首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular endothelial growth factor (VEGF) appears to be a critical cytokine modulating the growth and spread of Kaposi's sarcoma (KS). Furthermore, infection with the KS herpes virus results in up-regulation of VEGF and triggering of VEGF receptor activation. The molecular mechanisms regulating such cytokine-driven proliferation of KS cells are not well characterized. We investigated the role of Src-related tyrosine kinases in VEGF-mediated signaling in model KS 38 tumor cells. VEGF stimulation specifically activated c-Src kinase activity but not that of other related Src kinases such as Lyn, Fyn, or Hck in KS cells. Pyrazolopyrimidine, a selective inhibitor of Src family tyrosine kinases, significantly blocked the VEGF-induced growth of KS cells. Further studies using mutants of c-Src kinase revealed that Src mediates mitogen-activated protein kinase activation induced by VEGF. We also observed that VEGF stimulation resulted in increased tyrosine phosphorylation of the focal adhesion components paxillin and p130cas. Furthermore, VEGF induction enhanced the complex formation between Src kinase and paxillin. Src kinase appears to play an important functional role in VEGF-induced signaling in KS cells and may act to link pathways from the VEGF receptor to mitogen-activated protein kinase and cytoskeletal components, thereby effecting tumor proliferation and migration.  相似文献   

2.
The intracellular events which are involved in controlling the G1 to S phase transition during the eucaryotic cell cycle are important to define in order to understand the mechanisms by which mitogenic and growth arrest-inducing agents control cell growth. Because a change in protein kinase activity is associated with the initial response of cells to mitogenic stimulants and growth factors, we used a kinase renaturation assay to identify specific protein kinases which are modulated as human T cells make the G1 to S phase transition after mitogenic stimulation with lectin. We identified four protein serine/threonine kinases of 180, 97, 85, and 38 kilodaltons which are increased in activity as these cells enter S phase. A-55 kDa serine/threonine kinase (PK55) was shown to have maximal activity during G0 and its activity was reduced by 95% upon movement into S phase. PK55 is inducible in human T cells by removal of interleukin 2 and low serum incubation which arrests cells in G1 phase, indicating that it is closely associated with G1 phase growth arrest. Furthermore, a similar PK55 activity was induced upon growth arrest in HL-60 cells treated with dimethyl sulfoxide and in Daudi cells treated with interferon alpha. Because the cAMP-dependent protein kinase (PK-A) family has been shown to be antiproliferative to lectin stimulated T cells, we were interested in determining whether PK55 was in fact an isozyme of PK-A. Comparative analysis using a specific peptide inhibitor of PK-A activity revealed that PK55 is catalytically distinct from PK-A. This data suggest that increases in PK55 may be associated with the growth-arrested state and further that PK55 is distinct from PK-A.  相似文献   

3.
A cell line that we designed, AILNCaP, proliferated in androgen-depleted medium after emerging from long-term androgen-depleted cultures of an androgen-sensitive prostate cancer cell line, LNCaP. Using this cell line as a model of progression to androgen independence, we demonstrated that the activity of the mammalian target of rapamycin/p70 S6 kinase transduction pathway is down-regulated after androgen depletion in LNCaP, whereas its activation is related to transition of this cell line to androgen-independent proliferation. Kinase activity of protein kinase Czeta is regulated by androgen stimulation in LNCaP cells, whereas it is activated constitutively in AILNCaP cells under androgen-depleted conditions. Treatment with a protein kinase Czeta pseudosubstrate inhibitor reduced p70 S6 kinase activity and cell proliferation in both cell lines. We identified that both protein kinase Czeta and p70 S6 kinase were associated in LNCaP cells and this association was enhanced by the androgen stimulation. We examined the expression of phospho-protein kinase Czeta and phospho-p70 S6 kinase in hormone-naive prostate cancer specimens and found that the expression of both kinases was correlated with each other in those specimens. Significant correlation was observed between the expression of both kinases and Ki67 expression. Most of the prostate cancer cells that survived after prior hormonal treatment also expressed both kinases. This is the first report that shows the significance of this pathway for both androgen-dependent and -independent cell proliferation in prostate cancer. Our data suggest that protein kinase Czeta/mammalian target of rapamycin/S6 kinase pathway plays an important role for the transition of androgen-dependent to androgen-independent prostate cancer cells.  相似文献   

