hearts. Raising [sigma Pi]o from 1.2 to 5 mM resulted in a decrease in total Mg2+ content and calculated free cytosolic [Mg2+] from 0.44 to 0.04 mM, conversion of 4 mmol of MgATP2- to ATP4- and a decrease in measured intracellular [Cl-]i from 41 to 16 mM. At all levels of [sigma Pi]o, both the [Na+]i and [K+]i were invariant at about 3 mM and 130 mM, respectively, as was the energy of hydrolysis of the terminal phosphate bond of sigma ATP, delta GATP Hydr, of -13.2 kcal/mol. The relationship maintained between the ions on both sides of the plasma membrane by the 3Na+/2K(+)transporting ATPase (EC 3.6.1.37) and an open K+ channel was: (formula; see text) The energy of the gradients of the other inorganic ions across the plasma membrane, delta G[ion]o/i, exhibited three distinct quanta of energy derived from the prime quantum of delta GATP Hydr of -13.2 kcal/mol. The second quantum was about one-third of delta GATP Hydr or +/- 4.4 kcal/mol and comprised the delta G[Na+]o/i, delta G[Mg2+]o/i, and delta G[HPO42-]o/i. These results indicated near-equilibrium was achieved by the reactants of the 3Na+/2K(+)-ATPase, the K+ channel, the Na(+)-Pi co-transporter, and a postulated net Mg2+/H2PO4- exchanger. The third quantum was one-third of delta G[Na+]o/i or about +/- 1.5 kcal/mol and comprised delta G[H+]o/i, delta G[HCO3-]o/i, and delta G[Cl-]o/i. The delta G[K+]o/i was 0, indicating near-equilibrium between the chemical energy of [K+]o/i and the E across the plasma membrane of -83 mV. It is concluded that the gradients of the major inorganic ions across the plasma membrane and the potential across that membrane constitute a Gibbs-Donnan equilibrium system catalyzed by transport enzymes sharing common substrates. The chemical and electrical energies of those gradients are equal in magnitude and opposite in sign to the chemical energy of ATP hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号