首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cai S  Zheng X  Dong X 《Journal of bacteriology》2011,193(19):5199-5206
Previously, we found that exoglucanase Cel48A from Cellulosilyticum ruminicola H1 bound intensively to Avicel; however, no known carbohydrate-binding module (CBM) was observed in the protein. Bioinformatics suggested that a C-terminal fragment of 127 amino acids, named the Cellulosilyticum-specific paralogous module (CPM), could function in binding. CPM-appended proteins are all putative (hemi)cellulases from Cellulosilyticum spp. In the present work, we demonstrated that Cel48A without the CPM retained only exoglucanase activity and lost the Avicel-binding ability, while the isolated CPM exhibited a high affinity for Avicel. In addition, the CPM bound to chitin, but not to soluble polysaccharides, making it a type A CBM, which binds only insoluble polysaccharides. Phylogenetic analysis clustered the CPM and its homologs as a separate branch that was distantly related to CBM subfamilies 3a (28% identity), 3b (24% identity), and 3c (21% identity). Sequence alignment revealed distinct secondary structures of the new CBM 3 group, in particular, a conserved Pro66-Trp67 insert preceding strand β4', a deletion preceding strand β6, and incomplete strands β8 and β9. An alanine scan for six aromatic and three nonaromatic amino acid residues (D66, P66, and R111) by site-directed mutagenesis determined that Phe62, Pro66, Trp67, Tyr68, Arg111, and Trp117 were the functional residues for binding. Among them, Phe62, Pro66, and Trp67 were the newly determined key sites in the CPM for binding. Three-dimensional homolog modeling revealed two types of substrate-binding sites, planar and groove, in the CPM. Thus, a new subfamily, CBM family 3d, is proposed.  相似文献   

2.
Over a thousand individual Fibronectin type III (FnIII) domain sequences, extracted from more than 60 different FnIII-dependent protein super-structures, were downloaded from curated database resources. Three regions of extreme sequence conservation within the well-characterized FnIII β-sandwich structure were respectively defined by near absolute conservation of a tryptophan (Trp) in β-strand-B, tyrosines (Tyr) in both β-strand-C and β-strand-F, and a leucine (Leu) residue in the unstructured region immediately preceding β-strand-F. Employing these four conserved landmarks, the entire FnIII sequence dataset was vertically registered to align the three conserved regions, and the cumulative distribution of all other amino acid functionality was determined and plotted relative to these landmark residues. Conserved aromatic sites were each found to be flanked by aliphatic residues that assure localization of these sites to the inaccessible hydrophobic interface between major sheet structures. Mapping the location of conserved aromatic sites in numerous PDB structures demonstrated the consistent pair-wise co-localization of the indole side-chain of the conserved strand-B Trp site to within 0.35 nm of the phenolic side-chain of the strand-C Tyr site located 8–14 amino acids distal. Likewise, the side-chain of the strand-F Tyr site co-localized to within 0.45 nm of the aliphatic side-chain of the conserved Leu that uniformly precedes it by six residues. While classic hydropathy-based theories would deem the “burying” of Tyr and Trp side-chains and/or their association with hydrophobic FnIII core residues thermodynamically unnecessary, alternative contributions of conserved Trp and Tyr residues, and particularly the role of the absolutely conserved tyrosine phenolic –OH in native FnIII structure–function are considered. A more global role for conserved FnIII aromaticity is also discussed in light of the aromatic conservation observed in other well-established protein families.  相似文献   

3.
The covalent attachment of the heme cofactor in c-type cytochromes is a surprisingly complex process, which in bacteria involves a number of different proteins. Among the latter, the ccmE gene product is known to perform a key role in the heme delivery pathway in Gram-negative bacteria. The solution structure of the soluble domain of apo-CcmE from Shewanella putrefaciens was determined through NMR spectroscopy on a 13C,15N-labeled sample. The structure is characterized by a compact core with large regions of beta structure, while the N-terminal and C-terminal regions are essentially unstructured. The overall folding is similar to that of the so-called oligo-binding proteins (OB fold). Solvent-exposed aromatic residues, conserved in all CcmE homologues, have been found in the proximity of His131, the putative heme-binding residue, that could have a role in the interaction with heme. No interaction between CcmE and heme, as well as between CcmE and holocytochrome c, could be detected in vitro by electronic spectroscopy or by NMR. The data available suggest that the heme transfer process is likely to involve a heterooligomeric protein complex and occur under a tight enzymatic control.  相似文献   

