首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) is an in vitro and in vivo stimulator of human bone marrow myelomonocytic precursor cells and mature granulocyte and macrophage effector cells. We have compared the effect of GM-CSF on the synthesis of 5-lipoxygenase products induced by the chemotactic peptide fMet-Leu-Phe and the calcium ionophore A23187 in human neutrophils. Although GM-CSF alone did not stimulate detectable synthesis of products of the 5-lipoxygenase pathway, pre-incubation of neutrophils with 200 pM GM-CSF for 1 hour at 23 degrees C enhanced synthesis of leukotriene B4, its all-trans isomers and omega-oxidation products, and 5-hydroxyeicosatetraenoic acid in response to both the calcium ionophore A23187 (1.5 microM), and the chemotactic peptide fMet-Leu-Phe (0.1 microM). This priming effect of GM-CSF was maximal after a 60 min incubation at 23 degrees C, or after a 30 min preincubation at 37 degrees C. The effect of GM-CSF was maximal using a concentration of 1 nM. Enhancement of the leukotriene synthesis stimulated by A23187 was only observed when the cells were stimulated by the ionophore for periods of 3 minutes or less. In contrast, the enhancing effect of GM-CSF was still apparent when cells were exposed to fMet-Leu-Phe for as long as 15 minutes. Furthermore, the enhancing effect of GM-CSF was ablated when neutrophils were stimulated with A23187 and exogenous arachidonic acid. However, co-addition of exogenous arachidonic acid with fMet-Leu-Phe did not entirely mask the effect of GM-CSF. Possible mechanisms of action of GM-CSF are discussed.  相似文献   

2.
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) was studied for its ability to stimulate the synthesis and release of the inflammatory mediator platelet-activating factor (PAF) from human neutrophils as measured by bioassay and incorporation of [3H]acetate into PAF. GM-CSF stimulated the synthesis but not the release of PAF from neutrophils. PAF synthesis took place in a time- and concentration-dependent manner, was dependent on a pertussis toxin-sensitive G protein and could be inhibited by antibodies to GM-CSF. On the other hand, pre-incubation of neutrophils with GM-CSF followed by stimulation with the bacterial tripeptide formylmethionylleucylphenylalanine caused PAF synthesis and release. The effect of GM-CSF was qualitative and not simply the result of larger amounts of PAF being synthesized since similar amounts were generated in response to the calcium ionophore A23187 but no released PAF could be detected. In functional studies GM-CSF stimulated superoxide anion generation from neutrophils with a time and dose relationship that paralleled PAF synthesis. In addition, the serine protease inhibitor L-1-tosylamide-2-phenylethyl chloromethyl ketone, which inhibits PAF synthesis, reduced PAF accumulation as well as superoxide generation, raising the possibility of a causal relationship between cell-associated PAF and cell activation. These results identify PAF as a direct product of GM-CSF stimulation in neutrophils where it may play a role in signal transduction and demonstrate that PAF is released only after subsequent neutrophil stimulation. The selective release of PAF may play a role in regulating and amplifying the inflammatory response.  相似文献   

3.
We have investigated the inhibitory activity of compound MK-0591 (3-[1-(4-chlorobenzyl)-3-(t-butylthio)-5-(quinolin-2-yl-methoxy)-i ndol-2- yl]-2,2-dimethyl propanoic acid) on 5-lipoxygenase (5-LO) product synthesis in various human phagocytes stimulated with either the ionophore A23187, opsonized zymosan (OPZ), platelet-activating factor (PAF), or formyl-methionyl-leucyl-phenylalanine (fMLP). The lipoxygenase products were analyzed by reversed-phase HPLC. MK-0591 inhibited the formation of 5-hydroxyeicosatetraenoic acid, leukotriene (LT) B4, its omega-oxidation products, and 6-trans-isomers with IC50 values of 2.8-4.8 nM in A23187-stimulated neutrophils. In these conditions, arachidonic acid at a concentration of 10 microM had no effect on MK-0591 inhibitory activity. In neutrophils stimulated with OPZ, the synthesis of LTB4, its omega-oxidation products, and 6-trans-isomers was inhibited with IC50 values of 9.5-11.0 nM. MK-0591 inhibited 5-LO product synthesis in A23187-stimulated blood monocytes, eosinophils, and alveolar macrophages with IC50 values of 0.3-0.9, 3.7-5.3, and 8.5-17.3 nM, respectively. In neutrophils primed with granulocyte--macrophage colony-stimulating factor and stimulated with PAF, lipoxygenase product synthesis was inhibited with IC50 values of 7.7-8.7 nM. At the concentration of 1 microM, MK-0591 had no inhibitory effect on 15-lipoxygenase activity in human polymorphonuclear leukocytes, nor on human platelet 12-lipoxygenase and cyclooxygenase. In conclusion, MK-0591 is a very potent and specific inhibitor of 5-LO product synthesis in various types of human phagocytes.  相似文献   

