首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Distal urinary acidification is thought to be mediated by an H+-ATPase sensitive to N-ethylmaleimide and dicyclohexyl-carbodiimide. We have studied the effect of chronic metabolic acidosis (NH4Cl for 3 days) or respiratory acidosis (inhalation of 10% CO2 for 2 days) on the H+-ATPase of plasma membranes prepared from the medulla. The enzymatic assay for the H+-ATPase was performed in the presence of ouabain and oligomycin and in the absence of Ca. H+-transport activity was assessed by the quenching of acridine orange in the presence of ATP. The 15-25% sucrose gradient fraction was enriched 40-fold in enzymatic activity over the homogenate, and 8-fold in enzymatic activity and 4-fold in H+-transport activity over the fluffy fraction (38,000 X g). Metabolic acidosis (pH less than 7.31) or chronic hypercapnia (PCO2 greater than 66 mmHg; 1 mmHg = 133.3 Pa) was induced for 2-3 days. Both groups showed the same enrichment factor in enzymatic and H+-transport assays as the control rabbits. Enzymatic and H+-transport activities, however, were not different between animals with respiratory acidosis and controls. Kinetic studies failed to disclose an increase in Vmax (673 vs. 702 mumol/(mg protein.min] or a decrease in Km (0.43 vs. 0.48 mM) in chronic hypercapnia as compared with controls. Metabolic acidosis also failed to increase H+-ATPase activity. These data demonstrate that the H+-ATPase of renal medulla does not display the expected increase in activity during acidosis. The role of this H+-ATPase in the adaptation to acidosis remains to be determined.  相似文献   

2.
3.
4.
5.
Recently, we showed that both acute metabolic acidosis and respiratory acidosis stimulate parathyroid hormone (PTH) secretion in the dog. To evaluate the specific effect of acidosis, ionized calcium (iCa) was clamped at a normal value. Because iCa values normally increase during acute acidosis, we now have studied the PTH response to acute metabolic and respiratory acidosis in dogs in which the iCa concentration was allowed to increase (nonclamped) compared with dogs with a normal iCa concentration (clamped). Five groups of dogs were studied: control, metabolic (clamped and nonclamped), and respiratory (clamped and nonclamped) acidosis. Metabolic (HCl infusion) and respiratory (hypoventilation) acidosis was progressively induced during 60 min. In the two clamped groups, iCa was maintained at a normal value with an EDTA infusion. Both metabolic and respiratory acidosis increased (P < 0.05) iCa values in nonclamped groups. In metabolic acidosis, the increase in iCa was progressive and greater (P < 0.05) than in respiratory acidosis, in which iCa increased by 0.04 mM and then remained constant despite further pH reductions. The increase in PTH values was greater (P < 0.05) in clamped than in nonclamped groups (metabolic and respiratory acidosis). In the nonclamped metabolic acidosis group, PTH values first increased and then decreased from peak values when iCa increased by > 0.1 mM. In the nonclamped respiratory acidosis group, PTH values exceeded (P < 0.05) baseline values only after iCa values stopped increasing at a pH of 7.30. For the same increase in iCa in the nonclamped groups, PTH values increased more in metabolic acidosis. In conclusion, 1) both metabolic acidosis and respiratory acidosis stimulate PTH secretion; 2) the physiological increase in the iCa concentration during the induction of metabolic and respiratory acidosis reduces the magnitude of the PTH increase; 3) in metabolic acidosis, the increase in the iCa concentration can be of sufficient magnitude to reverse the increase in PTH values; and 4) for the same degree of acidosis-induced hypercalcemia, the increase in PTH values is greater in metabolic than in respiratory acidosis.  相似文献   

6.
7.
8.
The control of renal medullary perfusion and the impact of alterations in medullary blood flow on renal function have been topics of research interest for almost four decades. Many studies have examined the vascular architecture of the renal medulla, the factors that regulate renal medullary blood flow, and the influence of medullary perfusion on sodium and water excretion and arterial pressure. Despite these studies, there are still a number of important unanswered questions in regard to the control of medullary perfusion and the influence of medullary blood flow on renal excretory function and blood pressure. This review will first address the vascular architecture of the renal medulla and the potential mechanisms whereby medullary perfusion may be regulated. The known extrarenal and local systems that influence the medullary vasculature will then be summarized. Finally, this review will present an overview of the evidence supporting the concept that selective changes in medullary perfusion can have a potent influence on sodium and water excretion with a long-term influence on arterial blood pressure regulation.  相似文献   

