首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The release of H+ during the oxalate-supported Ca2+ uptake in sarcoplasmic reticulum vesicles is kinetically coincident with the initial phase of Ca2+ accumulation. The Ca2+ uptake is increased and the H+ release is decreased in the presence of KCl and other monovalent chloride salts as expected for a H+-monovalent cation exchange. The functioning of the Ca2+-pump is disturbed by the presence of potassium gluconate and, to a lesser extent, of choline chloride. These salts do not inhibit the ATPase activity of Ca2+-permeable vesicles, suggesting a charge imbalance inhibition which is specially relevant in the case of gluconate. Therefore, K+, and also Cl, appear to be involved in secondary fluxes during the active accumulation of Ca2+. The microsomal preparation seems homogeneous with respect to the K+-channel, showing an apparent rate constant for K+ release of approximately 25 s–1 measured with the aid of86Rb+ tracer under equilibrium conditions. A Rb+ efflux, sensitive to Ca2+-ionophore, can be also detected during the active accumulation of Ca2+. The experimental data suggest that both monovalent cations and anions are involved in a charge compensation during the Ca2+ uptake and H+ release. Fluxes of these highly permeable ions would contribute to cancel the formation of a resting membrane potential through the sarcoplasmic reticulum membrane.  相似文献   

2.
Summary To study the physiological role of the bidirectionally operating, furosemide-sensitive Na+/K+ transport system of human erythrocytes, the effect of furosemide on red cell cation and hemoglobin content was determined in cells incubated for 24 hr with ouabain in 145mm NaCl media containing 0 to 10mm K+ or Rb+. In pure Na+ media, furosemide accelerated cell Na+ gain and retarded cellular K+ loss. External K+ (5mm) had an effect similar to furosemide and markedly reduced the action of the drug on cellular cation content. External Rb+ accelerated the Na+ gain like K+, but did not affect the K+ retention induced by furosemide. The data are interpreted to indicate that the furosemide-sensitive Na+/K+ transport system of human erythrocytes mediates an equimolar extrusion of Na+ and K+ in Na+ media (Na+/K+ cotransport), a 1:1 K+/K+ (K+/Rb+) and Na+/Na+ exchange progressively appearing upon increasing external K+ (Rb+) concentrations to 5mm. The effect of furosemide (or external K+/Rb+) on cation contents was associated with a prevention of the cell shrinkage seen in pure Na+ media, or with a cell swelling, indicating that the furosemide-sensitive Na+/K+ transport system is involved in the control of cell volume of human erythrocytes. The action of furosemide on cellular volume and cation content tended to disappear at 5mm external K+ or Rb+. Thein vivo red cell K+ content was negatively correlated to the rate of furosemide-sensitive K+ (Rb+) uptake, and a positive correlation was seen between mean cellular hemoglobin content and furosemide-sensitive transport activity. The transport system possibly functions as a K+ and waterextruding mechanism under physiological conditiosin vivo. The red cell Na+ content showed no correlation to the activity of the furosemide-sensitive transport system.  相似文献   

3.
Summary Rapid uptake of Ba2+ by respiring rat liver mitochondria is accompanied by a transient stimulation of respiration. Following accumulation of Ba2+, e.g. at a concentration of 120 nmol per mg protein, the mitochondria exhibit reduced rates of state 3 and uncoupler-stimulated respiration. ADP-stimulated respiration is inhibited at a lower concentration of Ba2+ than is required to affect uncoupler-stimulated respiration, suggesting a distinct effect of Ba2+ on mechanisms involved in synthesis of ATP. Ba2+, which has an ionic radius similar to that of K+, inhibits unidirectional K+ flux into respiring rat liver mitochondria. This effect on K+ influx is observable at concentrations of Ba2+, e.g. 23 to 37 nmol per mg protein, which cause no significant change in state 4 or uncoupler-stimulated respiration. The accumulated Ba2+ decreases the measuredV max of K+ influx, while having little effect on the apparentK m for K+. The inhibition of K+ influx by Ba2+ is seen in the presence and absence of mersalyl, an activator of K+ influx. In contrast, under the conditions studied, Ba2+ has no apparent effet on the rate of unidirectional K+ efflux. These data are consistent with the idea that K+ may enter and leave mitochondria via spearate mechanisms.  相似文献   