4.
In an isolated rabbit lung model, we tested the hypothesis that platelet-activating factor (PAF)-induced leukotriene (LT) synthesis is critically dependent on the free precursor fatty acid supply and the possible substitution of arachidonic acid (AA) by eicosapentaenoic acid (EPA). To augment the intravascular polymorphonuclear neutrophils (PMNs) in the isolated lung, human PMNs were infused into the pulmonary artery. LTs and hydroxyeicosatetra(penta)enoic acids were quantified with HPLC techniques. Application of PAF (5 microM) or AA (10 microM) provoked the generation of limited quantities of 4-series LTs and 5-hydroxyeicosatetraenoic acid (total sum of 5-lipoxygenase products approximately 7 and approximately 27 pmol/ml in lungs both with and without infused PMNs, respectively). Combined administration amplified 5-lipoxygenase product formation, with a predominance of cysteinyl-LT synthesis in lungs both without (total sum approximately 67 pmol/ml) and, much more strikingly, with (total sum approximately 308 pmol/ml) an infusion of neutrophils. EPA (10 microM) elicited exclusive generation of 5-series LTs and 5-hydroxyeicosapentaenoic acid (total sum approximately 82 pmol/ml). Dual stimulation with PAF and EPA provoked amplification of EPA-derived 5-lipoxygenase product formation, again with predominance of cysteinyl-LTs in lungs without (total sum approximately 224 pmol/ml) and, in particular, with (total sum approximately 545 pmol/ml) preceding microvascular PMN entrapment. Combined application of PAF, AA, and EPA resulted in the synthesis of LTs derived from both fatty acids, with a predominance of 5-series products. We conclude that the PAF-evoked 5-lipoxygenase product formation in the neutrophil-harboring lung capillary bed is critically dependent on intravascular precursor fatty acid supply, with EPA representing the preferred substrate compared with AA. PMN-related transcellular eicosanoid synthesis is suggested to underlie the predominant generation of cysteinyl-LTs. The supply of n-3 versus n-6 precursor fatty acid may thus have a major impact on inflammatory mediator generation.  相似文献   

5.
The phospholipid platelet-activating factor (PAF) is a potent cell-derived bioactive molecule thought to be involved in diverse inflammatory processes. It has been shown that PAF can activate different leukocyte types and platelets, particularly in synergy with other agonists. In this study we examined the effect of PAF upon the release of histamine and leukotriene (LT) C4 by basophils when added alone and in combination with different agonists and cytokines. PAF by itself did neither induce histamine release nor the generation of LTC4 by basophils. However, basophils primed by the hematopoietic growth factors (hGF) IL-3, granulocyte-macrophage (GM)-CSF, or IL-5 (10 ng/ml) released preformed and de novo synthesized mediators in response to PAF at 10 to 100 nM concentrations. The extent of mediator release by hGF primed basophils in response to PAF was similar to that induced by an optimal concentration of monoclonal anti-IgE. Thus, similar to NAP-1/IL-8 and C3a, PAF efficiently stimulates mediator release in hGF-primed basophils only. However, PAF was clearly a more potent trigger of LTC4 formation in IL-3-primed cells than NAP-1/IL-8 or C3a. When PAF was used as a second trigger, the priming effect of IL-5 was less than that of IL-3 or GM-CSF, whereas the response for other IgE-independent agonists (i.e., C5a or FMLP) was augmented equally by all three hGF. IL-1 beta-pretreated basophils released minimal amounts of histamine in response to PAF. Neither TNF-alpha nor PAF, nor the combination thereof, was able to induce basophil mediator release. The efficiency of the different cytokines to prime for PAF responsiveness was strikingly similar to their capacity to enhance anti-IgE-induced mediator release. Similar to other IgE-independent agonists, the kinetic of mediator release in response to PAF was very rapid. PAF pretreatment of basophils did not enhance mediator release in response to diverse agonists, such as C5a and FMLP, in contrast to the capacity of PAF to augment the response of other leukocyte types to appropriate stimuli. Thus, depending on the presence of IL-3, GM-CSF, or IL-5, PAF is a potent basophil agonist capable of inducing histamine release as well as de novo synthesis of LTC4.  相似文献   