4.
5.
Plant biomass holds a promise for the production of second-generation ethanol via enzymatic hydrolysis, but its utilization as a biofuel resource is currently limited to a large extent by the cost and low efficiency of the cellulolytic enzymes. Considerable efforts have been dedicated to elucidate the mechanisms of the enzymatic process. It is well known that most cellulases possess a catalytic core domain and a carbohydrate binding module (CBM), without which the enzymatic activity can be drastically reduced. However, Cel12A members of the glycosyl hydrolases family 12 (GHF12) do not bear a CBM and yet are able to hydrolyze amorphous cellulose quite efficiently. Here, we use X-ray crystallography and molecular dynamics simulations to unravel the molecular basis underlying the catalytic capability of endoglucanase 3 from Trichoderma harzianum (ThEG3), a member of the GHF12 enzymes that lacks a CBM. A comparative analysis with the Cellulomonas fimi CBM identifies important residues mediating interactions of EG3s with amorphous regions of the cellulose. For instance, three aromatic residues constitute a harboring wall of hydrophobic contacts with the substrate in both ThEG3 and CfCBM structures. Moreover, residues at the entrance of the active site cleft of ThEG3 are identified, which might hydrogen bond to the substrate. We advocate that the ThEG3 residues Asn152 and Glu201 interact with the substrate similarly to the corresponding CfCBM residues Asn81 and Arg75. Altogether, these results show that CBM motifs are incorporated within the ThEG3 catalytic domain and suggest that the enzymatic efficiency is associated with the length and position of the substrate chain, being higher when the substrate interact with the aromatic residues at the entrance of the cleft and the catalytic triad. Our results provide guidelines for rational protein engineering aiming to improve interactions of GHF12 enzymes with cellulosic substrates.  相似文献   

6.
The green tea compound epigallocatechin-3-gallate (EGCG) inhibits Alzheimer's disease β-amyloid peptide (Aβ) neurotoxicity. Solution-state NMR allows probing initial EGCG-Aβ interactions. We show that EGCG-induced Aβ oligomers adopt a well-defined structure and are amenable for magic angle spinning solid-state NMR investigations. We find that EGCG interferes with the aromatic hydrophobic core of Aβ. The C-terminal part of the Aβ peptide (residues 22-39) adopts a β-sheet conformation, whereas the N-terminus (residues 1-20) is unstructured. The characteristic salt bridge involving residues D23 and K28 is present in the structure of these oligomeric Aβ aggregates as well. The structural analysis of small-molecule-induced amyloid aggregates will open new perspectives for Alzheimer's disease drug development.  相似文献   

7.
We present a new approach to visualizing and quantifying the displacement of segments of Pseudomonas aeruginosa azurin in the early stages of denaturation. Our method is based on a geometrical method developed previously by the authors, and elaborated extensively for azurin. In this study, we quantify directional changes in three α-helical regions, two regions having β-strand residues, and three unstructured regions of azurin. Snapshots of these changes as the protein unfolds are displayed and described quantitatively by introducing a scaling diagnostic. In accord with molecular dynamics simulations, we show that the long α-helix in azurin (residues 54–67) is displaced from the polypeptide scaffolding and then pivots first in one direction, and then in the opposite direction as the protein continues to unfold. The two β-strand chains remain essentially intact and, except in the earliest stages, move in tandem. We show that unstructured regions 72–81 and 84–91, hinged by β-strand residues 82–83, pivot oppositely. The region comprising residues 72–91 (40 % hydrophobic and 16 % of the 128 total residues) forms an effectively stationary region that persists as the protein unfolds. This static behavior is a consequence of a dynamic balance between the competing motion of two segments, residues 72–81 and 84–91.  相似文献   

