首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fibroblast strains 3012T and 3072T, derived from normal skin explants of two patients affected with familial dysplastic nevus syndrome (DNS), an hereditary variant of cutaneous malignant melanoma, have been reported to be abnormally sensitive to the cytotoxic and mutagenic effects of the procarcinogen 4-nitroquinoline 1-oxide (4NQO). In this communication we demonstrate that on exposure to a particular concentration of 4NQO, these same two DNS strains sustain an amount of DNA damage which is equal to (3012T) or only approximately 1.3 times greater than (3072T) that displayed by 8 control fibroblast strains established from clinically normal volunteers. Moreover, cell sonicates of 3072T display approximately 1.3-fold enhanced capacity to catalyze the reduction of 4NQO to the proximate carcinogen 4-hydroxyaminoquinoline 1-oxide, whereas sonicates of 3012T cells carry out this reaction at a normal rate. Accordingly, our results argue against the postulate that the 4NQO hypersensitivity exhibited by these DNS strains is merely due to an elevated capacity for bioreduction of the inert parent compound to a DNA-reactive derivative.  相似文献   

2.
3.
Excision repair of DNA damage produced by 4-nitroquinoline 1-oxide (4NQO), a potent chemical carcinogen, was compared in a normal human amnion FL cell line and a xeroderma pigmentosum (XP) cell line unable to repair ultraviolet-induced pyramidine dimers. The main objective of this study was to investigate, by a direct assay of the loss of damage from DNA, whether DNA damage induced by 4NQO in human cells is repaired by the excision-repair system as in Escherichia coli cells. DNA was extracted from FL and XP cells treated with [3H]4NQO, hydrolyzed and subjected to radiochromatographic analysis in order to quantitate the initial formation of 4NQO damage and subsequent disappearance during post-incubation. Two peaks of stable 4NQO-quanine adducts appeared on the chromatogram, together with one peak of stable 4NQO-adenine adduct and a peak due to 4-aminoquinoline 1-oxide (4AQO) released from a labile fraction of 4NQO-guanine adduct during hydrolysis. The three kinds of stable 4NQO-purine adduct disappeared from DNA of the FL cells at almost the same rate of about 60% during 24-h post-incubation in culture medium, and 4AQO disappeared somewhat faster. In the XP cells, however, the stable adducts did not disappear from DNA, whereas about 40% of the 4AQO-releasing adduct disappeared from DNA. These findings at the molecular level quantitatively parallel the previous findings at the cellular level that the XP cells are several times as sensitive as normal cells to killing by 4NQO. These results lead to the conclusion that in human cells 4NQO-induced lethality is mainly due to the four kinds of 4NQO-purine adduct as it is in E. coli, and that the adducts are excisable by the same excision-repair mechanism that works on pyramidine dimers.  相似文献   

4.
5.
Excision repair was measured in normal human and xeroderma pigmentosum group C fibroblasts treated with ultraviolet radiation and the carcinogens acridine mustard (ICR-170) or 4-nitroquinoline 1-oxide (4NQO) by the techniques of unscheduled synthesis, photolysis of bromodeoxyuridine incorporated into parental DNA during repair, and assays of sites sensitive to ultraviolet (UV)-endonuclease. Doses of ICR-170 and 4NQO, low enough not to inhibit unscheduled DNA synthesis (UDS), caused damage to DNA that was repaired by a long patch type mechanism and the rates of UDS decreased rapidly in the first 12 h after treatment. Repair after a combined action of UV plus ICR-170 or UV plus 4NQO was additive in normal cells and no inhibition of loss of endonuclease sensitive sites was detected. In xeroderma pigmentosum (XP) C cells there was less repair after UV plus ICR-170 than after each treatment separately; whereas there was an additive effect after UV plus 4NQO and no inhibition of loss of endonuclease sensitive sites. The results indicate that in normal human fibroblasts there are different rate limiting steps for removal of chemical and physical damages from DNA and that XP cells have a different repair system for ICR-170, not just a lower level, than normal cells. Possibly the same long patch repair system works on 4NQO damage in both normal and XP cells.  相似文献   