4.
Activation of the bradykinin B2 receptor in endothelial cells initiates a complex array of cellular responses mediated by diverse signaling pathways, including stimulation of the mitogen-activated protein (MAP) kinase cascade and activation of the endothelial isoform of nitric-oxide synthase (eNOS). Several protein kinases have been implicated in eNOS regulation, but the role of MAP kinases remains less well understood. We explored the interactions between eNOS and components of the MAP kinase pathway in bovine aortic endothelial cells (BAEC). Using co-immunoprecipitation experiments, we isolated eNOS in a complex with the MAP kinases extracellular signal-regulated kinases 1 and 2 (ERK1/2) as well as the protein kinases Raf-1 and Akt. Within minutes of adding bradykinin to BAEC, the eNOS-Raf-1-ERK-Akt heteromeric complex dissociated, and it subsequently reassociated following more prolonged agonist stimulation. Bradykinin treatment of BAEC led to the activation of ERK, associated with an increase in phosphorylation of eNOS; phosphorylation of eNOS by ERK in vitro significantly reduced eNOS enzyme activity. Evidence for the direct phosphorylation of eNOS by MAP kinase in BAEC came from "back-phosphorylation" experiments using [gamma-(32)P]ATP and ERK in vitro to phosphorylate eNOS isolated from cells previously treated with bradykinin or the MAP kinase inhibitor PD98059. The ERK-catalyzed in vitro (32)P phosphorylation of eNOS isolated from BAEC treated with bradykinin was significantly attenuated compared with untreated cells, indicating that bradykinin treatment led to the phosphorylation of ERK-sensitive sites in cells. Conversely, eNOS isolated from endothelial cells pretreated with the MAP kinase inhibitor PD98059 showed increased ERK-promoted phosphorylation in vitro. Taken together, our results suggest that bradykinin-induced activation of ERK leads to eNOS phosphorylation and enzyme inhibition, a process influenced by the reversible associations of members of the MAP kinase pathway with eNOS.  相似文献   

5.
Treatment of adipocytes with okadaic acid (a specific inhibitor of type 1 and 2a protein phosphatases) resulted in a rapid 8-10-fold stimulation of cell extract myelin basic protein (MBP) kinase activity (t1/2 = 10 min) and kinase activity toward a synthetic peptide RRLSSLRA (S6 peptide) (t1/2 = 5 min). Insulin brought about a smaller stimulation of these two activities (t1/2 = 2.5 min). MBP kinase activity from cells treated with okadaic acid or insulin was resolved by anion exchange chromatography into two well defined peaks; S6 peptide kinase activity was less well resolved. The two partially purified MBP kinases were inactivated by the protein tyrosine phosphatase CD45 or by protein phosphatase 2a (PP-2a). In contrast, partially purified S6 peptide kinase activity was inactivated only by PP-2a or protein phosphatase 1 (PP-1). Furthermore, a 38-kDa protein which co-eluted with one peak of MBP kinase and a 42-kDa protein which co-eluted with the other peak of MBP kinase were phosphorylated on tyrosine after treatment with okadaic acid. These findings illustrate several important points concerning regulation of MBP and S6 peptide kinases. First, these protein kinases are regulated by phosphorylation, and, second, in the absence of hormonal stimuli their activities are strongly suppressed by protein phosphatases. Lastly, the increased tyrosine phosphorylation accompanying the activation of MBP kinases following okadaic acid treatment suggests a role for PP-2a in events that are mediated by tyrosine phosphorylation.  相似文献   