8.
We have performed a statistical analysis of unstructured amino acid residues in protein structures available in the databank of protein structures. Data on the occurrence of disordered regions at the ends and in the middle part of protein chains have been obtained: in the regions near the ends (at distance less than 30 residues from the N- or C-terminus), there are 66% of unstructured residues (38% are near the N-terminus and 28% are near the C-terminus), although these terminal regions include only 23% of the amino acid residues. The frequencies of occurrence of unstructured residues have been calculated for each of 20 types in different positions in the protein chain. It has been shown that relative frequencies of occurrence of unstructured residues of 20 types at the termini of protein chains differ from the ones in the middle part of the protein chain; amino acid residues of the same type have different probabilities to be unstructured in the terminal regions and in the middle part of the protein chain. The obtained frequencies of occurrence of unstructured residues in the middle part of the protein chain have been used as a scale for predicting disordered regions from amino acid sequence using the method (FoldUnfold) previously developed by us. This scale of frequencies of occurrence of unstructured residues correlates with the contact scale (previously developed by us and used for the same purpose) at a level of 95%. Testing the new scale on a database of 427 unstructured proteins and 559 completely structured proteins has shown that this scale can be successfully used for the prediction of disordered regions in protein chains.  相似文献   

9.

Background

Secondary structures are elements of great importance in structural biology, biochemistry and bioinformatics. They are broadly composed of two repetitive structures namely α-helices and β-sheets, apart from turns, and the rest is associated to coil. These repetitive secondary structures have specific and conserved biophysical and geometric properties. PolyProline II (PPII) helix is yet another interesting repetitive structure which is less frequent and not usually associated with stabilizing interactions. Recent studies have shown that PPII frequency is higher than expected, and they could have an important role in protein – protein interactions.

Methodology/Principal Findings

A major factor that limits the study of PPII is that its assignment cannot be carried out with the most commonly used secondary structure assignment methods (SSAMs). The purpose of this work is to propose a PPII assignment methodology that can be defined in the frame of DSSP secondary structure assignment. Considering the ambiguity in PPII assignments by different methods, a consensus assignment strategy was utilized. To define the most consensual rule of PPII assignment, three SSAMs that can assign PPII, were compared and analyzed. The assignment rule was defined to have a maximum coverage of all assignments made by these SSAMs. Not many constraints were added to the assignment and only PPII helices of at least 2 residues length are defined.

Conclusions/Significance

The simple rules designed in this study for characterizing PPII conformation, lead to the assignment of 5% of all amino as PPII. Sequence – structure relationships associated with PPII, defined by the different SSAMs, underline few striking differences. A specific study of amino acid preferences in their N and C-cap regions was carried out as their solvent accessibility and contact patterns. Thus the assignment of PPII can be coupled with DSSP and thus opens a simple way for further analysis in this field.  相似文献   

10.
Glycoside hydrolase (GH) family 13 comprises about 30 different specificities. Four of them have been proposed to form the GH13 pullulanase subfamily: pullulanase, isoamylase, maltooligosyl trehalohydrolase and branching enzyme forming the seven CAZy GH13 subfamilies: GH13 8-GH13 14. Recently, a new family of carbohydrate-binding modules (CBMs), the family CBM48 has been established containing the putative starch-binding domains from the pullulanase subfamily, the β-subunit of AMP-activated protein kinase and some other GH13 enzymes with pullulanase and/or α-amylase-pullulanase specificity. Since all of these enzymes are multidomain proteins and the structure for at least one representative of each enzyme specificity has already been determined, the main goal of the present study was to elucidate domain evolution within this GH13 pullulanase subfamily (84 real enzymes) focusing on the CBM48 module. With regard to CBM48 positioning in the amino acid sequence, the N-terminal end of a protein appears to be a predominant position. This is especially true for isoamylases and maltooligosyl trehalohydrolases. Secondary structure-based alignment of CBM modules from CBM48, CBM20 and CBM21 revealed that several residues known as consensus for CBM20 and CBM21 could also be identified in CBM48, but only branching enzymes possess the aromatic residues that correspond with the two tryptophans forming the evolutionary conserved starch-binding site 1 in CBM20. The evolutionary trees constructed for the individual domains, complete alignment, and the conserved sequence regions of the α-amylase family were found to be comparable to each other (except for the C-domain tree) with two basic parts: (i) branching enzymes and maltooligosyl trehalohydrolases; and (ii) pullulanases and isoamylases. Taxonomy was respected only within clusters with pure specificity, i.e. the evolution of CBM48 reflects the evolution of specificities rather than evolution of species. This is a feature different from the one observed for the starch-binding domain of the family CBM20 where the starch-binding domain evolution reflects the evolution of species.  相似文献   

