首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxylipin profiling in pathogen-infected potato leaves   总被引:14,自引:0,他引:14  
Plants respond to pathogen attack with a multicomponent defense response. Synthesis of oxylipins via the lipoxygenase (LOX) pathway appears to be an important factor for establishment of resistance in a number of pathosystems. In potato cells, pathogen-derived elicitors preferentially stimulate the 9-LOX-dependent metabolism of polyunsaturated fatty acids (PUFAs). Here we show by oxylipin profiling that potato plants react to pathogen infection with increases in the amounts of the 9-LOX-derived 9,10,11- and 9,12,13-trihydroxy derivatives of linolenic acid (LnA), the divinyl ethers colnelenic acid (CnA) and colneleic acid (CA) as well as 9-hydroxy linolenic acid. Accumulation of these compounds is faster and more pronounced during the interaction of potato with the phytopathogenic bacterium Pseudomonas syringae pv. maculicola, which does not lead to disease, compared to the infection of potato with Phytophthora infestans, the causal agent of late blight disease. Jasmonic acid (JA), a 13-LOX-derived oxylipin, accumulates in potato leaves after infiltration with P. syringae pv. maculicola, but not after infection with P. infestans.  相似文献   

2.

Key message

Potato and tobacco cells are differentially suited to study oxylipin pathway and elicitor-induced responses.

Abstract

Synthesis of oxylipins via the lipoxygenase (LOX) pathway provides plant cells with an important class of signaling molecules, related to plant stress responses and innate immunity. The aim of this study was to evaluate the induction of LOX pathway in tobacco and potato cells induced by a concentrated culture filtrate (CCF) from Phytophthora infestans and lipopolysaccharide (LPS) from Pectobacterium atrosepticum. Oxylipin activation was evaluated by the measurement of LOX activity and metabolite quantification. The basal levels of oxylipins and fatty acids showed that potato cells contained higher amounts of linoleic (LA), linolenic (LnA) and stearic acids than tobacco cells. The major oxylipin in potato cells, 9(S),10(S),11(R)-trihydroxy-12(Z),15(Z)-octadecadienoic acid (9,10,11-THOD), was not detected in tobacco cells. CCF induced a sharp increase of LA and LnA at 8 h in tobacco cells. In contrast they decreased in potato cells. In CCF-treated tobacco cells, colneleic acid increased up to 24 h, colnelenic acid and 9(S)-hydroxyoctadecatrienoic acid (9(S)-HOT) increased up to 16 h. In potato cells, only colneleic acid increased slightly until 16 h. A differential induction of LOX activity was measured in both cells treated by CCF. With LPS treatment, only 9,10,11-THOD accumulation was significantly induced at 16 h in potato cells. Fatty acids were constant in tobacco but decreased in potato cells over the studied time period. These results showed that the two elicitors were differently perceived by the two Solanaceae and that oxylipin pathway is strongly induced in tobacco with the CCF. They also revealed that elicitor-induced responses depended on both cell culture and elicitor.  相似文献   

3.
4.
A complex mixture of fatty acid-derived aldehydes, ketones, and alcohols is released upon wounding of the moss Physcomitrella patens. To investigate the formation of these oxylipins at the molecular level we isolated a lipoxygenase from P. patens, which was identified in an EST library by sequence homology to lipoxygenases from plants. Sequence analysis of the cDNA showed that it exhibits a domain structure similar to that of type2 lipoxygenases from plants, harboring an N-terminal import signal for chloroplasts. The recombinant protein was identified as arachidonate 12-lipoxygenase and linoleate 13-lipoxygenase with a preference for arachidonic acid and eicosapentaenoic acid. In contrast to any other lipoxygenase cloned so far, this enzyme exhibited in addition an unusual high hydroperoxidase and also a fatty acid chain-cleaving lyase activity. Because of these unique features the pronounced formation of (2Z)-octen-1-ol, 1-octen-3-ol, the dienal (5Z,8Z,10E)-12-oxo-dodecatrienoic acid and 12-keto eicosatetraenoic acid was observed when arachidonic acid was administered as substrate. 12-Hydroperoxy eicosatetraenoic acid was found to be only a minor product. Moreover, the P. patens LOX has a relaxed substrate tolerance accepting C(18)-C(22) fatty acids giving rise to even more LOX-derived products. In contrast to other lipoxygenases a highly diverse product spectrum is formed by a single enzyme accounting for most of the observed oxylipins produced by the moss. This single enzyme might, in a fast and effective way, be involved in the formation of signal and/or defense molecules thus contributing to the broad resistance of mosses against pathogens.  相似文献   

