首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a novel and robust approach for automatic and unsupervised simultaneous nuclear Overhauser effect (NOE) assignment and structure determination within the CS-Rosetta framework. Starting from unassigned peak lists and chemical shift assignments, autoNOE-Rosetta determines NOE cross-peak assignments and generates structural models. The approach tolerates incomplete and raw NOE peak lists as well as incomplete or partially incorrect chemical shift assignments, and its performance has been tested on 50 protein targets ranging from 50 to 200 residues in size. We find a significantly improved performance compared to established programs, particularly for larger proteins and for NOE data obtained on perdeuterated protein samples. X-ray crystallographic structures allowed comparison of Rosetta and conventional, PDB-deposited, NMR models in 20 of 50 test cases. The unsupervised autoNOE-Rosetta models were often of significantly higher accuracy than the corresponding expert-supervised NMR models deposited in the PDB. We also tested the method with unrefined peak lists and found that performance was nearly as good as for refined peak lists. Finally, demonstrating our method’s remarkable robustness against problematic input data, we provided correct models for an incorrect PDB-deposited NMR solution structure.  相似文献   

2.
NMR studies of large proteins have gathered much interest in recent years, especially after methyl-transverse relaxation optimized spectroscopy was successfully applied to systems as large as ~1 MDa in molecular weight. However, to fully take advantage of these spectra, there is a need for convenient and robust methods for making resonance assignments rapidly. Here, we present an improved version of our program MAP-XS (methyl assignment prediction from X-ray structure) for the automatic assignment of methyl peaks, based on nuclear Overhauser effects (NOE) correlations and chemical shifts together with available structures. No manual analysis of the NOE data is needed in this new version, which helps to further accelerate the assignment process. A refined algorithm as well as more efficient sampling produces results from single runs of MAP-XSII using unanalyzed NOE data are comparable to those achieved by the old version using manually curated data with every NOE peak correctly attributed to the two related methyl peaks; in addition, checking the results from multiple parallel runs against each other provides an effective mechanism for getting rid of the wrong assignments while keeping the correct ones, which significantly improves the reliability of final assignments. The new program is tested against three different proteins and delivers ~95 % correct assignments; positive results are also achieved for tests using different cut-off distances for NOEs, structures of lower resolutions, and ambiguous residue types.  相似文献   

3.
Protein structure determination by NMR can in principle be speeded up both by reducing the measurement time on the NMR spectrometer and by a more efficient analysis of the spectra. Here we study the reliability of protein structure determination based on a single type of spectra, namely nuclear Overhauser effect spectroscopy (NOESY), using a fully automated procedure for the sequence-specific resonance assignment with the recently introduced FLYA algorithm, followed by combined automated NOE distance restraint assignment and structure calculation with CYANA. This NOESY-FLYA method was applied to eight proteins with 63–160 residues for which resonance assignments and solution structures had previously been determined by the Northeast Structural Genomics Consortium (NESG), and unrefined and refined NOESY data sets have been made available for the Critical Assessment of Automated Structure Determination of Proteins by NMR project. Using only peak lists from three-dimensional 13C- or 15N-resolved NOESY spectra as input, the FLYA algorithm yielded for the eight proteins 91–98 % correct backbone and side-chain assignments if manually refined peak lists are used, and 64–96 % correct assignments based on raw peak lists. Subsequent structure calculations with CYANA then produced structures with root-mean-square deviation (RMSD) values to the manually determined reference structures of 0.8–2.0 Å if refined peak lists are used. With raw peak lists, calculations for 4 proteins converged resulting in RMSDs to the reference structure of 0.8–2.8 Å, whereas no convergence was obtained for the four other proteins (two of which did already not converge with the correct manual resonance assignments given as input). These results show that, given high-quality experimental NOESY peak lists, the chemical shift assignments can be uncovered, without any recourse to traditional through-bond type assignment experiments, to an extent that is sufficient for calculating accurate three-dimensional structures.  相似文献   