11.
Y Q Feng  A J Wand  S G Sligar 《Biochemistry》1991,30(31):7711-7717
The 1H and 15N resonances of uniformly enriched apocytochrome b562 (106 residues) have been assigned. The assignment work began with the identification of the majority of HN-H alpha-H beta subspin systems in two-dimensional DQF-COSY and TOCSY spectra of unlabeled protein in D2O and in 95% H2O/5% D2O buffer. Intraresidue and interresidue NOE connectivities were then searched for in two-dimensional homonuclear NOESY spectra recorded on unlabeled protein and in the three-dimensional NOESY-HMQC spectrum recorded on uniformly 15N-enriched protein. Those data, combined with the main-chain-directed assignment strategy (MCD), led to the assignment of the main-chain and many side-chain resonances of 103 of the 106 residues. Qualitatively, the helical conformation is found to be the dominant secondary structure in apocytochrome b562 as it is in holocytochrome b562. The helical segments in apocytochrome b562 overlap extensively with the helical regions defined in the crystal structure of ferricytochrome b562. In addition, a number of tertiary NOEs have been identified which indicate that the global fold of the apoprotein at least partially resembles the four-helix bundle of the holoprotein. The results presented here, together with the evidence obtained with other methods [Feng and Sligar (1991) Biochemistry (submitted)], support the notion that the interior of the protein is fluid and may correspond to a molten globule state.  相似文献   

12.
The interactions of proteins with polysaccharides play a key role in the microbial hydrolysis of cellulose and xylan, the most abundant organic molecules in the biosphere, and are thus pivotal to the recycling of photosynthetically fixed carbon. Enzymes that attack these recalcitrant polymers have a modular structure comprising catalytic modules and non-catalytic carbohydrate-binding modules (CBMs). The largest prokaryotic CBM family, CBM2, contains members that bind cellulose (CBM2a) and xylan (CBM2b), respectively. A possible explanation for the different ligand specificity of CBM2b is that one of the surface tryptophans involved in the protein-carbohydrate interaction is rotated by 90 degrees compared with its position in CBM2a (thus matching the structure of the binding site to the helical secondary structure of xylan), which may be promoted by a single amino acid difference between the two families. Here we show that by mutation of this single residue (Arg-262-->Gly), a CBM2b xylan-binding module completely loses its affinity for xylan and becomes a cellulose-binding module. The structural effect of the mutation has been revealed using NMR spectroscopy, which confirms that Trp-259 rotates 90 degrees to lie flat against the protein surface. Except for this one residue, the mutation only results in minor changes to the structure. The mutated protein interacts with cellulose using the same residues that the wild-type CBM2b uses to interact with xylan, suggesting that the recognition is of the secondary structure of the polysaccharide rather than any specific recognition of the absence or presence of functional groups.  相似文献   