6.
When human neutrophils, previously labeled in their phospholipids with [14C]arachidonate, were stimulated with the Ca2+-ionophore, A23187, plus Ca2+ in the presence of [3H]acetate, these cells released [14C]arachidonate from membrane phospholipids, produced 5-hydroxy-6,8,11,14-[14C]eicosatetraenoic acid (5-HETE) and 14C-labeled 5S,12R-dihydroxy-6-cis,8,10-trans, 14-cis-eicosatetraenoic acid ([14C]leukotriene B4), and incorporated [3H]acetate into platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine). Ionophore A23187-induced formation of these radiolabeled products was greatly augmented by submicromolar concentrations of exogenous 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE), 5-HETE, and leukotriene B4. In the absence of ionophore A23187, these arachidonic acid metabolites were virtually ineffective. Nordihydroguaiaretic acid (NDGA) and several other lipoxygenase/cyclooxygenase inhibitors (butylated hydroxyanisole, 3-amino-1-(3-trifluoromethylphenyl)-2-pyrazoline and 1-phenyl-2-pyrazolidinone) caused parallel inhibition of [14C]arachidonate release and [3H]PAF formation in a dose-dependent manner. Specific cyclooxygenase inhibitors, such as indomethacin and naproxen, did not inhibit but rather slightly augmented the formation of these products. Furthermore, addition of 5-HPETE, 5-HETE, or leukotriene B4 (but not 8-HETE or 15-HETE) to neutrophils caused substantial relief of NDGA inhibition of [3H]PAF formation and [14C]arachidonate release. As opposed to [3H]acetate incorporation into PAF, [3H]lyso-PAF incorporation into PAF by activated neutrophils was little affected by NDGA. In addition, NDGA had no effect on lyso-PAF:acetyl-CoA acetyltransferase as measured in neutrophil homogenate preparations. It is concluded that in activated human neutrophils 5-lipoxygenase products can modulate PAF formation by enhancing the expression of phospholipase A2.  相似文献   

7.
Human recombinant granulocyte-macrophage CSF (GM-CSF) "primes" neutrophils for enhanced biologic responses to a number of secondary stimuli. Here, we examined the properties of neutrophil priming by GM-CSF and other growth factors such as human rTNF and granulocyte CSF. Although GM-CSF has a negligible direct effect on [3H]arachidonic acid release, it enhances or "primes" neutrophils for three- to fivefold increased release of [3H]arachidonic acid, induced by 1.0 microM A23187 and the chemotactants FMLP, platelet-activating factor, and leukotriene B4 (LTB4) (all 0.1 microM). The priming effects of GM-CSF were concentration- and time-dependent (maximum 100 pM, 1 h at 23 degrees C), and consistent with the determined dissociation constant of the human GM-CSF receptor. Indomethacin (10(-8) M), cycloheximide (100 micrograms/ml), and pertussis toxin (200 ng/ml, 2 h at 37 degrees C) had no effect on GM-CSF-, A23187, or platelet-activating factor-induced [3H]arachidonic acid release. The lipoxygenase inhibitor, nordihydroguaiaretic acid, however, totally abolished A23187-induced [3H]arachidonic acid release from both diluent- and GM-CSF-treated neutrophils. Consistent with this observation, we found that GM-CSF-pretreated neutrophils synthesize increased levels of LTB4 after stimulation with A23187 and chemotactic factors. GM-CSF enhances neutrophil arachidonic acid release and LTB4 synthesis, and thereby may amplify the inflammatory response to chemotactic factors and other physiologically relevant stimuli.  相似文献   