4.
Recently developed methods to measure distances in proteins with high accuracy by “exact” nuclear Overhauser effects (eNOEs) make it possible to determine stereospecific assignments, which are particularly important to fully exploit the accuracy of the eNOE distance measurements. Stereospecific assignments are determined by comparing the eNOE-derived distances to protein structure bundles calculated without stereospecific assignments, or an independently determined crystal structure. The absolute and relative CYANA target function difference upon swapping the stereospecific assignment of a diastereotopic group yields the respective stereospecific assignment. We applied the method to the eNOE data set that has recently been obtained for the third immunoglobulin-binding domain of protein G (GB3). The 884 eNOEs provide relevant data for 47 of the total of 75 diastereotopic groups. Stereospecific assignments could be established for 45 diastereotopic groups (96 %) using the X-ray structure, or for 27 diastereotopic groups (57 %) using structures calculated with the eNOE data set without stereospecific assignments, all of which are in agreement with those determined previously. The latter case is relevant for structure determinations based on eNOEs. The accuracy of the eNOE distance measurements is crucial for making stereospecific assignments because applying the same method to the traditional NOE data set for GB3 with imprecise upper distance bounds yields only 13 correct stereospecific assignments using the X-ray structure or 2 correct stereospecific assignments using NMR structures calculated without stereospecific assignments.  相似文献   

5.
Eukaryotic proteins with important biological function can be partially unstructured, conformational flexible, or heterogenic. Crystallization trials often fail for such proteins. In NMR spectroscopy, parts of the polypeptide chain undergoing dynamics in unfavorable time regimes cannot be observed. De novo NMR structure determination is seriously hampered when missing signals lead to an incomplete chemical shift assignment resulting in an information content of the NOE data insufficient to determine the structure ab initio. We developed a new protein structure determination strategy for such cases based on a novel NOE assignment strategy utilizing a number of model structures but no explicit reference structure as it is used for bootstrapping like algorithms. The software distinguishes in detail between consistent and mutually exclusive pairs of possible NOE assignments on the basis of different precision levels of measured chemical shifts searching for a set of maximum number of consistent NOE assignments in agreement with 3D space. Validation of the method using the structure of the low molecular‐weight‐protein tyrosine phosphatase A (MptpA) showed robust results utilizing protein structures with 30–45% sequence identity and 70% of the chemical shift assignments. About 60% of the resonance assignments are sufficient to identify those structural models with highest conformational similarity to the real structure. The software was benchmarked by de novo solution structures of fibroblast growth factor 21 (FGF21) and the extracellular fibroblast growth factor receptor domain FGFR4 D2, which both failed in crystallization trials and in classical NMR structure determination. Proteins 2013; 81:2007–2022. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Combined automated NOE assignment and structure determination module (CANDID) is a new software for efficient NMR structure determination of proteins by automated assignment of the NOESY spectra. CANDID uses an iterative approach with multiple cycles of NOE cross-peak assignment and protein structure calculation using the fast DYANA torsion angle dynamics algorithm, so that the result from each CANDID cycle consists of exhaustive, possibly ambiguous NOE cross-peak assignments in all available spectra and a three-dimensional protein structure represented by a bundle of conformers. The input for the first CANDID cycle consists of the amino acid sequence, the chemical shift list from the sequence-specific resonance assignment, and listings of the cross-peak positions and volumes in one or several two, three or four-dimensional NOESY spectra. The input for the second and subsequent CANDID cycles contains the three-dimensional protein structure from the previous cycle, in addition to the complete input used for the first cycle. CANDID includes two new elements that make it robust with respect to the presence of artifacts in the input data, i.e. network-anchoring and constraint-combination, which have a key role in de novo protein structure determinations for the successful generation of the correct polypeptide fold by the first CANDID cycle. Network-anchoring makes use of the fact that any network of correct NOE cross-peak assignments forms a self-consistent set; the initial, chemical shift-based assignments for each individual NOE cross-peak are therefore weighted by the extent to which they can be embedded into the network formed by all other NOE cross-peak assignments. Constraint-combination reduces the deleterious impact of artifact NOE upper distance constraints in the input for a protein structure calculation by combining the assignments for two or several peaks into a single upper limit distance constraint, which lowers the probability that the presence of an artifact peak will influence the outcome of the structure calculation. CANDID test calculations were performed with NMR data sets of four proteins for which high-quality structures had previously been solved by interactive protocols, and they yielded comparable results to these reference structure determinations with regard to both the residual constraint violations, and the precision and accuracy of the atomic coordinates. The CANDID approach has further been validated by de novo NMR structure determinations of four additional proteins. The experience gained in these calculations shows that once nearly complete sequence-specific resonance assignments are available, the automated CANDID approach results in greatly enhanced efficiency of the NOESY spectral analysis. The fact that the correct fold is obtained in cycle 1 of a de novo structure calculation is the single most important advance achieved with CANDID, when compared with previously proposed automated NOESY assignment methods that do not use network-anchoring and constraint-combination.  相似文献   