13.
The microbial deconstruction of the plant cell wall is a critical biological process, which also provides important substrates for environmentally sustainable industries. Enzymes that hydrolyze the plant cell wall generally contain non-catalytic carbohydrate binding modules (CBMs) that contribute to plant cell wall degradation. Here we report the biochemical properties and crystal structure of a family of CBMs (CBM60) that are located in xylanases. Uniquely, the proteins display broad ligand specificity, targeting xylans, galactans, and cellulose. Some of the CBM60s display enhanced affinity for their ligands through avidity effects mediated by protein dimerization. The crystal structure of vCBM60, displays a β-sandwich with the ligand binding site comprising a broad cleft formed by the loops connecting the two β-sheets. Ligand recognition at site 1 is, exclusively, through hydrophobic interactions, whereas binding at site 2 is conferred by polar interactions between a protein-bound calcium and the O2 and O3 of the sugar. The observation, that ligand recognition at site 2 requires only a β-linked sugar that contains equatorial hydroxyls at C2 and C3, explains the broad ligand specificity displayed by vCBM60. The ligand-binding apparatus of vCBM60 displays remarkable structural conservation with a family 36 CBM (CBM36); however, the residues that contribute to carbohydrate recognition are derived from different regions of the two proteins. Three-dimensional structure-based sequence alignments reveal that CBM36 and CBM60 are related by circular permutation. The biological and evolutionary significance of the mechanism of ligand recognition displayed by family 60 CBMs is discussed.  相似文献   

14.
The loops which connect or flank helices/sheets in protein structures are known to be functionally important. However, ironically they also belong to the part of protein whose structure is least accurately predicted. Here, a new method to isolate and analyze loop regions in protein structure is proposed using the spatial coordinates of the solved three‐dimensional structure. The extent of dispersion among points of successive amino acid residues in the Ramachandran map of protein region is utilized to calculate the Mean Separation between these points in the Ramachandran Plot (MSRP). Based on analysis of 2935 protein secondary structure regions obtained using DSSP software, spanning a range from 2 to 64 residues, taken from a set of 170 proteins, it is shown that helices (MSRP < 17) and strands (MSRP < 64) stand effectively demarcated from the loop regions (MSRP > 130). Analysis of 43 DNA binding and 98 ligand binding proteins revealed several loop regions with clear change in MSRP subsequent to binding. The population of such loops correlated with the magnitude of backbone displacement in the protein subsequent to binding. Can changes in MSRP quantify the temporal oscillations in dihedral angles among structured/unstructured regions in proteins? Molecular dynamics simulations (10 ns) revealed that deviations in MSRP among different snapshots in the trajectory were at least twofold higher for unstructured proteins in comparison with ordered proteins. The above results validate the use of MSRP parameter as a tool to identify and investigate functionally active loops and unstructured regions in protein structures. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
RecQ C-terminal (RQC) domain is known as the main DNA binding module of RecQ helicases such as Bloom syndrome protein (BLM) and Werner syndrome protein (WRN) that recognizes various DNA structures. Even though BLM is able to resolve various DNA structures similarly to WRN, BLM has different binding preferences for DNA substrates from WRN. In this study, we determined the solution structure of the RQC domain of human BLM. The structure shares the common winged-helix motif with other RQC domains. However, half of the N-terminal has unstructured regions (α1–α2 loop and α3 region), and the aromatic side chain on the top of the β-hairpin, which is important for DNA duplex strand separation in other RQC domains, is substituted with a negatively charged residue (D1165) followed by the polar residue (Q1166). The structurally distinctive features of the RQC domain of human BLM suggest that the DNA binding modes of the BLM RQC domain may be different from those of other RQC domains.  相似文献   

16.
4E binding protein 1 (4E-BP1) inhibits translation by binding to the initiation factor eIF4E and is mostly or completely unstructured in both free and bound states. We wished to determine whether the free protein has local structure that could be involved in eIF4E binding. Assignments were obtained using double and triple resonance NMR methods. Residues 4-10, 43-46, and 56-65 could not be assigned, primarily because of a high degree of 1H and 15N chemical shift overlap. Steady-state ¿1H¿-15N NOEs were measured for 45 residues in the assigned regions. Except for the two C-terminal residues, the NOEs were between -0.77 and - 1.14, indicating a high level of flexibility. Furthermore, the ¿1H¿-15N NOE spectrum recorded with presaturation contained no strong positive signals, making it likely that no other residues have positive or smaller negative NOEs. This implies that 4E-BP1 has no regions of local order in the absence of eIF4E. The interaction therefore appears to be an induced fit to a completely disordered protein molecule.  相似文献   