8.
Priming of human neutrophils with granulocyte-macrophage colony-stimulating factor (GM-CSF) followed by treatment with formyl-methionyl-leucyl-phenylalanine (fMLP) stimulates cells in a physiologically relevant manner with modest 5-lipoxygenase activation and formation of leukotrienes. However, pretreatment of neutrophils with thimerosal, an organomercury thiosalicylic acid derivative, led to a dramatic increase (>50-fold) in the production of leukotriene B(4) and 5-hydroxyeicosatetraenoic acid, significantly higher than that observed after stimulation with calcium ionophore A23187. Little or no effect was observed with thimerosal alone or in combination with either GM-CSF or fMLP. Elevation of [Ca(2+)](i) induced by thimerosal in neutrophils stimulated with GM-CSF/fMLP was similar but more sustained compared with samples where thimerosal was absent. However, [Ca(2+)](i) was significantly lower compared with calcium ionophore-treated cells, suggesting that a sustained calcium rise was necessary but not sufficient to explain the effects of this compound on the GM-CSF/fMLP-stimulated neutrophil. Thimerosal was found to directly inhibit neutrophil lysophospholipid:acyl-CoA acyltransferase activity at the doses that stimulate leukotriene production, and analysis of lysates from neutrophil preparations stimulated in the presence of thimerosal showed a marked increase in free arachidonic acid, supporting the inhibition of the reincorporation of this fatty acid into the membrane phospholipids as a mechanism of action for this compound. The dramatic increase in production of leukotrienes by neutrophils when a physiological stimulus such as GM-CSF/fMLP is employed in the presence of thimerosal suggests a critical regulatory role of arachidonate reacylation that limits leukotriene biosynthesis in concert with 5-lipoxygenase and cytosolic phospholipase A(2)alpha activation.  相似文献   

9.
The synthesis of leukotriene B(4) from arachidonic acid requires the sequential action of two enzymes: 5-lipoxygenase and leukotriene A(4) hydrolase. 5-Lipoxygenase is known to be present in the cytoplasm of some leukocytes and able to accumulate in the nucleoplasm of others. In this study, we asked if leukotriene A(4) hydrolase co-localizes with 5-lipoxygenase in different types of leukocytes. Examination of rat basophilic leukemia cells by both immunocytochemistry and immunofluorescence revealed that leukotriene A(4) hydrolase, like 5-lipoxygenase, was most abundant in the nucleus, with only minor occurrences in the cytoplasm. The finding of abundant leukotriene A(4) hydrolase in the soluble nuclear fraction was substantiated by two different cell fractionation techniques. Leukotriene A(4) hydrolase was also found to accumulate together with 5-lipoxygenase in the nucleus of alveolar macrophages. This result was obtained using both in situ and ex vivo techniques. In contrast to these results, peripheral blood neutrophils contained both leukotriene A(4) hydrolase and 5-lipoxygenase exclusively in the cytoplasm. After adherence of neutrophils, 5-lipoxygenase was rapidly imported into the nucleus, whereas leukotriene A(4) hydrolase remained cytosolic. Similarly, 5-lipoxygenase was localized in the nucleus of neutrophils recruited into inflamed appendix tissue, whereas leukotriene A(4) hydrolase remained cytosolic. These results demonstrate for the first time that leukotriene A(4) hydrolase can be accumulated in the nucleus, where it co-localizes with 5-lipoxygenase. As with 5-lipoxygenase, the subcellular distribution of leukotriene A(4) hydrolase is cell-specific and dynamic, but differences in the mechanisms regulating nuclear import must exist. The degree to which these two enzymes are co-localized may influence their metabolic coupling in the conversion of arachidonic acid to leukotriene B(4).  相似文献   

10.
Sodium diclofenac, a potent cyclooxygenase inhibitor, was recently shown to inhibit arachidonic acid conversion to leukotriene products in human leukocytes. This activity was confirmed by radioimmunoassay in calcium ionophore A 23187-stimulated leukocytes isolated from the rat peritoneal cavity and human peripheral blood. Studies with rat peritoneal leukocytes revealed that this effect was not mediated by inhibition of 5-lipoxygenase or phospholipase A2, but rather through modulation of arachidonic acid uptake and release. The potency of this effect was dependent upon cell type; macrophages being more sensitive to the drug than neutrophils. In leukocytes treated with sodium diclofenac, arachidonic acid released from phospholipids in response to A 23187 challenge was reincorporated into triacylglycerols. The drug enhanced the spontaneous uptake of arachidonic acid into the cellular triacylglycerol pool and, in this manner, decreased the availability of intracellular arachidonic acid. Therefore, sodium diclofenac, in addition to inhibition of cyclooxygenase, regulates leukotriene production of inflammatory cells by a mechanism mediated in part through the redistribution of arachidonic acid in lipid pools.  相似文献   