5.
6.
7.
N-Acylethanolamines (NAEs) constitute a new class of plant lipids and are thought to play a role in plant defense strategies against pathogens. In plant defense systems, oxylipins generated by the lipoxygenase pathway are important actors. To date, it is not known whether plants also use endogeneous oxylipins derived from NAEs in their defense reactions. We tested whether members of the NAE class can be converted by enzymes constituting this pathway, such as (soybean) lipoxygenase-1, (alfalfa) hydroperoxide lyase and (flax seed) allene oxide synthase. We found that both alpha-N-linolenoylethanolamine and gamma-N-linolenoylethanolamine (18:3), as well as alpha-N-linolenoylamine and gamma-N-linolenoylamine were converted into their (13S)-hydroperoxide derivatives by lipoxygenase. Interestingly, only the hydroperoxides of alpha-N-linolenoyl(ethanol)amines and their linoleic acid analogs (18:2) were suitable substrates for hydroperoxide lyase. Hexanal and (3Z)-hexenal were identified as volatile products of the 18:2 and 18:3 fatty acid (ethanol)amides, respectively. 12-Oxo-N-(9Z)-dodecenoyl(ethanol)amine was the nonvolatile hydrolysis product. Kinetic studies with lipoxygenase and hydroperoxide lyase revealed that the fatty acid ethanolamides were converted as readily or even better than the corresponding free fatty acids. Allene oxide synthase utilized all substrates, but was most active on (13S)-hydroperoxy-alpha-N-linolenoylethanolamine and the (13S)-hydroperoxide of linoleic acid and its ethanolamine derivative. alpha-Ketols and gamma-ketols were characterized as products. In addition, cyclized products, i.e. 12-oxo-N-phytodienoylamines, derived from (13S)-hydroperoxy-alpha-N-linolenoylamines were found. The results presented here show that, in principle, hydroperoxide NAEs can be formed in plants and subsequently converted into novel phytooxylipins.  相似文献   

8.
Incubation of linoleic acid with the 105,000g particle fraction of the homogenate of the broad bean (Vicia faba L.) led to the formation of the following products: 13(S)-hydroxy-9(Z),11(E)-octadecadienoic acid, 9,10-epoxy-12(Z)-octadecenoic acid (9(R),10(S)/9(S)/10(R), 80/20), 12,13-epoxy-9(Z)-octadecenoic acid (12(S),13(R)/12(R)/13(S), 64/36), and 9,10-epoxy-13(S)-hydroxy-11(E)-octadecenoic acid (9(S),10(R)/9(R),10(S), 91/9). Oleic acid incubated with the enzyme preparation in the presence of 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid or cumene hydroperoxide was converted into 9,10-epoxyoctadecanoic acid (9(R),10(S)/9(S),10(R), 79/21). Two enzyme activities were involved in the formation of the products, an omega 6-lipoxygenase and a hydroperoxide-dependent epoxygenase. The lipoxygenase, but not the epoxygenase, was inhibited by low concentrations of 5,8,11,14-eicosatetraynoic acid and nordihydroguaiaretic acid. In contrast, the epoxygenase, but not the lipoxygenase, was readily inactivated in the presence of 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid. Studies with 18O2-labeled 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid showed that the epoxide oxygens of 9,10-epoxyoctadecanoic acid and of 9,10-epoxy-13(S)-hydroxy-11(E)-octadecenoic acid were derived from hydroperoxide and not from molecular oxygen.  相似文献   