7.
The use of standard 2D NMR experiments in combination with 1D NOE experiments allowed the assignment of 51 of the 58 spin systems of oxidised [3Fe-4S] ferredoxin isolated from Desulfovibrio gigas. The NMR solution structure was determined using data from 1D NOE and 2D NOESY spectra, as distance constraints, and information from the X-ray structure for the spin systems not detected by NMR in torsion angle dynamics calculations to produce a family of 15 low target function structures. The quality of the NMR family, as judged by the backbone r.m.s.d. values, was good (0.80?Å), with the majority of φ/ψ angles falling within the allowed region of the Ramachandran plot. A comparison with the X-ray structure indicated that the overall global fold is very similar in solution and in the solid state. The determination of the solution structure of ferredoxin II (FdII) in the oxidised state (FdIIox) opens the way for the determination of the solution structure of the redox intermediate state of FdII (FdIIint), for which no X-ray structure is available.  相似文献   

8.
One bottleneck in NMR structure determination lies in the laborious and time-consuming process of side-chain resonance and NOE assignments. Compared to the well-studied backbone resonance assignment problem, automated side-chain resonance and NOE assignments are relatively less explored. Most NOE assignment algorithms require nearly complete side-chain resonance assignments from a series of through-bond experiments such as HCCH-TOCSY or HCCCONH. Unfortunately, these TOCSY experiments perform poorly on large proteins. To overcome this deficiency, we present a novel algorithm, called Nasca (NOE Assignment and Side-Chain Assignment), to automate both side-chain resonance and NOE assignments and to perform high-resolution protein structure determination in the absence of any explicit through-bond experiment to facilitate side-chain resonance assignment, such as HCCH-TOCSY. After casting the assignment problem into a Markov Random Field (MRF), Nasca extends and applies combinatorial protein design algorithms to compute optimal assignments that best interpret the NMR data. The MRF captures the contact map information of the protein derived from NOESY spectra, exploits the backbone structural information determined by RDCs, and considers all possible side-chain rotamers. The complexity of the combinatorial search is reduced by using a dead-end elimination (DEE) algorithm, which prunes side-chain resonance assignments that are provably not part of the optimal solution. Then an A* search algorithm is employed to find a set of optimal side-chain resonance assignments that best fit the NMR data. These side-chain resonance assignments are then used to resolve the NOE assignment ambiguity and compute high-resolution protein structures. Tests on five proteins show that Nasca assigns resonances for more than 90% of side-chain protons, and achieves about 80% correct assignments. The final structures computed using the NOE distance restraints assigned by Nasca have backbone RMSD 0.8–1.5 Å from the reference structures determined by traditional NMR approaches.  相似文献   

9.
10.
X-ray diffraction and nuclear magnetic resonance spectroscopy (NMR) are the staple methods for revealing atomic structures of proteins. Since crystals of biomolecular assemblies and membrane proteins often diffract weakly and such large systems encroach upon the molecular tumbling limit of solution NMR, new methods are essential to extend structures of such systems to high resolution. Here we present a method that incorporates solid-state NMR restraints alongside of X-ray reflections to the conventional model building and refinement steps of structure calculations. Using the 3.7 Å crystal structure of the integral membrane protein complex DsbB-DsbA as a test case yielded a significantly improved backbone precision of 0.92 Å in the transmembrane region, a 58% enhancement from using X-ray reflections alone. Furthermore, addition of solid-state NMR restraints greatly improved the overall quality of the structure by promoting 22% of DsbB transmembrane residues into the most favored regions of Ramachandran space in comparison to the crystal structure. This method is widely applicable to any protein system where X-ray data are available, and is particularly useful for the study of weakly diffracting crystals.  相似文献   

11.
The automation of protein structure determination using NMR is coming of age. The tedious processes of resonance assignment, followed by assignment of NOE (nuclear Overhauser enhancement) interactions (now intertwined with structure calculation), assembly of input files for structure calculation, intermediate analyses of incorrect assignments and bad input data, and finally structure validation are all being automated with sophisticated software tools. The robustness of the different approaches continues to deal with problems of completeness and uniqueness; nevertheless, the future is very bright for automation of NMR structure generation to approach the levels found in X-ray crystallography. Currently, near completely automated structure determination is possible for small proteins, and the prospect for medium-sized and large proteins is good.  相似文献   