4.
Summary Addition of glucose or the nonmetabolizable analogue -methyl-d-glucoside to rabbit proximal tubules suspended in a glucoseand alanine-free buffer caused a sustained increase in intracellular Na+ content (+43±7 nmol · (mg protein)–1) and a concomitant but larger decrease in K+ content (–72±11 nmol· (mg protein)–1). A component of the net K+ efflux was Ba2+ insensitive, and was inhibited by high (1mm) but not low (10 m) concentrations of the diuretics, furosemide and bumetanide. The increase in intracellular Na+ content is consistent with the view that the increased rates of Na+ and water transport seen in the proximal tubule in the presence of glucose can be attributed (at least in part) to a stimulation of basolateral pump activity by an increased [Na+] i .  相似文献   

5.
Summary The apical membrane of rabbit urinary bladder can be functionally removed by application of nystatin at high concentration if the mucosal surface of the tissue is bathed in a saline which mimics intracellular ion concentrations. Under these conditions, the tissue is as far as the movement of univalent ions no more than a sheet of basolateral membrane with some tight junctional membrane in parallel. In this manner the Na+ concentration at the inner surface of the basolateral membrane can be varied by altering the concentration in the mucosal bulk solution. When this was done both mucosal-to-serosal22Na flux and net change in basolateral current were measured. The flux and the current could be further divided into the components of each that were either blocked by ouabain or insensitive to ouabain. Ouabain-insensitive mucosal-to-serosal Na+ flux was a linear function of mucosal Na+ concentration. Ouabain-sensitive Na+ flux and ouabain-sensitive, Na+-induced current both display a saturating relationship which cannot be accounted for by the presence of unstirred layers. If the interaction of Na+ with the basolateral transport process is assumed to involve the interaction of some number of Na+ ions,n, with a maximal flux,M max, then the data can be fit by assuming 3.2 equivalent sites for interaction and a value forM max of 287.8pm cm–2 sec–1 with an intracellular Na concentration of 2.0mm Na+ at half-maximal saturation. By comparing these values with the ouabain-sensitive, Na+-induced current, we calculate a Na+ to K+ coupling ratio of 1.40±0.07 for the transport process.  相似文献   

6.
Summary Models for active Cl transport across epithelia are often assumed to be universal although they are based on detailed studies of a relatively small number of epithelia from vertebrate animals. Epithelial Cl transport is also important in many invertebrates, but little is known regarding its cellular mechanisms. We used short-circuit current, tracer fluxes and ion substitutions to investigate the basic properties of Cl absorption by locust hindgut, an epithelium which is ideally suited for transport studies. Serosal addition of 1mm adenosine 35-cyclic monophosphate (cAMP), a known stimulant of Cl transport in this tissue, increased short-circuit current (I sc) and net reabsorptive36Cl flux (J net Cl ) by 1000%. Cl absorption did not exhibit an exchange diffusion component and was highly selective over all anions tested except Br. Several predictions of Na- and HCO3-coupled models for Cl transport were tested: Cl-dependentI sc was not affected by sodium removal (<0.05mm) during the first 75 min. Also, a large stimulation ofJ net Cl was elicited by cAMP when recta were bathed for 6 hr in nominally Na-free saline (<0.001 to 0.2mm) and there was no correlation between Cl transport rate and the presence of micromolar quantities of Na contamination. Increased unidirectional influx of36Cl into rectal tissue during cAMP-stimulation was not accompanied by a comparable uptake of22Na.J net Cl was independent of exogenous CO2 and HCO3, but was strongly dependent on the presence of K. These results suggest that the major fraction of Cl transport across this insect epithelium occurs by an unusual K-dependent mechanism that does not directly require Na or HCO3.  相似文献   