11.
Platelet-activating factor (PAF) is a potent neutrophil agonist operating through specific receptors located on the cell surface. Binding of PAF to its receptor may also stimulate further PAF synthesis, thus providing a means of amplifying the PAF signal for the cell of origin and/or other responsive cells. In this report we demonstrate that 1-O-alkyl-2-N-methylcarbamyl-sn-glycero-3-phosphocholine (C-PAF), a nonmetabolizable bioactive analog of PAF, stimulates human neutrophils to synthesize PAF, as detected by [3H]acetate incorporation into PAF. This approach allowed us to conclude that [3H]acetate-labeled PAF was formed from endogenous precursor rather than mere turnover of the stimulatory dose of PAF. PAF's ability to initiate further PAF synthesis was confirmed by measuring the PAF-stimulated conversion of 1-O-[3H]alkyl-2-acylglycerophosphocholine to 1-O-[3H]alkyl-2-acetylglycerophosphocholine by prelabeled human neutrophils and by determining the molecular species of 1-O-alkyl-2-[3H]acetylglycerophosphocholine produced by cells stimulated with a single molecular species of PAF (C15:0). Degradation of exogenously added [3H]PAF was not inhibited by C-PAF/5-hydroxyeicosatetraenoic acid treatment. Thus, inhibition of PAF degradation was ruled out as the mechanism accounting for the appearance of labeled PAF in the stimulated cells. Synthesis of PAF in response to C-PAF was not dependent on cytochalasin B pretreatment but was dramatically potentiated by 5-hydroxyeicosatetraenoic acid, which alone was without effect. Additionally, we have demonstrated that another major arachidonate metabolite of neutrophils, leukotriene B4, stimulates PAF production. Thus, at least three products of activated neutrophils, including PAF itself, can promote PAF synthesis by these cells. This positive feedback effect may amplify autacoid production and the final cellular response.  相似文献   

12.
The regulation of arachidonic acid conversion by the 5-lipoxygenase and the cyclooxygenase pathways in mouse peritoneal macrophages has been studied using particulate and soluble agonists. Particulate agonists, zymosan and latex, stimulated the production of cyclooxygenase metabolites as well as the 5-lipoxygenase product, leukotriene C4. In contrast, incubation with the soluble agonist phorbol myristate acetate or exogenous arachidonic acid led to the production of cyclooxygenase metabolites but not leukotriene C4. We tested the hypothesis that the 5-lipoxygenase, unlike the cyclooxygenase, requires activation by calcium before arachidonic acid can be utilized as a substrate. Addition of phorbol myristate acetate to macrophages in the presence of calcium ionophore (A23187) at a concentration which alone did not stimulate arachidonate metabolism resulted in a synergistic increase (50-fold) in leukotriene C4 synthesis compared to phorbol ester or A23187 alone. No such effect on the cyclooxygenase pathway metabolism was observed. Exogenous arachidonic acid in the presence of A23187 produced similar results yielding a 10-fold greater synthesis of leukotriene C4 over either substance alone without any effects on the cyclooxygenase metabolites. Presumably, calcium ionophore unmasked the synthesis of leukotriene C4 from phorbol myristate acetate-released and exogenous arachidonate by elevating intracellular calcium levels enough for 5-lipoxygenase activation. These data indicate that once arachidonic acid is released from phospholipid by an agonist, it is available for conversion by both enzymatic pathways. However, leukotriene synthesis may not occur unless intracellular calcium levels are elevated either by phagocytosis of particulate agonists or with calcium ionophore.  相似文献   