17.
Enzymes that digest plant cell wall polysaccharides generally contain non-catalytic, carbohydrate-binding modules (CBMs) that function by attaching the enzyme to the substrate, potentiating catalytic activity. Here, we present the first structure of a family 35 CBM, derived from the Cellvibrio japonicus beta-1,4-mannanase Man5C. The NMR structure has been determined for both the free protein and the protein bound to mannopentaose. The data show that the protein displays a typical beta-jelly-roll fold. Ligand binding is not located on the concave surface of the protein, as occurs in many CBMs that display the jelly-roll fold, but is formed by the loops that link the two beta-sheets of the protein, similar to family 6 CBMs. In contrast to the majority of CBMs, which are generally rigid proteins, CBM35 undergoes significant conformational change upon ligand binding. The curvature of the binding site and the narrow binding cleft are likely to be the main determinants of binding specificity. The predicted solvent exposure of O6 at several subsites provides an explanation for the observed accommodation of decorated mannans. Two of the key aromatic residues in Man5C-CBM35 that interact with mannopentaose are conserved in mannanase-derived CBM35s, which will guide specificity predictions based on the primary sequence of proteins in this CBM family.  相似文献   

18.
Short contacts of water molecules with the pi-faces of aromatic residues were studied in a set of 75 very high resolution (<1.1 A) protein X-ray crystal structures. For 18 water molecules found at distances to aromatic midpoints <3.5 A, it was attempted to assign the hydrogen bond configuration (without experimental knowledge of the H-atom positions) by inspection of the surrounding. For approximately one-quarter of the cases, evidence for an O-H...pi hydrogen bond was found, another one-quarter does not form such a hydrogen bond, and for the remaining half, no conclusive assignment could be made. The results confirm the relatively frequent occurrence of aromatic hydrogen bonding in biomolecular hydration, but also underline difficulties in hydrogen bond assignment without reliable knowledge of the H-atom positions.  相似文献   

19.
The structure of the unusually long (∼100 amino-acid residues) N-terminal domain of the light-harvesting protein CP29 of plants is not defined in the crystal structure of this membrane protein. We studied the N-terminus using two electron paramagnetic resonance (EPR) approaches: the rotational diffusion of spin labels at 55 residues with continuous-wave EPR, and three sets of distances with a pulsed EPR method. The N-terminus is relatively structured. Five regions that differ considerably in their dynamics are identified. Two regions have low rotational diffusion, one of which shows α-helical character suggesting contact with the protein surface. This immobile part is flanked by two highly dynamic, unstructured regions (loops) that cover residues 10–22 and 82–91. These loops may be important for the interaction with other light-harvesting proteins. The region around residue 4 also has low rotational diffusion, presumably because it attaches noncovalently to the protein. This section is close to a phosphorylation site (Thr-6) in related proteins, such as those encoded by the Lhcb4.2 gene. Phosphorylation might influence the interaction with other antenna complexes, thereby regulating the supramolecular organization in the thylakoid membrane.  相似文献   

20.
Site-directed mutagenesis is a powerful tool for altering the structure and function of proteins in a focused manner. Here, we examined how a model β-sheet protein could be tuned by mutation of numerous surface-exposed residues to aromatic amino acids. We designed these aromatic side chain “clusters” at highly solvent-exposed positions in the flat, single-layer β-sheet of Borrelia outer surface protein A (OspA). This unusual β-sheet scaffold allows us to interrogate the effects of these mutations in the context of well-defined structure but in the absence of the strong scaffolding effects of globular protein architecture. We anticipated that the introduction of a cluster of aromatic amino acid residues on the β-sheet surface would result in large conformational changes and/or stabilization and thereby provide new means of controlling the properties of β-sheets. Surprisingly, X-ray crystal structures revealed that the introduction of aromatic clusters produced only subtle conformational changes in the OspA β-sheet. Additionally, despite burying a large degree of hydrophobic surface area, the aromatic cluster mutants were slightly less stable than the wild-type scaffold. These results thereby demonstrate that the introduction of aromatic cluster mutations can serve as a means for subtly modulating β-sheet conformation in protein design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号