6.
Protein kinases 1988: a current perspective   总被引:19,自引:0,他引:19  
This review focuses on several recent developments in the field of protein kinases. In the area of protein serine/threonine kinases, much has been learned recently about protein kinase C structure and function. Novel lipid mediators, both stimulatory and inhibitory, have been discovered, and kinase has been shown to be an increasingly large family of gene products. Heterogeneity of cellular localization and function has been documented. Calcium/calmodulin-dependent protein kinases are now believed to consist of at least five enzymes, which range from those with extreme substrate specificity such as phosphorylase kinase and myosin light-chain kinases to calcium calmodulin kinase II, with several known substrates. Several of these enzymes appear to be important in synaptic transmission and, for calcium/calmodulin kinase III, in the regulation of protein synthesis. Several new examples of pseudosubstrate prototopes as endogenous kinase inhibitors have been described, including regions intrinsic to kinase primary sequences, which could serve as constitutive inhibitors of enzyme activity. In the field of protein tyrosine kinases, new enzyme species are being discovered at a rapid rate. There are several well-documented examples of kinase autophosphorylation on tyrosine leading to stimulation of catalytic activity. For the growth factor receptors with intrinsic protein tyrosine kinase activity, it now seems clear that kinase catalytic activity is necessary for most hormone effects on cells, with the general exceptions of ligand binding and, possibly, receptor cycling. Finally, several groups have recently described a close association between protein tyrosine kinases and a phosphatidylinositol kinase activity, a link that might eventually explain some of the initial steps in signal transduction that occur after kinase activation.  相似文献   

7.
In this report, we analyzed the expression and kinase activities of Csk and CHK kinases in normal breast tissues and breast tumors and their involvement in HRG-mediated signaling in breast cancer cells. Csk expression and kinase activity were abundant in normal human breast tissues, breast carcinomas, and breast cancer cell lines, whereas CHK expression was negative in normal breast tissues and low in some breast tumors and in the MCF-7 breast cancer cell line. CHK kinase activity was not detected in human breast carcinoma tissues (12 of 12) or in the MCF-7 breast cancer cell line (due to the low level of CHK protein expression), but was significantly induced upon heregulin (HRG) stimulation. We have previously shown that CHK associates with the ErbB-2/neu receptor upon HRG stimulation via its SH2 domain and that it down-regulates the ErbB-2/neu-activated Src kinases. Our new findings demonstrate that Csk has no effect on ErbB-2/neu-activated Src kinases upon HRG treatment and that its kinase activity is not modulated by HRG. CHK significantly inhibited in vitro cell growth, transformation, and invasion induced upon HRG stimulation. In addition, tumor growth of wt CHK-transfected MCF-7 cells was significantly inhibited in nude mice. Furthermore, CHK down-regulated c-Src and Lyn protein expression and kinase activity, and the entry into mitosis was delayed in the wt CHK-transfected MCF-7 cells upon HRG treatment. These results indicate that CHK, but not Csk, is involved in HRG-mediated signaling pathways, down-regulates ErbB-2/neu-activated Src kinases, and inhibits invasion and transformation of breast cancer cells upon HRG stimulation. These findings strongly suggest that CHK is a novel negative growth regulator of HRG-mediated ErbB-2/neu and Src family kinase signaling pathways in breast cancer cells.  相似文献   