9.
10.
Peroxygenase-catalyzed epoxidation of oleic acid in preparations of cereal seeds was investigated. The 105,000g particle fraction of oat (Avena sativa) seed homogenate showed high peroxygenase activity, i.e. 3034 [plus or minus] 288 and 2441 [plus or minus] 168 nmol (10 min)-1 mg-1 protein in two cultivars, whereas the corresponding fraction obtained from barley (Hordeum vulgare and Hordeum distichum), rye (Secale cereale), and wheat (Triticum aestivum) showed only weak activity, i.e. 13 to 138 nmol (10 min)-1 mg-1 protein. In subcellular fractions of oat seed homogenate, peroxygenase specific activity was highest in the 105,000g particle fraction, whereas lipoxygenase activity was more evenly distributed and highest in the 105,000g supernatant fraction. Incubation of [1-14C]linoleic acid with the 105,000g supernatant of oat seed homogenate led to the formation of several metabolites, i.e. in order of decreasing abundance, 9(S)-hydroxy-10(E),12(Z)-octadecadienoic acid, 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid, cis-9,10-epoxy-12(Z)-octadecenoic acid [mainly the 9(R),10(S) enantiomer], cis-12,13-epoxy-9(Z)-octadecenoic acid [mainly the 12(R),13(S) enantiomer], threo-12,13-dihydroxy-9(Z)-octadecenoic acid, and 12(R),13(S)-epoxy-9(S)-hydroxy-10(E)-octadecenoic acid. Incubation of linoleic acid with the 105,000g particle fraction gave a similar, but not identical, pattern of metabolites. Conversion of linoleic acid into 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid, a naturally occurring oxylipin with antifungal properties, took place by a pathway involving sequential catalysis by lipoxygenase, peroxygenase, and epoxide hydrolase.  相似文献   

11.
Previous studies in our laboratory revealed a high expression of 15-lipoxygenase-1 in human colorectal carcinomas, suggesting the importance of lipoxygenase in colorectal tumor development. In this report, we have investigated the metabolism of arachidonic and linoleic acid by intestinal tissues of Min mice, an animal model for intestinal neoplasia. The polyp and normal tissues from Min mice intestine were homogenized, incubated with arachidonic or linoleic acid, and analyzed by reverse-, straight-, and chiral-phase HPLC. Arachidonic acid was converted to prostaglandins E2 and F2alpha. Little 12- or 15-hydroxyeicosatetraenoic acid was detected. Cyclooxygenase (COX)-2 was detected in polyps and the adjacent normal tissues by Western immunoblotting, but neither COX-1 nor leukocyte-type 12-lipoxygenase, the murine ortholog to human 15-lipoxygenase-1, was detected. These tissue homogenates converted linoleic acid to an equal mixture of 9(S)- and 13(S)-hydroxyoctadecadienoic acid (HODE). Inhibition of lipoxygenase activity with nordihydroguaiaretic acid blocked HODEs formation, but the COX inhibitor indomethacin did not. Degenerative-nested PCR analyses using primers encoded by highly conserved sequences in lipoxygenases detected 5-lipoxygenase, leukocyte-type 12-lipoxygenase, platelet-type 12-lipoxygenase, 8-lipoxygenase, and epidermis-type lipoxygenase-3 in mouse intestinal tissue. All of these PCR products represent known lipoxygenase that are not reported to utilize linoleic acid preferentially as substrate and do not metabolize linoleic acid to an equal mixture of 9(S)- and 13(S)-HODE. This somewhat unique profile of linoleate product formation in Min mice intestinal tissue suggests the presence of an uncharacterized and potentially novel lipoxygenase(s) that may play a role in intestinal epithelial cell differentiation and tumor development.  相似文献   

12.
The metabolism in vitro of [1-(14)C]linoleate, [1-(14)C]linolenate and their 9(S)-hydroperoxides in tulip (Tulipa gesneriana) was found to be under the control of 9-lipoxygenase and allene oxide synthase, and directed towards alpha-ketol, gamma-ketol and the novel compound (12Z)-10-oxo-11-hydroxy-12-octadecadienoic acid (10,11-ketol). Potent activity of allene oxide cyclase (in bulbs) and a new enzyme, gamma-ketol reductase (in bulbs and leaves), was detected. Metabolism in flowers is directed predominantly towards alpha-ketol hydroperoxide.  相似文献   