7.
The kinetic properties of a microsomal gill (Na+,K+)-ATPase from the blue crab Callinectes danae were analyzed using the substrate p-nitrophenylphosphate. The (Na+,K+)-ATPase hydrolyzed PNPP obeying cooperative kinetics (n=1.5) at a rate of V=125.4±7.5 U mg−1 with K0.5=1.2±0.1 mmol l−1; stimulation by potassium (V=121.0±6.1 U mg−1; K0.5=2.1±0.1 mmol l−1) and magnesium ions (V=125.3±6.3 U mg−1; K0.5=1.0±0.1 mmol l−1) was cooperative. Ammonium ions also stimulated the enzyme through site–site interactions (nH=2.7) to a rate of V=126.1±4.8 U mg−1 with K0.5=13.7±0.5 mmol l−1. However, K+-phosphatase activity was not stimulated further by K+ plus NH4+ ions. Sodium ions (KI=36.7±1.7 mmol l−1), ouabain (KI=830.3±42.5 μmol l−1) and orthovanadate (KI=34.0±1.4 nmol l−1) completely inhibited K+-phosphatase activity. The competitive inhibition by ATP (KI=57.2±2.6 μmol l−1) of PNPPase activity suggests that both substrates are hydrolyzed at the same site on the enzyme. These data reveal that the K+-phosphatase activity corresponds strictly to a (Na+,K+)-ATPase in C. danae gill tissue. This is the first known kinetic characterization of K+-phosphatase activity in the portunid crab C. danae and should provide a useful tool for comparative studies.  相似文献   

8.
Summary Transbasal electrical potential (V b) and intraepithelial potassium chemical activity ((K+) i ) were measured in isolated midgut epithelium of tobacco hornworm (Manduca sexta) using double-barrelled glass microelectrodes. Values ofV b ranging from +8 to –48 mV (relative to blood side) were recorded. For all sites, (K+) i is within a few millivolts of electrochemical equilibrium with the blood side bathing solution. Sites more negative than –20 mV show relatively high sensitivity ofV b to changes in blood side K+ concentration: 43% of these sites can be marked successfully with iontophoresed Lucifer yellow CH dye and shown to represent epithelial cells of all three types present in the midgut. In about half of successful marks, dye-coupling of several adjacent cells is seen. Low potential sites — those withV b less negative than –20 mV —typically do not show high sensitivity ofVb to changes of external K+, but rather (K+) i rapidly approaches the K+ activity of blood side bathing solution. These sites can seldom be marked with Lucifer yellow (4% success). The mean (K+) i of the high potential sites is 95±29 (sd)mm under standard conditions, a value which is in accord with published values for the whole tissue.  相似文献   

9.
The chick blastoderm at the stage of late gastrula is a flat disc formed by three cell layers and exhibiting epithelial properties. Blastoderms were cultured in miniature chambers and their electrophysiological characteristics were determined under Ussing conditions.Under open-circuit condition and identical physiological solutions on both sides, spontaneous transblastodermal potential difference (V oc) of –7.5±3.3 mV (ventral side positive) was measured. Under short-circuit condition (transblastodermal V = 0 mV), the blastoderm generated short-circuit current (I sc) of 21±8 A/cm2, which was entirely dependent on extracellular sodium, sensitive to ouabain applied ventrally and independent of extracellular chloride. The net transblastodermal Na+ flux fully accounted for the measured I sc, both under control conditions and with ouabain. The total transblastodermal resistance (R tot) was 390±125 cm2.Frequently, the V oc, I sc and R tot showed spontaneous oscillations with a period of 4–5 min. Removal of endoderm and mesoderm did not significantly affect the electrical properties, indicating that the electrogenic sodium transport is generated by the ectoderm.The V oc and I sc measured in the area pellucida (–1.3±0.8 mV, 9.3±4.4 A/cm2) and extraembryonic area opaca (–7.8±1.1 mV, 31.2±12.7 A/cm2) were significantly different. Such a heterogeneous distribution of electrical properties can explain the presence in the blastoderm of extracellular electrical currents found by using a vibrating probe.This work was supported by the Swiss National Research Foundation (grant. 3.418-0.86 to P.K.) and by Roche Research Foundation (grant. to U.K.). We thank Drs. E. Raddatz and Y. de Ribaupierre for helpful discussions.  相似文献   

10.
The kinetics of K+ efflux across the membranes of i) wild-type Escherichia coli poisoned by the thiol reagent N-ethylmaleimide, ii) K+ retention mutants and iii) glutathione-deficient mutants, have revealed a common K+ leaky phenotype; it is characterized by a very high rate of K+ efflux. The results suggest that the products of kefB and kefC genes could encode two K+ channels, both gated by glutathione. The possible function of these K+ channels seems to be a K+ exit controlled by the redox state of the cell; indeed, it can be inferred from the effects of several oxidants and reductants that turning on and off of the K+ efflux mediated by the channels can be correlated with the redox state of glutathione.  相似文献   