6.
7.
K Sato  N Hieda 《Mutation research》1980,71(2):233-241
The mutant mouse lymphoma cell Q31, which is sensitive to 4-nitroquinoline 1-oxide and ultraviolet radiation (UV), was compared with the parental L5178Y cell for the effect of caffeine and mutation induction after UV irradiation. Caffeine potentiated the lethal effect of UV in both cell strains to a similar extent, indicating that the defective process in Q31 cells was caffeine-insensitive. UV-induced mutation to 6-thioguanine resistance was determined in L5178Y and Q31 cells. The maximal yield of mutants was obtained 7 days post-irradiation in L5178Y cells and 14 days in Q31 cells for higher UV doses. It appears that a much longer time is required for the mutant cells than for the parental cells for full expression of the resistance phenotype even at equitoxic UV doses. A substantially higher frequency in induced mutations was observed in Q31 cells than in L5178Y cells at a given dose of UV. A plot of induced mutation frequency as a function of logarithm of surviving fraction again indicates hypermutability of Q31 cells as compared with the parental strain. In contrast, X-rays induced a similar frequency of mutations to 6-thioguanine resistance in L5178Y and Q31 cells.  相似文献   

8.
9.
Summary The study of in vitro cell transformation is valuable for understanding the multistep carcinogenesis of human cells. The difficulty in inducing neoplastic transformation of human cells by treatment with chemical or physical agents alone is due to the difficulty in immortalizing normal human cells. Thus, the immortalization step is critical for in vitro neoplastic transformation of human cells. We transfected a mutant p53 gene (mp53: codon 273Arg-His) into normal human fibroblasts and obtained two G418-resistant mp53-containing clones. These clones showed an extended life span but ultimately senesced. However, when they were treated with either 4-nitroquinoline 1-oxide or X rays, they were immortalized. The immortalized cells showed both numerical and structural chromosome abnormalities, but they were not tumorigenic. The expression of mutant but not wild type p53 was detected in the immortalized cells by RT-PCR. Expression of p21, which is located downstream of p53, was remarkably reduced in the immortalized cells, resulting in increased cdk2 and cdc2 kinase activity. However, there was no significant difference between the normal and immortalized human cells in expression of another tumor suppressor gene, p16. These findings indicate that the p53-p21 cascade may play an important role in the immortalization of human cells.  相似文献   

10.
Telomeres are the tandemly repeated (TTAGGG) n sequences that make up the structural and functional ends of all chromosomes in mammals. Many lines of evidence indicate that telomeres stabilize chromosomes, prevent aberrant recombination, and direct chromosome attachment to the nuclear membrane. Since DNA polymerase requires a labile primer to initiate unidirectional 5-3 DNA synthesis, some bases at the 3 end of each template strand are not copied unless special mechanisms bypass this end-replication problem. To overcome this problem, most eukaryotic cells use telomerase, an enzyme that elongates telomeres. However, this enzyme has not been detected in normal human cells, and these cells lose telomeres with cell division. Cellular senescence might be the result of this loss. Thus, activation of telomerase seems to be critical for the immortalization of human cell lines. In addition, substantial evidence indicates that immortalization in itself is a rate-limiting step for the malignant transformation of human cells. We have treated normal human fibroblasts (AD387, KMS-6, and OUMS-24 lines) intermittently with either 60Co gamma rays or 4-nitroquinoline 1-oxide (4NQO) during serial subcultivations, and have obtained three immortalized cell lines, SUSM-1, KMST-6, and OUMS-24F. In KMS-6 and OUMS-24, the mean terminal restriction fragment length significantly decreased as the population-doubling level increased. The rate of telomere loss was 40 and 50 bp/ population doubling in the KMS-6 and OUMS-24 cell lines, respectively. Once these normal cell lines were immortalized, their telomeres became elongated. Similar data were obtained for AD387 cells and their immortalized SUSM-1 cells. These results suggest that telomeres play a critical role in cellular senescence and in the immortalization processes of human cells.  相似文献   

11.
S Yoshida  M Tada    M Tada 《Nucleic acids research》1976,3(11):3227-3233
It has been shown that 4-hydroxyaminoquinoline 1-oxide, the proximate form of the carcinogen 4-nitroquinoline 1-oxide, binds covalently to the purine bases of DNA. Here we report that carcinogen-bound nucleotides can be excised from DNA by a 5' leads to 3' exonuclease associated with DNA polymerase I of E. coli in the forms of either mononucleotides or oligonucleotides. Beef spleen phosphodiesterase II (5' leads to 3') also split carcinogen-bound nucleotides, while a 3' leads to 5' exonuclease of DNA polymerase I and E. coli exonuclease III (3' leads to 5') could not excise the modified nucleotide.  相似文献   