13.
Arachidonate 12-lipoxygenase was purified to near homogeneity from the cytosol fraction of porcine leukocytes by ammonium sulfate fractionation, DEAE-cellulose chromatography, and immunoaffinity chromatography using a monoclonal antibody against the enzyme. The purified enzyme was unstable (half-life of about 24 h at 4 degrees C) but was markedly protected from the inactivation by storage in the presence of ferrous ion or in the absence of air. The lag phase which was observed before the start of the enzyme reaction was abolished by the presence of 12-hydroperoxy-5,8,10,14-eicosatetraenoic acid. An apparent substrate inhibition was observed with arachidonic acid and other active substrates; however, the substrate concentration curve was normalized by the presence of 0.03% Tween 20. Arachidonic acid was transformed to the omega-9 oxygenation product 12-hydroperoxy-5Z,8Z,10Z,14Z-eicosatetraenoic acid. C-12 oxygenation also occurred with 5-hydroxy- and 5-hydroperoxyeicosatetraenoic acids; the respective maximal velocities were 60 and 150% of the rate with arachidonic acid. Octadecaenoic acids were also good substrates. gamma-Linolenic acid was oxygenated in the omega-9 position (C-10), while linoleic and alpha-linolenic acids were subject to omega-6 oxygenation (C-13). A far more complex reaction was observed using 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid as substrate. Reaction occurred at 70% of the rate with arachidonic acid. The dihydroperoxy and dihydroxy products were identified by their UV absorption spectra, high performance liquid chromatography, and gas chromatography-mass spectrometry. Among these products, (8S,15S)-dihydroperoxy-5Z,9E,11Z,13E-eicos atetraenoic acid and (14R,15S)-erythro-dihydroperoxy-5Z,8Z,10E, 12E-eicosatetraenoic acid were produced in larger amounts than the (8R)- and (14S,15S)-threo isomers, respectively; these products were attributed to 8- and 14-oxygenation of the 15-hydroperoxy acid. Furthermore, formation of 14,15-leukotriene A4 was inferred from the characteristic pattern of its hydrolysis products comprised of equal amounts of (8R,15S)- and (8S,15S)-dihydroxy-5Z,9E,11E,13E-eicosatetraenoi c acids together with smaller amounts of (14R,15S)-erythro- and (14S,15S)-threo-dihydroxy-5Z,8Z,10E,12E-eicosate traenoic acids. Thus, both lipoxygenase and leukotriene synthase activities were demonstrated with the homogeneous preparation of porcine leukocyte 12-lipoxygenase.  相似文献   

14.
A pathogen-induced oxygenase showing homology to prostaglandin endoperoxide synthases-1 and -2 was recently characterized by in vitro experiments as a fatty acid alpha-dioxygenase catalyzing formation of unstable 2(R)-hydroperoxy fatty acids. To study the activity of this enzyme under in vivo conditions and to elucidate the fate of enzymatically produced 2-hydroperoxides, leaves of tobacco were analyzed for the presence of alpha-dioxygenase-generated compounds as well as for lipoxygenase (LOX) products and free fatty acids. Low basal levels of 2-hydroxylinolenic acid (0.4 nmol/g leaves fresh weight) and 8,11,14-heptadecatrienoic acid (0.1 nmol/g) could be demonstrated. These levels increased strongly upon infection with the bacterium Pseudomonas syringae pv syringae (548 and 47 nmol/g, respectively). Transgenic tobacco plants overexpressing alpha-dioxygenase were developed, and incompatible infection of such plants led to a dramatic elevation of 2-hydroxylinolenic acid (1778 nmol/g) and 8,11,14-heptadecatrienoic acid (86 nmol/g), whereas the levels of LOX products were strongly decreased. Further analysis of oxylipins in infected leaves revealed the presence of a number of 2-hydroxy fatty acids differing with respect to chain length and degree of unsaturation as well as two new doubly oxygenated oxylipins identified as 2(R),9(S)-dihydroxy-10(E),12(Z),15(Z)-octadecatrienoic acid and 2(R),9(S)-dihydroxy-10(E),12(Z)-octadecadienoic acid. alpha-Dioxygenase-generated 2-hydroxylinolenic acid, and to a lesser extent lipoxygenase-generated 9-hydroxyoctadecatrienoic acid, exerted a tissue-protective effect in bacterially infected tobacco leaves.  相似文献   