8.
Primary lymphocytes can be stimulated to proliferate by mitogenic lectins such as concanavalin A (Con A). While the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) alone is not mitogenic for these cells, it can enhance the response to Con A. Previously, protein kinases and phosphorylation have been reported to be important in lymphocyte proliferation. More recently TPA has been found to bind and activate protein kinase C. Therefore, we examined kinase activity in lymphocytes stimulated with the complete mitogen Con A and the comitogen TPA. In order to monitor more than one kinase we used an in situ gel assay and developed the system to compare both protein kinase C and cAMP-dependent kinases. When total cell extracts were assayed in the presence of histone five major bands of activity were detected by autoradiography of the gel. The bands corresponding to protein kinase C and to cAMP-dependent kinases were identified by partial purification of the enzymes, by binding of [20-3H(N)]7-phorbol-12, 13-dibutyrate (3H-PDBU), and by photoaffinity labelling with 8-azidoadenosine-3':5'-cyclic monophosphate (8-N3-[32P]cAMP). Differential extraction of cell lysate allowed comparison of soluble and particulate kinases. We found that when the preparations from either TPA- or Con A-treated lymphocytes were assayed, protein kinase C activity increased three- to four-fold in the particulate fraction within 5 min after treatment. A concurrent decrease of 30-50% occurred in the cytosol. In contrast, cytosolic cAMP-dependent protein kinase II increased 1.4-fold in the same period with Con A. PKI and PKII showed the most significant changes after 24 h of stimulation by Con A when the activity of the holoenzyme decreased to half that of the unstimulated cells. Therefore, although TPA and Con A separately can affect protein kinase C this alone is not sufficient for proliferation to occur.  相似文献   

9.
We have investigated possible factors that underlie changes in the production of eicosanoids after prolonged exposure of mast cells to Ag. Ag stimulation of cultured RBL-2H3 mast cells resulted in increased expression of cyclooxygenase (COX-2) protein and message. Other eicosanoid-related enzymes, namely COX-1, 5-lipoxygenase, and cytosolic phospholipase A(2) were not induced. Activation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein (MAP) kinase preceded the induction of COX-2, whereas phosphatidylinositol 3' kinase and its substrate, Akt, were constitutively activated in RBL-2H3 cells. Studies with pharmacologic inhibitors indicated that of these kinases, only p38 MAP kinase regulated expression of COX-2. The induction of COX-2 was blocked by the p38 MAP kinase inhibitor SB202190, even when added 12-16 h after stimulation with Ag when p38 MAP kinase activity had returned to near basal, but still minimally elevated, levels. Interestingly, expression of COX-2 as well as cytosolic phospholipase A(2) and 5-lipoxygenase were markedly reduced by SB202190 in unstimulated cells. Collectively, the results imply that p38 MAP kinase regulates expression of eicosanoid-related enzymes, passively or actively, at very low levels of activity in RBL-2H3 cells. Also, comparison with published data suggest that different MAP kinases regulate induction of COX-2 in inflammatory cells of different and even similar phenotype and suggest caution in extrapolating results from one type of cell to another.  相似文献   

10.
Casein kinase 2 associates with and phosphorylates dishevelled.   总被引:14,自引:2,他引:12       下载免费PDF全文
K Willert  M Brink  A Wodarz  H Varmus    R Nusse 《The EMBO journal》1997,16(11):3089-3096
The dishevelled (dsh) gene of Drosophila melanogaster encodes a phosphoprotein whose phosphorylation state is elevated by Wingless stimulation, suggesting that the phosphorylation of Dsh and the kinase(s) responsible for this phosphorylation are integral parts of the Wg signaling pathway. We found that immunoprecipitated Dsh protein from embryos and from cells in tissue culture is associated with a kinase activity that phosphorylates Dsh in vitro. Purification and peptide sequencing of a 38 kDa protein co-purifying with this kinase activity showed it to be identical to Drosophila Casein Kinase 2 (CK2). Tryptic phosphopeptide mapping indicates that identical peptides are phosphorylated by CK2 in vitro and in vivo, suggesting that CK2 is at least one of the kinases that phosphorylates Dsh. Overexpression of Dfz2, a Wingless receptor, also stimulated phosphorylation of Dsh, Dsh-associated kinase activity, and association of CK2 with Dsh, thus suggesting a role for CK2 in the transduction of the Wg signal.  相似文献   