13.
Platelet-activating factor (PAF) is a phospholipid mediator of inflammation and allergy that is synthesized by several inflammatory cells including neutrophils. Addition of exogenous arachidonic acid to ionophore A23187-stimulated bovine neutrophils led to the inhibition of PAF biosynthesis assayed by incorporation of [3H]acetate into PAF and by bioassay; under the same conditions, leukotriene B4 (LTB4) formation was not decreased. The activities of the PAF metabolism enzymes indicated that the PAF synthesis inhibition by arachidonic acid is mediated via the acetyltransferase inhibition which is the last enzyme of the PAF formation. Another unsaturated fatty acid, oleic acid, exhibited the same inhibitory effect on [3H]acetate-PAF formation; however, the saturated stearic acid did not lead to any inhibition. These findings suggest that liberation of unsaturated fatty acids from membrane phospholipids, as a consequence of phospholipase A2 activation, would modulate PAF formation via inhibition of the acetyltransferase. In addition, the utilization of arachidonic acid oleic acids in activated neutrophils furnishes an easy means of blocking PAF synthesis in order to understand the role of this mediator in cellular processes.  相似文献   

14.
We have previously shown that the biologically important reactive oxygen metabolite hydrogen peroxide (H2O2) stimulates arachidonic acid (AA) release and thromboxane A2 synthesis in the rat alveolar macrophage. We have now investigated the effects of H2O2 on alveolar macrophage 5-lipoxygenase metabolism. H2O2 failed to stimulate detectable synthesis of leukotriene B4, leukotriene C4, or 5-hydroxyeicosatetraenoic acid (5-HETE) as determined by reverse-phase high performance liquid chromatography (RP-HPLC) and sensitive radioimmunoassays (RIAs). This was not explained by oxidative degradation of leukotrienes by H2O2 at the concentrations used. Moreover, RIA and RP-HPLC analyses demonstrated that H2O2 dose-dependently inhibited synthesis of leukotriene B4, leukotriene C4, and 5-HETE induced by the agonists A23187 (10 microM) and zymosan (100 micrograms/ml), over the same concentration range at which it augmented synthesis of the cyclooxygenase products thromboxane A2 and 12-hydroxy-5,8,10-heptadecatrienoic acid. Four lines of evidence suggested that H2O2 inhibited alveolar macrophage leukotriene and 5-HETE synthesis by depleting cellular ATP, a cofactor for 5-lipoxygenase. 1) H2O2 depleted ATP in A23187- and zymosan-stimulated alveolar macrophages with a dose dependence very similar to that for inhibition of agonist-induced leukotriene synthesis. 2) The time courses of ATP depletion and inhibition of leukotriene B4 synthesis by H2O2 were compatible with a rate-limiting effect of ATP on leukotriene synthesis in H2O2-exposed cultures. 3) Treatment of alveolar macrophages with the electron transport inhibitor antimycin A prior to A23187 stimulation depleted ATP and inhibited leukotriene B4 and C4 synthesis to equivalent degrees, while thromboxane A2 production was spared. 4) Incubation with the ATP precursors inosine plus phosphate attenuated both ATP depletion and inhibition of leukotriene B4 and C4 synthesis in alveolar macrophages stimulated with A23187 in the presence of H2O2. Our results show that H2O2 has the capacity to act both as an agonist for macrophage AA metabolism, and as a selective inhibitor of the 5-lipoxygenase pathway, probably as a result of its ability to deplete ATP. Depletion of cellular energy stores by oxidants generated during inflammation in vivo may be a means by which the inflammatory response is self-limited.  相似文献   