15.
We have produced a model to define the linoleate-binding pocket of pea 9/13-lipoxygenase and have validated it by the construction and characterization of eight point mutants. Three of the mutations reduced, to varying degrees, the catalytic centre activity (kcat) of the enzyme with linoleate. In two of the mutants, reductions in turnover were associated with changes in iron-coordination. Multiple sequence alignments of recombinant plant and mammalian lipoxygenases of known positional specificity, and the results from numerous other mutagenesis and modelling studies, have been combined to discuss the possible role of the mutated residues in pea 9/13-lipoxygenase catalysis. A new nomenclature for recombinant plant lipoxygenases based on positional specificity has subsequently been proposed. The null-effect of mutating pea 9/13-lipoxygenase at the equivalent residue to that which controlled dual positional specificity in cucumber 13/9-lipoxygenase, strongly suggests that the mechanisms controlling dual positional specificity in pea 9/13-lipoxygenase and cucumber 13/9-lipoxygenase are different. This was supported from modelling of another isoform of pea lipoxygenase, pea 13/9-lipoxygenase. Dual positional specificity in pea lipoxygenases is more likely to be determined by the degree of penetration of the methyl terminus of linoleate and the volume of the linoleate-binding pocket rather than substrate orientation. A single model for positional specificity, that has proved to be inappropriate for arachidonate-binding to mammalian 5-, 12- and 15-lipoxygenases, would appear to be true also for linoleate-binding to plant 9- and 13-lipoxygenases.  相似文献   

16.
Allene oxides are a very unusual type of epoxide that, in biological systems, are formed by the enzymic dehydration of fatty acid hydroperoxides (lipoxygenase products). This reaction occurs widely in plants, in which allene oxide synthesis is a key step in the conversion of linolenic acid to jasmonic acid, the plant growth regulator. We report biosynthesis of the allene oxide (8R)-8,9-epoxyeicosa-(5Z,9,11Z,14Z)-tetraenoic acid via the (8R)-lipoxygenase metabolism of arachidonic acid in starfish oocytes. Formation of the allene oxide was deduced from high pressure liquid chromatography, UV, gas chromatography-mass spectrometry and 1H-NMR analyses of the precise structure and mechanism of biosynthesis of its major hydrolysis product, the alpha-ketol 8-hydroxy-9-ketoeicosa-(5Z,11Z,14Z)-trienoic acid. A second enzymic activity detected in the oocytes (hydroperoxide lyase) cleaves specifically the (8R)-hydroperoxy substrate into C7 and C13 fragments, identified as the hydroxyacid, (5Z)-7-hydroxyheptenoic acid, and two aldehydes, (2E,4Z,7Z)-tridecenal and its 4E isomer. Discovery of the allene oxide synthase and hydroperoxide lyase marks the first definitive localization of these enzymic activities to an animal cell. It was established previously that the (8R)-lipoxygenase metabolite (8R)-HETE will activate the maturation (re-initiation of meiosis) of starfish oocytes. The individual 8-lipoxygenase products may be involved at distinct stages of cell development.  相似文献   

17.
Porcine neutrophilic leukocytes were found to contain a lipoxygenase which converted linoleic acid into 13-hydroxy-9,11-octadecadienoic acid (n-6 specificity), arachidonic acid into 12-hydroxy-5,8,10,14-eicosatetraenoic acid (n - 9 specificity) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid into 5,12-dihydroxy-6,8,10,14-eicosatetraenoic acid. This lipoxygenase was partially purified and it appeared that its substrate specificity and other properties were quite different from the 12-lipoxygenase of blood platelets. Incubations of intact or broken porcine leukocytes with added linoleic acid revealed the formation of not only 13-hydroxy-9,11-octadecadienoic acid but also of substantial amounts of epoxyhydroxy and trihydroxy isomers. These products from linoleate, collectively described by the name 'octadecanoids' were characterized in detail by a combination of chemical, chromatographic and mass spectrometric techniques. The phospholipids of porcine leukocytes contain more than twice as much linoleate than arachidonate (22 vs. 8%). In accordance with this fatty acid composition we found that in the stimulated neutrophil the endogenous production of octadecanoids often surpassed that of the eicosanoids. Lipoxygenation of endogenously liberated linoleic acid was especially pronounced when a suspension of leukocytes in citrated plasma was recalcified and allowed to clot.  相似文献   