11.
12.
Summary The interaction of noradrenaline, various cation chelators and calcium on Na+, K+-ATPase from rat cerebral cortex plasma membranes was studied. It was shown that chelation of inhibitory cations by EGTA, EDTA and dipyridyl activated Na+, K+-ATPase to the same extent as noradrenaline but at higher concentrations; increasing concentrations of EGTA depressed the activation by noradrenaline; calcium in the form of a calcium-EGTA buffer depressed Na+, K+-ATPase at physiological concentrations; the inhibition of Na+, K+-ATPase by calcium is dependent on the magnesium concentration in the assay and the inhibition by calcium was partially reversed by noradrenaline.  相似文献   

13.
Summary The effects of temperature and pressure on Na+/K+-adenosine triphosphatases (Na+/K+-ATPases) from gills of marine teleost fishes were examined over a range of temperatures (10–25°C) and pressures (1–680 atm). The relationship between gill membrane fluidity and Na+/K+-ATPase activity was studied using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH). The increase in temperature required to offset the membrane ordering effects of high pressure was 0.015–0.025°C·atm-1, the same coefficient that applied to Na+/K+-ATPase activities. Thus, temperature-pressure combinations yielding the same Na+/K+-ATPase activity also gave similar estimates of membrane fluidity. Substituion of endogenous lipids with lipids of different composition altered the pressure responses of Na+/K+-ATPase. Na+/K+-adenosine triphosphatase became more sensitive to pressure in the presence of chicken egg phosphatidylcholine, but phospholipids isolated from fish gills reduced the inhibition by pressure of Na+/K+-ATPase. Cholesterol increased enzyme pressure sensitivity. Membrane fluidity and pressure sensitivity of Na+/K+-ATPase were correlated, but the effects of pressure also dependent on the source of the enzyme. Our results suggest that pressure adaptation of Na+/K+-ATPase is the result of both changes in the primary structure of the protein and homeoviscous adaptation of the lipid environment.Abbreviations EDTA; DPH 1,6-diphenyl-1,3,5-hexatriene - PC phosphatidylcholine - PL phospholipid - SDH succinate dehydrogenase  相似文献   

14.
Kinetics and inhibition of Na+/K+-ATPase and Mg2+-ATPase activity from rat synaptic plasma membrane (SPM), by separate and simultaneous exposure to transition (Cu2+, Zn2+, Fe2+ and.Co2+) and heavy metals (Hg2+and Pb2+) ions were studied. All investigated metals produced a larger maximum inhibition of Na+/K+-ATPase than Mg2+-ATPase activity. The free concentrations of the key species (inhibitor, MgATP2 ? , MeATP2 ? ) in the medium assay were calculated and discussed. Simultaneous exposure to the combinations Cu2+/Fe2+ or Hg2+/Pb2+caused additive inhibition, while Cu2+/Zn2+ or Fe2+/Zn2+ inhibited Na+/K+-ATPase activity synergistically (i.e., greater than the sum metal-induced inhibition assayed separately). Simultaneous exposure to Cu2+/Fe2+ or Cu2+/Zn2+ inhibited Mg2+-ATPase activity synergistically, while Hg2+/Pb2+ or Fe2+/Zn2+ induced antagonistic inhibition of this enzyme. Kinetic analysis showed that all investigated metals inhibited Na+/K+-ATPase activity by reducing the maximum velocities (Vmax) rather than the apparent affinity (Km) for substrate MgATP2-, implying the noncompetitive nature of the inhibition. The incomplete inhibition of Mg2+-ATPase activity by Zn2+, Fe2+ and Co2+ as well as kinetic analysis indicated two distinct Mg2+-ATPase subtypes activated in the presence of low and high MgATP2 ? concentration. EDTA, L-cysteine and gluthathione (GSH) prevented metal ion-induced inhibition of Na+/K+-ATPase with various potencies. Furthermore, these ligands also reversed Na+/K+-ATPase activity inhibited by transition metals in a concentration-dependent manner, but a recovery effect by any ligand on Hg2+-induced inhibition was not obtained.  相似文献   