15.
Platelet-activating factor (PAF) is a lipid mediator able to induce a variety of inflammatory processes in human peripheral blood cells. We have investigated the effect of PAF on the release of chemical mediators from human basophils of allergic and normal donors. PAF (10 nM to 1 microM) caused a concentration-dependent, noncytotoxic histamine release (greater than or equal to 10% of total) in 27 of 44 subjects tested (24 atopic and 20 nonatopic donors). The release process was either very rapid (t1/2 approximately equal to 10 s) or quite slow (t 1/2 approximately equal to 10 min), temperature- and Ca2(+)-dependent (optimal at 37 degrees C and 5 mM Ca2+). Coincubation of PAF with cytochalasin B (5 micrograms/ml) enhanced the release of histamine induced by PAF and activated the release process in most donors (42 of 44). Atopics did not release significantly more histamine than normal subjects, and the percentage of PAF responders (greater than or equal to 10% of total) was nearly the same in the two groups. Histamine release was accompanied by the synthesis and release of leukotriene C4, although this lagged 1 to 2 min behind histamine secretion. Lyso-PAF (100 nM to 10 microM), alone or together with cytochalasin B, did not release significant amounts of histamine. The release of histamine activated by PAF was inhibited by the specific PAF receptor antagonist, L-652,731, with an IC50 of 0.4 microM. There was a partial desensitization to PAF when the cells were preincubated with PAF (100 nM to 1 microM) for 2 min in the absence of Ca2+, whereas the cells remained responsive to anti-IgE (0.1 micrograms/ml). If neutrophils were removed from the basophil preparation by a Percoll gradient or a countercurrent elutriation technique, there was a significant decrease in PAF-induced histamine release. PAF (1 microM) was able to induce a very rapid, transient rise (peak less than 10 s) in [Ca2+]i in purified basophils analyzed by digital video microscopy. Finally, among human histamine-containing cells, the basophils are unique in degranulating following a PAF challenge. Mast cells from human lung, skin, or uterus failed to respond to PAF (10 nM to 1 microM) regardless of the presence or absence of cytochalasin B (5 micrograms/ml). Our results demonstrate that PAF is able to induce the release of inflammatory mediators from human basophils, and that neutrophils can influence this response. It is suggested that PAF-induced basophil activation can play a role in the pathogenesis of allergic disorders.  相似文献   

16.
Pretreatment of human polymorphonuclear leukocytes with the recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) enhances leukotriene biosynthesis in response to a receptor agonist (e.g. N-formyl-methionyl-leucyl-phenylalanine, fMLP) or a Ca(2+)-ionophore (e.g. ionomycin). This priming effect could be traced back to an elevated release of arachidonic acid from the phospholipid pools and hence an increased leukotriene biosynthesis by 5-lipoxygenase. Preincubation of polymorphonuclear leukocytes with GM-CSF did not influence the basal intracellular Ca2+ level and does not enhance cytosolic free calcium after stimulation with fMLP or ionomycin. Only a small increase in the second Ca2+ phase after receptor agonist stimulation was found. However, the Ca(2+)-threshold level necessary for the liberation of arachidonic acid by phospholipase A2 was decreased from 350-400 nM calcium in untreated cells to about 250 nM calcium in primed cells. This allows phospholipase A2 to be activated by a release of calcium from intracellular stores and by ionomycin concentrations which are ineffective in untreated cells. Protein biosynthesis inhibitors like actinomycin D (10 micrograms/ml) and cycloheximide (50 micrograms/ml) had no effect on the enhanced leukotriene biosynthesis in primed cells after stimulation with ionomycin. However, staurosporine (200 nM), an inhibitor of protein kinase C totally abolished the priming effect of GM-CSF after stimulation with ionomycin. The priming effect of GM-CSF could be mimicked by phorbol myristate acetate (PMA; 1 nM) and no additive or synergistic effect was found on leukotriene biosynthesis by simultaneous pretreatment with PMA and GM-CSF and stimulation with either fMLP or ionomycin. These results provide evidence that the enhanced arachidonic acid release in GM-CSF-primed polymorphonuclear leukocytes after stimulation with either fMLP or ionomycin involves activation of protein kinase C which, by a still unknown mechanism, reduces the Ca2+ requirement of phospholipase A2.  相似文献   

17.
18.
Platelet-activating factor (PAF) is a phospholipid mediator of inflammation that is synthesized by several human cell types including polymorphonuclear leukocytes (PMN). We examined the synthesis and release of PAF by stimulated human PMN under several conditions, assayed by the incorporation of [3H]acetate into PAF and by bioassay. PAF synthesis was induced by calcium ionophore A23187 (IoA), opsonized zymosan (OpsZ), and N-formyl-methionyl-leucyl-phenylalanine (FMLP) with the relative order of potency IoA much greater than OpsZ greater than FMLP. A variety of other agonists, including phorbol myristate acetate, an activator of protein kinase C and of PMN functional responses, did not stimulate PAF synthesis. PAF synthesis by PMN in response to IoA, OpsZ, and FMLP was concentration- and time-dependent but release of the phospholipid was not: little PAF (1 to 10%) was released from PMN in suspension regardless of the total amount produced, the agonist, its concentration, the time of incubation, or the concentration of extracellular albumin. This was also the case with functionally altered neutrophils that had been "primed" with cytochalasin B or lipopolysaccharide or that had adhered to surfaces. PAF synthesis was tightly coupled with leukotriene B4 production by adherent PMN as well as by neutrophils in suspension, supporting the hypothesis that the two lipid autacoids may be derived from a common precursor. However, PAF synthesis could be dissociated from aggregation and surface adhesion, indicating that it is not absolutely required for these responses of activated PMN. The total amount of PAF that accumulated, but not the percentage that was released, was altered in adherent PMN compared to cells in suspension. These experiments demonstrate that PAF production and its subsequent processing by human neutrophils are highly regulated events. PAF synthesis is associated with PMN activation, but it is not a requisite for early adhesive responses of neutrophils. Because little of the PAF produced by stimulated PMN is released from the cells, it appears that PAF has an intracellular role in PMN function and/or that it may have novel intercellular effects that do not require release into the fluid phase.  相似文献   