18.
An enantiospecific route for the synthesis of 11,12-dihydroxyeicosatetraenoic acids was developed and used to synthesize 11,12-dihydroxy-5(Z),7(E),9(E),14(Z)-eicosatetraenoic acids. The 11,12-DHETEs were synthesized with the stereochemistry of the hydroxyl group being 11(R),12(S) and 11(S),12(S). The synthetic compounds were used to elucidate the structure of 11,12-DHETEs formed in human platelets by comparison of the chromatographic retention time in HPLC and GC as well as their ion fragmentation pattern in GC-MS. The major 11,12-DHETE formed in human platelets was found to be identical with 11(R),12(S)-dihydroxy-5(Z),7(E),9(E),14(Z)-eicosatetraenoic acid. Two more compounds were tentatively identified as 11(S),12(S)-dihydroxy-5(Z),7(E),9(E),14(Z)-eicosatetraenoic acid and 11,12-dihydroxy-5(E),7(E),9(E),14(Z)-eicosatetraenoic acid. Furthermore, the 11(S),12(S)-dihydroxy-5(Z),7(E),9(E),14(Z)-eicosatetraenoic acid was found to possess biological activity on neutrophil functional responses. However, the major compound, 11(R),12(S)-dihydroxy-5(Z),7(E),9(E),14(Z)-eicosatetraenoic acid, formed in platelets lacks biological activity in the test systems used. The present data further support that 11,12-dihydroxy-eicosatetraenoic acids are formed in human platelets via a leukotriene like mechanism presumably by the 12-lipoxygenase. Furthermore, the biological effects of one of the compounds showed a unique activity profile compared to other lipoxygenase products.  相似文献   

19.
Abstract

Lipid hydroperoxides are the primary stable products of lipid peroxidation. We have developed an ultrasensitive method for the detection of lipid hydroperoxides1 and found about 3 nM cholesteryl ester hydroperoxides (CE-OOH), mostly cholesteryl linoleate hydroperoxides (Ch18:2-OOH), in blood plasma obtained from healthy subjects.2 Autoxidation of cholesteryl linoleate (Ch18:2) gives cholesteryl 13-hydroperoxy-9Z,11E-octadecadienoate (13ZE-Ch18:-OOH), cholesteryl 13-hydroperoxy-9E,11E-octadecadienoate (13EE-Ch18:2-OOH), cholesteryl 9-hydroperoxy-10E,12Z-octadecadienoate (9EZ-Ch18:2-OOH), and cholesteryl 9-hydroperoxy-10E,12E-octadecadienoate (9EE-Ch18:2-OOH). Enzymatic oxidation of Ch18:2 with 15-lipoxygenase gives predominantly only one product (13ZE-Ch18:2-OOH).3 To help elucidate the production mechanisms of cholesteryl linoleate hydroperoxides in vivo, we examined the distribution of Ch18:2-O(O)H regioisomers in human blood plasma.  相似文献   

20.
Incubation of isolated rat liver mitochondria with the pure rabbit reticulocyte lipoxygenase caused a time-dependent inactivation of the monoamine oxidase activities A and B. Furthermore, a conversion of the monoamine oxidase into a diamine oxidase was observed. The inactivation kinetics for both monoamine oxidase activities A and B showed a biphasic behaviour; a reversible short-term inhibition during the first 5 min of incubation was followed by an irreversible inactivation of the enzyme. The kinetic studies suggest that the slow irreversible inactivation of the monoamine oxidase activities is due to secondary reactions subsequent to the initial attack of the lipoxygenase on the mitochondrial outer membrane. During the interaction of the lipoxygenase with the mitochondria, only about 1.5% of the polyenoic fatty acids present in the mitochondrial membranes were oxygenated. The predominant products formed during the interaction of the lipoxygenase with the mitochondrial membranes are (13S)-hydro(pero)xy-9Z,11E-octadecadienoic acid and (15S)-hydro(pero)xy-5,8,11,13(Z,Z,Z,E)-eicosatetraenoic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号