11.
The protein product of the Raf-1 proto-oncogene is a protein serine/threonine kinase that is activated after stimulation of cells with insulin and other mitogens. To investigate the mechanism of this activation, we used purified Raf-1 expressed in E. coli as a substrate for a putative Raf-1 protein kinase kinase. In three different insulin-sensitive cell types, insulin activated Raf-1 kinase kinase activity in crude cytosolic cellular fractions. The insulin stimulation of this activity was evident as early as 2 min after exposure to insulin, maximal at 5-8 min, and inapparent at 15 min. Phosphoamino acid analysis of phosphorylated Raf-1 revealed that serine was the primary phosphate acceptor for the insulin-activated kinase or kinases; small amounts of phosphothreonine were also detected. The insulin effect occurred in cells depleted of protein kinase C, and in extracts depleted of endogenous Raf-1 kinase by immunodepletion; these data argue against protein kinase C or Raf-1 kinase itself being the insulin-stimulated activity. The insulin-activated kinase or kinases phosphorylated the Raf-1 protein on multiple sites in vitro, as evidenced by tryptic mapping; at least some of these appeared to overlap with sites phosphorylated in response to serum in intact cells. Several other mitogens and growth factors stimulated Raf-1 kinase kinase activity, including epidermal growth factor, platelet-derived growth factor, fibroblast growth factor, serum, and phorbol 12-myristate 13-acetate. This insulin- and mitogen-stimulated Raf-1 kinase kinase activity may play a role in mediating the phosphorylation and possibly the activation of the Raf-1 kinase by insulin and other growth factors.  相似文献   

12.
13.
The epidermal growth factor receptor (EGFR) and the non-receptor protein tyrosine kinases Src and Pyk2 have been implicated in linking a variety of G-protein-coupled receptors (GPCR) to the mitogen-activated protein (MAP) kinase signaling cascade. In this report we apply a genetic strategy using cells isolated from Src-, Pyk2-, or EGFR-deficient mice to explore the roles played by these protein tyrosine kinases in GPCR-induced activation of EGFR, Pyk2, and MAP kinase. We show that Src kinases are critical for activation of Pyk2 in response to GPCR-stimulation and that Pyk2 and Src are essential for GPCR-induced tyrosine phosphorylation of EGFR. By contrast, Pyk2, Src, and EGFR are dispensable for GPCR-induced activation of MAP kinase. Moreover, GPCR-induced MAP kinase activation is normal in fibroblasts deficient in both Src and Pyk2 (Src-/-Pyk2-/- cells) as well as in fibroblasts deficient in all three Src kinases expressed in these cells (Src-/-Yes-/-Fyn-/- cells). Finally, experiments are presented demonstrating that, upon stimulation of GPCR, activated Pyk2 forms a complex with Src, which in turn phosphorylates EGFR directly. These experiments reveal a role for Src kinases in Pyk2 activation and a role for Pyk2 and Src in tyrosine phosphorylation of EGFR following GPCR stimulation. In addition, EGFR, Src family kinases, and Pyk2 are not required for linking GPCRs with the MAP kinase signaling cascade.  相似文献   