15.
Summary The effect of extracellular and intracellular Na+ (Na o + , Na i + ) on ouabain-resistant, furosemide-sensitive (FS) Rb+ transport was studied in human erythrocytes under varying experimental conditions. The results obtained are consistent with the view that a (1 Na++1 K++2 Cl) cotransport system operates in two different modes: modei) promoting bidirectional 11 (Na+–K+) cotransport, and modeii) a Na o + -independent 11 K o + /K i + exchange requiring Na i + which, however, is not extruded. The activities of the two modes of operation vary strictly in parallel to each other among erythrocytes of different donors and in cell fractions of individual donors separated according to density. Rb+ uptake through Rb o + /K i + exchange contributes about 25% to total Rb+ uptake in 145mm NaCl media containing 5mm RbCl at normal Na i + (pH 7.4). Na+–K+ cotransport into the cells occurs largely additive to K+/K+ exchange. Inward Na+–Rb+ cotransport exhibits a substrate inhibition at high Rb o + . With increasing pH, the maximum rate of cotransport is accelerated at the expense of K+/K+ exchange (apparent pK close to pH 7.4). The apparentK m Rb o + of Na+–K+ cotransport is low (2mm) and almost independent of pH, and high for K+/K+ exchange (10 to 15mm), the affinity increasing with pH. The two modes are discussed in terms of a partial reaction scheme of (1 Na++1 K++2 Cl) cotransport with ordered binding and debinding, exhibiting a glide symmetry (first on outside = first off inside) as proposed by McManus for duck erythrocytes (McManus, T.J., 1987,Fed. Proc., in press). N-ethylmaleimide (NEM) chemically induces a Cl-dependent K+ transport pathway that is independent of both Na o + and Na i + . This pathway differs in many properties from the basal, Na o + -independent K+/K+ exchange active in untreated human erythrocytes at normal cell volume. Cell swelling accelerates a Na o + -independent FS K+ transport pathway which most probably is not identical to basal K+/K+ exchange. K o + o +
  • o + o 2+ reduce furosemide-resistant Rb+ inward leakage relative to choline o + .  相似文献   

  • 16.
    The Shaker B K(+) conductance (G(K)) collapses (in a reversible manner) if the membrane is depolarized and then repolarized in, 0 K(+), Na(+)-containing solutions (Gómez-Lagunas, F. 1997. J. Physiol. 499:3-15; Gómez-Lagunas, F. 1999. Biophys. J. 77:2988-2998). In this work, the role of Na(+) ions in the collapse of G(K) in 0-K(+) solutions, and in the behavior of the channels in low K(+) was studied. The main findings are as follows. First, in 0-K(+) solutions, the presence of Na(+) ions is an important factor that speeds the collapse of G(K). Second, external Na(+) fosters the drop of G(K) by binding to a site with a K(d) = 3.3 mM. External K(+) competes, in a mutually exclusive manner, with Na(o)(+) for binding to this site, with an estimated K(d) = 80 microM. Third, NMG and choline are relatively inert regarding the stability of G(K); fourth, with [K(o)(+)] = 0, the energy required to relieve Na(i)(+) block of Shaker (French, R.J., and J.B. Wells. 1977. J. Gen. Physiol. 70:707-724; Starkus, J.G., L. Kuschel, M. Rayner, and S. Heinemann. 2000. J. Gen. Physiol. 110:539-550) decreases with the molar fraction of Na(i)(+) (X(Na,i)), in an extent not accounted for by the change in Delta(mu)(Na). Finally, when X(Na,i) = 1, G(K) collapses by the binding of Na(i)(+) to two sites, with apparent K(d)s of 2 and 14.3 mM.  相似文献   