12.
Reliable automated NOE assignment and structure calculation on the basis of a largely complete, assigned input chemical shift list and a list of unassigned NOESY cross peaks has recently become feasible for routine NMR protein structure calculation and has been shown to yield results that are equivalent to those of the conventional, manual approach. However, these algorithms rely on the availability of a virtually complete list of the chemical shifts. This paper investigates the influence of incomplete chemical shift assignments on the reliability of NMR structures obtained with automated NOESY cross peak assignment. The program CYANA was used for combined automated NOESY assignment with the CANDID algorithm and structure calculations with torsion angle dynamics at various degrees of completeness of the chemical shift assignment which was simulated by random omission of entries in the experimental 1H chemical shift lists that had been used for the earlier, conventional structure determinations of two proteins. Sets of structure calculations were performed choosing the omitted chemical shifts randomly among all assigned hydrogen atoms, or among aromatic hydrogen atoms. For comparison, automated NOESY assignment and structure calculations were performed with the complete experimental chemical shift but under random omission of NOESY cross peaks. When heteronuclear-resolved three-dimensional NOESY spectra are available the current CANDID algorithm yields in the absence of up to about 10% of the experimental 1H chemical shifts reliable NOE assignments and three-dimensional structures that deviate by less than 2 Å from the reference structure obtained using all experimental chemical shift assignments. In contrast, the algorithm can accommodate the omission of up to 50% of the cross peaks in heteronuclear- resolved NOESY spectra without producing structures with a RMSD of more than 2 Å to the reference structure. When only homonuclear NOESY spectra are available, the algorithm is slightly more susceptible to missing data and can tolerate the absence of up to about 7% of the experimental 1H chemical shifts or of up to 30% of the NOESY peaks.Abbreviations: BmPBPA – Bombyx mori pheromone binding protein form A; CYANA – combined assignment and dynamics algorithm for NMR applications; NMR – nuclear magnetic resonance; NOE – nuclear Overhauser effect; NOESY – NOE spectroscopy; RMSD – root-mean-square deviation; WmKT – Williopsis mrakii killer toxin  相似文献   

13.
The structure in solution of crambin, a small protein of 46 residues, has been determined from 2D NMR data using an iterative relaxation matrix approach (IRMA) together with distance geometry, distance bound driven dynamics, molecular dynamics, and energy minimization. A new protocol based on an “ensemble” approach is proposed and compared to the more standard initial rate analysis approach and a “single structure” relaxation matrix approach. The effects of fast local motions are included and R-factor calculations are performed on NOE build-ups to describe the quality of agreement between theory and experiment. A new method for stereospecific assignment of prochiral groups, based on a comparison of theoretical and experimental NOE intensities, has been applied. The solution structure of crambin could be determined with a precision (rmsd from the average structure) of 0.7 Å on backbone atoms and 1.1 Å on all heavy atoms and is largely similar to the crystal structure with a small difference observed in the position of the side chain of Tyr-29 which is determined in solution by both J-coupling and NOE data. Regions of higher structural variability (suggesting higher mobility) are found hi the solution structure, in particular for the loop between the two helices (Gly-20 to Pro-22). © 1993 Wiley-Liss, Inc.  相似文献   

14.
A reliable automated approach for assignment of NOESY spectra would allow more rapid determination of protein structures by NMR. In this paper we describe a semi-automated procedure for complete NOESY assignment (SANE, Structure Assisted NOE Evaluation), coupled to an iterative procedure for NMR structure determination where the user is directly involved. Our method is similar to ARIA [Nilges et al. (1997) J. Mol. Biol., 269, 408–422], but is compatible with the molecular dynamics suites AMBER and DYANA. The method is ideal for systems where an initial model or crystal structure is available, but has also been used successfully for ab initio structure determination. Use of this semi-automated iterative approach assists in the identification of errors in the NOE assignments to short-cut the path to an NMR solution structure.  相似文献   

15.
Assignment of nuclear Overhauser effect (NOE) data is a key bottleneck in structure determination by NMR. NOE assignment resolves the ambiguity as to which pair of protons generated the observed NOE peaks, and thus should be restrained in structure determination. In the case of intersubunit NOEs in symmetric homo-oligomers, the ambiguity includes both the identities of the protons within a subunit, and the identities of the subunits to which they belong. This paper develops an algorithm for simultaneous intersubunit NOE assignment and C(n) symmetric homo-oligomeric structure determinations, given the subunit structure. By using a configuration space framework, our algorithm guarantees completeness, in that it identifies structures representing, to within a user-defined similarity level, every structure consistent with the available data (ambiguous or not). However, while our approach is complete in considering all conformations and assignments, it avoids explicit enumeration of the exponential number of combinations of possible assignments. Our algorithm can draw two types of conclusions not possible under previous methods: (1) that different assignments for an NOE would lead to different structural classes, or (2) that it is not necessary to uniquely assign an NOE, since it would have little impact on structural precision. We demonstrate on two test proteins that our method reduces the average number of possible assignments per NOE by a factor of 2.6 for MinE and 4.2 for CCMP. It results in high structural precision, reducing the average variance in atomic positions by factors of 1.5 and 3.6, respectively.  相似文献   