14.
15.
Stimulation of hemopoietic cells with IL-3, IL-4, IL-5, granulocyte-macrophage-CSF and Steel factor-(SLF) induced tyrosine phosphorylation of a number of protein substrates. Two of these proteins, designated p42 and p44, were tyrosine phosphorylated rapidly in response to treatment with IL-3, IL-5, granulocyte-macrophage-CSF and SLF, but not IL-4. We demonstrate that these common substrates are members of the mitogen-activated protein kinase (MAP kinase) family of protein serine/threonine kinases. Ion-exchange chromatography yielded a peak of MAP kinase activity eluting at 0.3 to 0.32 M NaCl. Immunoblotting of column fractions with antiphosphotyrosine antibodies showed coelution of the peak of MAP kinase enzyme activity with the p42 and p44 tyrosine phosphorylated species, and with two proteins of 42 and 44 kDa which were immunoreactive with anti-MAP kinase antibodies. Moreover, a characteristic shift in mobility of the p42 and p44 species was observed after factor treatment. Time-course analyses and subsequent ion-exchange chromatography demonstrated SLF activation of MAP kinase activity was maximal after 2 min of factor treatment and decreased to basal levels after 30 min stimulation. By contrast, activation of MAP kinase after IL-5 treatment was not as rapid. Maximal activity was observed 15 min after stimulation and remained elevated for up to 60 min after IL-5 addition. Investigation of the role of protein kinase C in the mechanism of activation by these growth factors demonstrated that specific inhibition of protein kinase C led to a reduction, but not ablation, of the SLF and IL-3 induced stimulation of MAP kinase activity. The use of synthetic peptide substrates confirmed SLF and IL-5 activate isoforms of MAP kinases. These results demonstrate that members of the MAP kinase family are involved in common signal transduction events elicited by IL-3, IL-5, granulocyte-macrophage-CSF and Steel factor, but not those involving IL-4.  相似文献   

16.
The Raf-1 proto-oncogene protein kinase can be phosphorylated and activated after stimulation of cells with insulin and a variety of other growth factors and mitogens. We recently presented evidence that insulin and certain other growth factors activated one or more Raf-1 kinase kinase activities (Lee, R.M., Rapp, U. R., and Blackshear, P.J. (1991) J. Biol. Chem. 266, 10351-10357). In the present study, four peaks of Raf-1 kinase kinase activity were identified after anion-exchange chromatography of cell lysates, and two of these were activated by insulin. Further chromatographic characterization of these two peaks of insulin-activated kinase activity indicated that they contained three apparently distinct kinase activities. Two of these activities comigrated with immunoreactive extracellular signal-regulated kinases (ERK) 1 and 2 (mitogen-activated protein kinase) through three different chromatographic separations. Both ERK1 and ERK2 phosphorylated Raf-1 with reasonably high affinity (Km for ERK1 = 90 nM; Km for ERK2 = 120 nM), and produced similar, complex phosphopeptide maps; both kinases also phosphorylated myelin basic protein. The third kinase activity also phosphorylated Raf-1 and myelin basic protein but did not comigrate exactly with either immunoreactive ERK1 or ERK2. We conclude that two and possibly three insulin-activated Raf-1 kinase kinases are members of the ERK family.  相似文献   

17.
The hormonal regulation of adenylate cyclase, cAMP-dependent protein kinase activation, and adrenocorticotropic hormone (ACTH) secretion was studied in AtT20 mouse pituitary tumor cells. Corticotropin releasing factor (CRF) stimulated cAMP accumulation and ACTH release in these cells. Maximal ACTH release was seen with 30 nM CRF and was accompanied by a 2-fold rise in intracellular cAMP. When cells were incubated with both 30 nM CRF and 0.5 mM 3-methylisobutylxanthine (MIX) cAMP levels were increased 20-fold, however, ACTH release was not substantially increased beyond release seen with CRF alone. The activation profiles of cAMP-dependent protein kinases I and II were studied by measuring residual cAMP-dependent phosphotransferase activity associated with immunoprecipitated regulatory subunits of the kinases. Cells incubated with CRF in the absence of MIX showed concentration-dependent activation of protein kinase I which paralleled stimulation of ACTH release. Protein kinase II was minimally activated. When cells were exposed to CRF in the presence of 0.5 mM MIX there was still a preferential activation of protein kinase I, although 50% of the cytosolic protein kinase II was activated. Complete activation of both protein kinases I and II was seen when cells were incubated with 0.5 mM MIX and 10 microM forskolin. Under these conditions cAMP levels were elevated 80-fold. CRF, isoproterenol, and forskolin stimulated adenylate cyclase activity in isolated membranes prepared from AtT20 cells. CRF and isoproterenol stimulated cyclase activity up to 5-fold while forskolin stimulated cyclase activity up to 15-fold. Our data demonstrate that ACTH secretion from AtT20 cells is mediated by small changes in intracellular levels of cAMP and activation of only a small fraction of the total cytosolic cAMP-dependent protein kinase in these cells is required for maximal ACTH secretion.  相似文献   