19.
The biological activities of two carbonyl compounds derived from arachidonic acid, (5Z,8Z,10E,14Z)-12-keto-5,8,10,14-eicosatetraeno ic acid (12-OxoETE) and (5Z,8Z,10E)-12-oxo-5,8,10-dodecatrienoic acid (12-OxoDTrE) were investigated. The ability of these compounds to induce a mobilization of calcium and to trigger a right-angle scatter response in isolated peripheral blood human neutrophils was determined. The two compounds induced a rapid and dose-dependent increase in the concentration of cytoplasmic free calcium; these effects were clearly detectable at concentrations greater than or equal to 10(-8) M. Pre-exposure of neutrophils to leukotriene B4 completely abolished the calcium mobilization induced by 12-OxoDTre and 12-OxoETE, while pre-exposure of the cells to the carbonyl compounds only slightly reduced the response to subsequent stimulation of neutrophils by leukotriene B4. The carbonyl compounds also induced a decrease in right-angle light scatter and these effects were abolished by pretreatment of neutrophils with leukotriene B4. These data demonstrate that 12-OxoETE and 12-OxoDTrE show significant agonist activities towards human neutrophils and strongly suggest that their mechanisms of action involve the leukotriene B4 binding sites or a common activation sequence.  相似文献   

20.
Phorbol myristate acetate (PMA), a tumor-promoting phorbol ester, and the calcium ionophore A23187 synergistically induced the noncytotoxic release of leukotriene B4 (LTB4) and other 5-lipoxygenase products of arachidonic acid metabolism from human neutrophils. Whereas neutrophils incubated with either A23187 (0.4 microM) or PMA (1.6 microM) alone failed to release any 5-lipoxygenase arachidonate products, neutrophils incubated with both stimuli together for 5 min at 37 degrees C released LTB4 as well as 20-COOH-LTB4, 20-OH-LTB4, 5-(S),12-(R)-6-trans-LTB4, 5-(S),12-(S)-6-trans-LTB4, and 5-hydroxyeicosatetraenoic acid, as determined by high pressure liquid chromatography. This synergistic response exhibited concentration dependence on both PMA and A23187. PMA induced 5-lipoxygenase product release at a concentration causing a half-maximal effect of approximately 5 nM in the presence of A23187 (0.4 microM). Competition binding experiments showed that PMA inhibited the specific binding of [3H]phorbol dibutyrate ([3H]PDBu) to intact neutrophils with a 50% inhibitory concentration (IC50) of approximately 8 nM. 1-oleoyl-2-acetyl-glycerol (OAG) also acted synergistically with A23187 to induce the release of 5-lipoxygenase products. 4 alpha-phorbol didecanoate (PDD), an inactive phorbol ester, did not affect the amount of lipoxygenase products released in response to A23187 or compete for specific [3H]PDBu binding. PMA and A23187 acted synergistically to increase arachidonate release from neutrophils prelabeled with [3H]arachidonic acid but did not affect the release of the cyclooxygenase product prostaglandin E2. Both PMA and OAG, but not PDD, induced the redistribution of protein kinase C activity from the cytosol to the membrane fraction of neutrophils, a characteristic of protein kinase C activation. Thus, activation of protein kinase C may play a physiologic role in releasing free arachidonate substrate from membrane phospholipids and/or in modulating 5-lipoxygenase activity in stimulated human neutrophils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号