    17.
    The mode of action of propranolol, chlorpromazine, and quinine, three cationic drugs inhibiting swelling of yeast mitochondria in potassium acetate, was investigated by looking at their effect on fluorescent probes of the polar heads and of the nonpolar moiety of the membranes, under inhibitory conditions of swelling. As expected, propranolol and chlorpromazine exhibited specificity for anionic phospholipids since they increased the binding of the anionic probe 1-anilino 8-naphthalenesulfonate (ANS). Although propranolol did not release 1,6-diphenyl-1,3,5-hexatriene (DPH) from the hydrophobic moiety of the membrane, it increased the excimer/ monomer fluorescence ratio of 10-(1-pyrene)decanoate, suggesting that it induced a limitation in the movements of the aliphatic chains of phospholipids. Opposite to propranolol, chlorpromazine removed DPH from the membrane, suggesting that it bound essentially to the hydrophobic moiety. However, chloramphenicol, which was also able to remove DPH but did not increase the binding of ANS, did not inhibit swelling. Inhibition by chlorpromazine therefore appeared to be related to its binding to the hydrophobic moiety of anionic phospholipids. Quinine had no effect on membrane properties: at inhibitory concentrations of swelling in potassium acetate, it did not inhibit swelling in ammonium phosphate (mediated by the phosphate/H+ cotransporter), whereas propranolol and chlorpromazine did, suggesting a more specific effect of quinine on (a) protein(s) involved in the K+/H+ exchange. Dicyclohexylcarbodiimide (DCCD), which irreversibly inhibits the swelling in potassium acetate, bound to ethanolamine heads; despite this effect, DCCD had no major consequences on the binding of the probes. Consequently, propranolol and chlorpromazine are of no help for characterizing protein(s) catalyzing the K+/H+ exchange, although their effect on lipids seems to involve limited zones of the inner mitochondrial membrane. Quinine and DCCD, although they also bind to lipids, may inhibit the activity by acting on a limited number of proteins.  相似文献   

    18.
    Summary A simple procedure was developed for the isolation of a sarcolemma-enriched membrane preparation from homogenates of bullfrog (Rana catesbeiana) heart. Crude microsomes obtained by differential centrifugation were fractionated in Hypaque density gradients. The fraction enriched in surface membrane markers consisted of 87% tightly sealed vesicles. The uptake of86Rb+ by the preparation was measured in the presence of an opposing K+ gradient using a rapid ion exchange technique. At low extravesicular Rb+ concentrations, at least 50% of the uptake was blocked by addition of 1mm ouabain to the assay medium. Orthovanadate (50 m), ADP (2.5mm), or Mg (1mm) were also partial inhibitors of Rb+ uptake under these conditions, and produced a complete block of Rb+ influx in the presence of 1mm ouabain. When86Rb+ was used as a tracer of extravesicular K+ (Rb 0 + 40 m K 0 + =0.1–5mm) a distinct uptake pathway emerged, as detected by its inhibition by 1mm Ba2+ (K 0.5=20 m). At a constant internal K+ concentration (K in + =50mm) the magnitude of the Ba2+-sensitive K+ uptake was found to depend on K 0 + in a manner that closely resembles the K+ concentration dependence of the background K+ conductance (I Kl) observed electrophysiologically in intact cardiac cells. We conclude that K+ permeates passively this preparation through two distinct pathways, the sodium pump and a system identifiable as the background potassium channel.  相似文献   

    19.
    Summary Patch-clamp studies of cytoplasmic drops from the charophyteChara australis have previously revealed K+ channels combining high conductance (170 pS) with high selectivity for K+, which are voltage activated. The cation-selectivity sequence of the channel is shown here to be: K+>Rb+>NH 4 + Na+ and Cl. Divalent cytosolic ions reduce the K+ conductance of this channel and alter its K+ gating in a voltage-dependent manner. The order of blocking potency is Ba2+>Sr2+>Ca2+>Mg2+. The channel is activated by micromolar cytosolic Ca2+, an activation that is found to be only weakly voltage dependent. However, the concentration dependence of calcium activation is quite pronounced, having a Hill coefficient of three, equivalent to three bound Ca2+ needed to open the channel. The possible role of the Ca2+-activated K+ channel in the tonoplast ofChara is discussed.  相似文献   

    20.
    Neuronal activity results in release of K+ into the extracellular space of the central nervous system. If the excess K+ is allowed to accumulate, neuronal firing will be compromised by the ensuing neuronal membrane depolarization. The surrounding glial cells are involved in clearing K+ from the extracellular space by molecular mechanism(s), the identity of which have been a matter of controversy for over half a century. Kir4.1-mediated spatial buffering of K+ has been promoted as a major contributor to K+ removal although its quantitative and temporal contribution has remained undefined. We discuss the biophysical and experimental challenges regarding determination of the contribution of Kir4.1 to extracellular K+ management during neuronal activity. It is concluded that 1) the geometry of the experimental preparation is crucial for detection of Kir4.1-mediated spatial buffering and 2) Kir4.1 enacts spatial buffering of K+ during but not after neuronal activity.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号