18.
Protein phosphorylation is an important mechanism that controls many cellular activities. Phosphorylation of a given protein is precisely controlled by two opposing biochemical reactions catalyzed by protein kinases and protein phosphatases. How these two opposing processes are coordinated to achieve regulation of protein phosphorylation is unresolved. We have developed a novel experimental approach to directly study protein dephosphorylation in cells. We determined the kinetics of dephosphorylation of insulin receptor substrate-1/2, Akt, and ERK1/2, phosphoproteins involved in insulin receptor signaling. We found that insulin-induced ERK1/2 and Akt kinase activities were completely abolished 10 min after inhibition of the corresponding upstream kinases with PD98059 and LY294002, respectively. In parallel experiments, insulin-induced phosphorylation of Akt, ERK1/2, and insulin receptor substrate-1/2 was decreased and followed similar kinetics. Our findings suggest that these proteins are dephosphorylated by a default mechanism, presumably via constitutively active phosphatases. However, dephosphorylation of these proteins is overcome by activation of protein kinases following stimulation of the insulin receptor. We propose that, during acute insulin stimulation, the kinetics of protein phosphorylation is determined by the interplay between upstream kinase activity and dephosphorylation by default.  相似文献   

19.
D Langosch  W Hoch  H Betz 《FEBS letters》1992,298(2-3):113-117
The 93 kDa protein gephyrin is a tubulin binding peripheral membrane protein that is associated with the inhibitory glycine receptor and has been implicated in its anchoring at central synapses. Here, we demonstrate that gephyrin as well as co-purifying tubulin are phosphorylated by a kinase activity which is endogenous to highly purified glycine receptor preparations. This kinase phosphorylates serine and threonine residues and utilizes ATP, but not GTP, as phosphate donor. Its activity is not affected by various activators and/or inhibitors of cyclic nucleotide-dependent kinases, calcium/calmodulin-dependent kinases, or protein kinase C. A five-fold stimulation of kinase activity was, however, observed in the presence of poly-lysine. Phosphorylation of gephyrin and/or tubulin might regulate receptor/cytoskeleton interactions at postsynaptic membrane specializations.  相似文献   

20.
Native polyacrylamide gels have been used to resolve protein kinase isoenzymes from cultured cells and the protein kinases have been identified by carrying out phosphorylation reactions in the gel. Following electrophoresis the gels were incubated with histone and [gamma-32P]ATP. The gels were then thoroughly washed and dried down, and the protein kinases were located by autoradiography. Protein kinase activity as measured in the gel system was a linear function of cytosol protein concentration up to about 100 microgram per channel and incorporation of 32P into histone was time dependent. Three bands of protein kinase activity were resolved in cytosol samples from baby hamster kidney (BHK) fibroblasts. The band with the lowest relative mobility utilized histone IIA or casein equally well as substrate protein whereas bands 2 and 3 demonstrated a clear preference for histone. Bands 2 and 3 displayed a relative mobility in electrophoresis that was identical to that observed for cyclic AMP-dependent protein kinases I and II from rat liver. Treatment of cytosol samples with cyclic AMP prior to electrophoresis resulted in the disappearance of cyclic AMP-dependent protein kinases from the gel profile. This method was employed to identify bands 2 and 3 as cyclic AMP-dependent protein kinases. The protein kinases in growth-arrested cells were compared with proliferating cells. We have observed a 3.5-fold increase in the activity of Type II protein kinase as the cells arrest growth in G1 phase of the cell cycle. This increase in Type II is correlated with the increase in cells blocked in G1 and a decrease in Type II activity appears to be an early event in permitting cells to leave G1 and resume growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号