12.
Survival of entomopathogenic fungi under solar ultraviolet (UV) radiation is paramount to the success of biological control of insect pests and disease vectors. The mutagenic compound 4-nitroquinoline 1-oxide (4-NQO) is often used to mimic the biological effects of UV radiation on organisms. Therefore, we asked whether tolerance to 4-NQO could predict tolerance to UV radiation in thirty isolates of entomopathogenic fungi and one isolate of a xerophilic fungus. A dendrogram obtained from cluster analyses based on the 50 and 90 % inhibitory concentrations (IC50 and IC90, respectively) divided the fungal isolates into six clusters numbered consecutively based on their tolerance to 4-NQO. Cluster 6 contained species with highest tolerance to 4-NQO (IC50 > 4.7 μM), including Mariannaea pruinosa, Lecanicillium aphanocladii, and Torrubiella homopterorum. Cluster 1 contained species least tolerant to 4-NQO (IC50 < 0.2 μM), such as Metarhizium acridum (ARSEF 324), Tolypocladium geodes, and Metarhizium brunneum (ARSEF 7711). With few exceptions, the majority of Metarhizium species showed moderate to low tolerances (IC50 between 0.4 and 0.9 μM) and were placed in cluster 2. Cluster 3 included species with moderate tolerance (IC50 between 1.0 and 1.2 μM). In cluster 4 were species with moderate to high tolerance (IC50 between 1.3 and 1.6 μM). Cluster 5 contained the species with high tolerance (IC50 between 1.9 and 4.0 μM). The most UV tolerant isolate of M. acridum, ARSEF 324, was the least tolerant to 4-NQO. Also, L. aphanocladii, which is very susceptible to UV radiation, showed high tolerance to 4-NQO. Our results indicate that tolerance to 4-NQO does not correlate with tolerance to UV radiation. Therefore this chemical compound is not a predictor of UV tolerance in entomopathogenic fungi.  相似文献   

13.
14.
As part of a collaborative study, the Mammalian Mutagenesis Study Group (MMS), a sub-organization of the Environmental Mutagen Society of Japan (JEMS) conducted mutagenicity tests in MutaMouse. Using a positive selection method, we studied the organ-specificity and time dependence of mutation induction by 4-nitroquinoline 1-oxide (4NQO). A single dose of 4NQO was administered intraperitoneally (7.5 or 15 mg/kg) or orally (200 mg/kg) to groups of male mice. On days 7, 14 and 28 after treatment, we isolated the liver, kidney, lung, spleen, bone marrow, testis and stomach in the intraperitoneal administration experiment and the liver, lung, bone marrow, testis and stomach in the oral administration experiment. In addition, we performed the peripheral blood micronucleus test to evaluate clastogenicity. In the mice treated intraperitoneally at 7.5 mg/kg, we found increased mutant frequency (MF) only in the lung, where the MF did not vary with expression time. In the mice treated at 15 mg/kg, we found increased MF in the liver, bone marrow and lung. In orally treated mice, the MF was high in the lung and liver and very high in the bone marrow and stomach while the increase in the testis was negligible. As the expression time was prolonged, the MF tended to increase in the liver, decrease in the bone marrow, and remain stable in the lung, testis and stomach. The incidence of micronucleus induction in peripheral blood cells was significantly increased (p<0.01) in the 4NQO groups when compared with the vehicle control group by intraperitoneal treatment. Thus, these assay systems appeared to be of use in detecting not only genetic mutation but also chromosomal aberration.  相似文献   