9.
10.
Furosemide and cerebrospinal fluid ions during acute respiratory acidosis   总被引:2,自引:0,他引:2  
The purpose of this study was to investigate the effects of furosemide, an inhibitor of NaCl cotransport, on cisternal cerebrospinal fluid (CSF) acid-base balance during acute respiratory acidosis (ARA). We measured blood and CSF acid-base variables in two groups (n = 7 in each) of anesthetized, paralyzed, and mechanically ventilated dogs with bilateral ligation of renal pedicles (to eliminate saluresis). After base-line samples were obtained (-1 h), furosemide (50 mg/kg) was administered intravenously within 15 min (group II); group I received an equal volume of half-normal saline. ARA was induced 1 h later (0 h) and arterial CO2 tension was maintained between 55 and 60 Torr for 5 h. Mean cisternal CSF PCO2 was 42.8 +/- 2.6 and 39.5 +/- 1.7 Torr, respectively in groups I and II and rose approximately 20 Torr during ARA. In group I, CSF [HCO3-] was 22.0 +/- 1.0, 24.8 +/- 0.6, and 25.4 +/- 1.6 meq/l, respectively at 0, 2.5, and 5 h. Respective values for group II were 22.2 +/- 1.3, 24.3 +/- 1.8, and 24.6 +/- 1.0 meq/l. These values were not significantly different from each other. In each group, CSF [Na+-Cl-] increased significantly during ARA, but the changes were not significantly different when the two groups were compared. We conclude that furosemide at the dose used in the present study does not change ionic composition and acid-base balance of cisternal CSF compared with control. Because changes in CSF [Na+-Cl-] during ARA were similar in both groups, any inhibition of Cl- influx into CSF by furosemide should have been proportional to that of Na+.  相似文献   

11.
Larval Ambystoma tigrinum were examined to determine their cardiovascular responses to three types of acidosis: metabolic acidosis via NH4Cl gavage; respiratory acidosis via hypercapnia; and anesthetic-induced acidosis, via triacine methanesulphonate. In addition, another group of (metabolic acidosis) animals were tested to determine the role of -mediated catecholamine control on cardiovascular and acid-base regulation. The metabolic and respiratory acidoses produced typical amphibian responses. Anesthesia produced a significant mixed acidosis with respiratory and metabolic components. The cardiovascular responses to metabolic and respiratory acidosis were increased heart rate and pulse pressure. There were no significant changes in diastolic pressure, however, systolic pressure increased as a result of the increased pulse pressure. Animals subjected to metabolic acidosis via -blockade with propranolol did not display the increased heart rate and pulse pressure and the acidosis was deepened and prolonged. Anesthesia resulted in a cardiac slowing and increased pulse pressure, probably explained by the Frank-Starling relationship. There was no change in diastolic pressure. Anesthetized animals had depressed blood O2 tension and elevated blood lactate.Abbreviations HR heart rate - RBC red blood cell(s) - TMS triacine methanesulphonate  相似文献   

12.
13.
14.
15.
16.
17.
The present study investigates the integrity of the blood-brain barrier to H+ or HCO3- during acute plasma acidosis in 35 newborn piglets anesthetized with pentobarbital sodium. Cerebrospinal fluid acid-base balance, cerebral blood flow (CBF), and cerebral oxygenation were measured after infusion of HCl (0.6 N, 0.191-0.388 ml/min) for a period of 1 h at a constant arterial PCO2 of 35-40 Torr. HCl infusion resulted in decreased arterial pH from 7.38 +/- 0.01 to 7.00 +/- 0.02 (P less than 0.01). CBF measured by the tracer microsphere technique was decreased by 12% from 69 +/- 6 to 61 +/- 4 ml.min-1.100 g-1 (P less than 0.05). Infusion of 0.6 N NaCl as a hypertonic control had no effect on CBF. Cerebral metabolic rate for O2 and O2 extraction was not significantly changed from control (3.83 +/- 0.20 ml.min-1.100 g-1 and 5.7 +/- 0.6 ml/100 ml, respectively) during acid infusion. Cerebral venous PO2 was increased from 41.6 +/- 2.1 to 53.8 +/- 4.0 Torr by HCl infusion (P less than 0.02) associated with a shift in O2-hemoglobin affinity of blood in vivo from 38 +/- 2 to 50 +/- 1 Torr. Cisternal cerebrospinal fluid pH decreased from 7.336 +/- 0.014 to 7.226 +/- 0.027 (P less than 0.005), but cerebrospinal fluid HCO3- concentration was not changed from control (25.4 +/- 1.0 meq/l). These data suggest that there is a functional blood-brain barrier in newborn piglets, that is relatively impermeable to HCO3- or H+ and maintains cerebral perivascular pH constant in the face of acute severe arterial acidosis. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
20.
The structural responses of cells in the distal convoluted, connecting, and collecting tubule to acute acid/base changes were investigated by electron microscopy. Acute metabolic acidosis was induced by administration of ammonium chloride, and acute metabolic alkalosis by potassium or sodium bicarbonate. Morphometric analyses were performed on micrographs of randomly selected distal nephron cells. No structural responses were found in distal convoluted tubule cells, connecting tubule cells, or principal cells but prominent changes were observed in intercalated cells (I cells). Thus, the surface density of the luminal membrane in I cells was significantly higher in acidotic animals and lower in KHCO3 alkalotic animals than in controls. On the contrary, the surface density of the membrane that bounds apical vesicles was higher in KHCO3 alkalotic and lower in acidotic animals than in controls. These results suggest that the luminal membrane is internalized during alkalosis and that the membrane that bounds apical vesicles is transferred to the luminal membrane during acidosis. Since a proton translocating ATPase may be present in the luminal membrane the observations are consistent with the possibility that cortical I cells participate in the maintenance of acid/base homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号