16.
The recent expansion of structural genomics has increased the demands for quick and accurate protein structure determination by NMR spectroscopy. The conventional strategy without an automated protocol can no longer satisfy the needs of high-throughput application to a large number of proteins, with each data set including many NMR spectra, chemical shifts, NOE assignments, and calculated structures. We have developed the new software KUJIRA, a package of integrated modules for the systematic and interactive analysis of NMR data, which is designed to reduce the tediousness of organizing and manipulating a large number of NMR data sets. In combination with CYANA, the program for automated NOE assignment and structure determination, we have established a robust and highly optimized strategy for comprehensive protein structure analysis. An application of KUJIRA in accordance with our new strategy was carried out by a non-expert in NMR structure analysis, demonstrating that the accurate assignment of the chemical shifts and a high-quality structure of a small protein can be completed in a few weeks. The high completeness of the chemical shift assignment and the NOE assignment achieved by the systematic analysis using KUJIRA and CYANA led, in practice, to increased reliability of the determined structure.  相似文献   

17.
18.
We describe a method for generating moderate to high-resolution protein structures using limited NMR data combined with the ab initio protein structure prediction method Rosetta. Peptide fragments are selected from proteins of known structure based on sequence similarity and consistency with chemical shift and NOE data. Models are built from these fragments by minimizing an energy function that favors hydrophobic burial, strand pairing, and satisfaction of NOE constraints. Models generated using this procedure with 1 NOE constraint per residue are in some cases closer to the corresponding X-ray structures than the published NMR solution structures. The method requires only the sparse constraints available during initial stages of NMR structure determination, and thus holds promise for increasing the speed with which protein solution structures can be determined.  相似文献   

19.
Summary A strategy is presented for the semiautomated assignment and 3D structure determination of proteins from heteronuclear multidimensional Nuclear Magnetic Resonance (NMR) data. This approach involves the computer-based assignment of the NMR signals, identification of distance restraints from nuclear Overhauser effects, and generation of 3D structures by using the NMR-derived restraints. The protocol is described in detail and illustrated on a resonance assignment and structure determination of the FK506 binding protein (FKBP, 107 amino acids) complexed to the immunosuppressant, ascomycin. The 3D structures produced from this automated protocol attained backbone and heavy atom rmsd of 1.17 and 1.69 Å, respectively. Although more highly resolved structures of the complex have been obtained by standard interpretation of NMR data (Meadows et al. (1993) Biochemistry, 32, 754–765), the structures generated with this automated protocol required minimal manual intervention during the spectral assignment and 3D structure calculations stages. Thus, the protocol may yield an approximate order of magnitude reduction in the time required for the generation of 3D structures of proteins from NMR data.  相似文献   

20.
Novel algorithms are presented for automated NOESY peak picking and NOE signal identification in homonuclear 2D and heteronuclear-resolved 3D [1H,1H]-NOESY spectra during de novoprotein structure determination by NMR, which have been implemented in the new software ATNOS (automated NOESY peak picking). The input for ATNOS consists of the amino acid sequence of the protein, chemical shift lists from the sequence-specific resonance assignment, and one or several 2D or 3D NOESY spectra. In the present implementation, ATNOS performs multiple cycles of NOE peak identification in concert with automated NOE assignment with the software CANDID and protein structure calculation with the program DYANA. In the second and subsequent cycles, the intermediate protein structures are used as an additional guide for the interpretation of the NOESY spectra. By incorporating the analysis of the raw NMR data into the process of automated de novoprotein NMR structure determination, ATNOS enables direct feedback between the protein structure, the NOE assignments and the experimental NOESY spectra. The main elements of the algorithms for NOESY spectral analysis are techniques for local baseline correction and evaluation of local noise level amplitudes, automated determination of spectrum-specific threshold parameters, the use of symmetry relations, and the inclusion of the chemical shift information and the intermediate protein structures in the process of distinguishing between NOE peaks and artifacts. The ATNOS procedure has been validated with experimental NMR data sets of three proteins, for which high-quality NMR structures had previously been obtained by interactive interpretation of the NOESY spectra. The ATNOS-based structures coincide closely with those obtained with interactive peak picking. Overall, we present the algorithms used in this paper as a further important step towards objective and efficient de novoprotein structure determination by NMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号