15.
S A Winkle  I Tinoco 《Biochemistry》1979,18(18):3833-3839
The interactions of 4-nitroquinoline 1-oxide (NQO), a potent mutagen and carcinogen, with several self- and non-self-complementary deoxydinucleotides were probed by using absorption spectra of the charge transfer bands and 1H and 13C NMR spectra. Absorption spectra were analyzed by using Benesi-Hildebrand-type equations to yield stoichiometries and equilibrium constants of complex formation. Non-self complementary dimers form weak l:1 complexes [dpTpG:NQO, K(25 degrees C) = 22 M-1] while self-complementary dimers form strong 2:1 complexes [dpCpG)2:NQO, K(25 degrees C) = 2.2 X 10(4) M-2]. A mixture of dpTpG and dpCpA with NQO gives a 2:1 complexes [dpCpG)2:NQO, K(25 degrees C) = 2.2 X 10(4) M-2]. A mixture of dpTpG and dpCpA, K(25 degrees C) = 8.6 X 10(3) M-2]. Analyses of the changes in 13C and 1H NMR chemical shifts with complex formation gave approximate orientations for the intercalation of NQO with self-complementary dimer minihelixes. In the (dpCpG)2:NQO and (dpGpC)2:NQO complexes, the NO2 group of NQO probably lies in the major grove and the NO2, NO containing NQO ring is stacked near the purine imidazole ring. In the (dpTpA)2:NQO and (dpApT)2NQO complexes, the NO2 seems to project into the minor grove and the NQO benzenoid ring is over the purine imidazole ring.  相似文献   

16.
To obtain more information on the well-documented low excision-repair capacity of rodent cells in comparison with human cells, we have studied this form of DNA repair in UV-irradiated human and rat skin fibroblasts. For this purpose, we have determined (i) unscheduled DNA synthesis (UDS), using autoradiography, (ii) the number and size of repaired sites with the bromodeoxyuridine (BrdU) photolysis assay and (iii) the removal of Micrococcus luteus UV-endonuclease susceptible sites (ESS). We found rat cells to be quite capable of performing DNA-repair synthesis, as demonstrated by both UDS and BrdU photolysis, whereas they almost completely lacked the capacity to remove pyrimidine dimers, as indicated by the persistence of ESS. This discrepancy will be discussed in terms of the types of mechanisms by which mammalian cells may recognize and remove UV-induced photoproducts.  相似文献   

17.
Growth inhibition of Crithidia fasciculata by 4-nitroquinoline 1-oxide (NQO) was observed in defined and complex media at 28 C. Aromatic amino acids, cystein, and nicotinic acid, among several other substances, were ineffective in overcoming NQO toxicity. Dicoumarol and bovine albumin reversed NQO inhibition. While bovine albumin probably acted by the extra-cellular binding of NQO, dicoumarol inhibited the activity of DT-diaphorase, which reduces NQO to 4-hydroxyaminonitroquinoline 1-oxide (HAQO). The DT-diaphorase from C. fasciculata had the same characteristics as the enzyme from rat liver. The specific protection by dicoumarol against NQO inhibition suggests that HAQO is the active toxic substance for C. fasciculata.  相似文献   

18.
S A Winkle  I Tinoco 《Biochemistry》1978,17(7):1352-1356
The interactions of 4-nitroquinoline 1-oxide (NQO) with the four 5'-deoxyribonucleotides were probed using absorption spectra of the charge transfer bands and 1H and 13C nuclear magnetic resonance (NMR) spectra of nucleotide-NQO mixtures. Spectral data yielded equilibrium constants (K(dpG:NQO) = 16 M-1, K(dpA:NQO) = 12 M-1, K(dpT:NQO) = K(dpC:NQO) = 4 M-1) which suggest the preference of NQO for the guanine residue in a DNA. This is in agreement with the data of Okano, T., et al. [(1969) Gann 60, 295]. From 13C and 1H NMR data on nucleosides, a structure for the dpG:NQO complex is proposed.  相似文献   

19.
The effects of 4-nitroquinoline 1-oxide (4NQO), a well known carcinogenic compound, on the DNA-protein complex and DNA Folding Proteins were investigated. FM3A cells were treated with 10(-6) M or 10(-5) M 4NQO for 30 min. Treatment with the 10(-6) M concentration was confirmed to cause the sedimentation of the DNA-protein complex to become slower. DNA Folding Proteins were then isolated from 4NQO-treated and untreated control cells and analyzed by SDS-polyacrylamide gel electrophoresis. No appreciable differences in the amounts of the major components of DNA Folding Proteins could be found due to 4NQO-treatment, but the 92 K protein was induced in DNA-protein complex by treatment with 4NQO.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号