首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bacteriophage T4-infected Escherichia coli rendered permeable to nucleotides by sucrose plasmolysis exhibited two apparently separate pathways or channels to T4 DNA with respect to the utilization of exogenously supplied substrates. By one pathway, individual labeled ribonucleotides, thymidine (tdR), and 5-hydroxymethyl-dCMP could be incorporated into phage DNA. Incorporation of each of these labeled compounds was not dependent upon the addition of the other deoxyribonucleotide precursors, suggesting that a functioning de novo pathway to deoxyribonucleotides was being monitored. The second pathway or reaction required all four deoxyribonucleoside triphosphates or the deoxyribonucleoside monophosphates together with ATP. However, in this reaction, dTTP was not replaced by TdR. The two pathways were also distinguished on the basis of their apparent Mg2+ requirements and responses to N-ethylmaleimide, micrococcal nuclease, and to hydroxyurea, which is a specific inhibitor of ribonucleoside diphosphate reductase. Separate products were synthesized by the two channels, as shown by density-gradient experiments and velocity sedimentation analysis. Each of the pathways required the products of the T4 DNA synthesis genes. Furthermore, DNA synthesis by each pathway appeared to be coupled to the functioning of several of the phage-induced enzymes involved in deoxyribonucleotide biosynthesis. Both systems represent replicative phage DNA synthesis as determined by CsCl density-gradient analysis. Autoradiographic and other studies provided evidence that both pathways occur in the same cell. Further studies were carried out on the direct role of dCMP hydroxymethylase in T4 DNA replication. Temperature-shift experiments in plasmolyzed cells using a temperature-sensitive mutant furnished strong evidence that this gene product is necessary in DNA replication and is not functioning by allowing preinitiation of DNA before plasmolysis.  相似文献   

3.
4.
T4 bacteriophage (phage)-infected cells show a marked increase in latent-period length, called lysis inhibition, upon adsorption of additional T4 phages (secondary adsorption). Lysis inhibition is a complex phenotype requiring the activity of at least six T4 genes. Two basic mysteries surround our understanding of the expression of lysis inhibition: (i) the mechanism of initiation (i.e., how secondary adsorption leads to the expression of lysis inhibition) and (ii) the mechanism of lysis (i.e., how this signal not to lyse is reversed). This study first covers the basic biology of the expression of lysis inhibition and lysis of T4-infected cells at high culture densities. Then evidence is presented which implies that, as with the initiation of lysis inhibition, sudden, lysis-associated clearing of these cultures is likely caused by T4 secondary adsorption. For example, such clearing is often observed for lysis-inhibited T4-infected cells grown in batch culture during T4 stock preparation. The significance of this secondary adsorption-induced lysis to wild T4 populations is discussed. The study concludes with a logical argument suggesting that the lytic nature of the T4 phage particle evolved as a novel mechanism of phage-induced lysis.  相似文献   

5.
6.
Role of gene 2 in bacteriophage T7 DNA synthesis.   总被引:8,自引:5,他引:3       下载免费PDF全文
Studies have been carried out to elucidate the in vivo function of gene 2 in T7 DNA synthesis. In gene 2-infected cells the rate of incorporation of (3-H)thymidine into acid-insoluble material is about 60% that of cells infected with T7 wild type. Gene 2 mutants do not however produce viable phage after infection of the nonpermissive host. In T7 wild type-infected cells, a major portion of the newly alkaline sucrose gradients. The concatemers serve as precursors for the formation of mature T7 DNA as demonstrated in pulse-chase experiments. In similar studies carried out with gene 2-infected cells, concatemers are not detected when the intracellular DNA is analyzed at several different times during the infection process. The DNA made during a gene 2 infection is present as duplex structures with a sedimentation rate close to mature T7 DNA.  相似文献   

7.
8.
The in vivo function of the gene 2 protein of bacteriophage T7 has been examined. The gene 2 protein appears to modulate the activity of the gene 3 endonuclease in order to prevent the premature degradation of any newly-formed DNA concatemers. This modulation is not however a direct interacton between the two proteins. In single-burst experiments rifamycin can substitute for the gene 2 protein, allowing formation of fast-sedimenting replicative DNA intermediates and progeny phage production. This suggests that the sole function of the gene 2 protein is inhibition of the host RNA polymerase and that the latter enzyme directs or promotes the endonucleolytic action of the gene 3 protein.  相似文献   

9.
An expanded genetic map of bacteriophage T5 has been constructed by using a set of amber, rather than temperature-sensitive, mutants that represent 29 cistrons. The map consists of three small groups and one large group of genes; mutants defective in genes that are located in different groups exhibit maximal recombination when crossed with one another. However, it has been possible to establish tentative linkage among these groups by use of a particular mutant that appears to affect recombination. One of the small groups of genes is located in the first-step-transfer or FST segment; the other two small groups represent newly discovered genetic regions. The large group probably includes most or all of the previously published maps of T5. The apparent genetic discontinuities are discussed in relation to certain anatomical and physiological features that are unique to bacteriophage T5.  相似文献   

10.
A characteristic phenomenon in the F-factor-mediated inhibition of T7 phage is a virtual absence of T7 late protein synthesis in T7-infected Escherichia coli male cells, in spite of the presence of T7 late mRNA which is translatable in vitro when isolated from the cell. To determine whether the translational defect in T7-infected F+ cells is due to a T7 late mRNA-specific translational block, or to a general decrease of F+ cell translational activity, we compared the activities of cell-free, protein-synthesizing systems prepared from isogenic F- and F+ cells harvested at different times of T7 infection. The cell-free systems from uninfected F- and F+ cells translated T7late mRNA equally as well as MS2 RNA and T7early mRNA. The activity of cell-free systems from T7-infected F+ cells to translate MS2 RAN, T7 early mRNA, and T7 late mRNA decreased concomitantly at a much faster rate than that of T7-infected F- cells. Therefore, the abortive infection of F+ cells by T7 does not result from a T7 late mRNA-specific translational inhibition, although a general reduction of the translational activity appears to be a major factor for the inability of the F+ cells to produce a sufficient amount of T7 late proteins.  相似文献   

11.
Second-step transfer of bacteriophage T5 DNA requires the function of the T5 pre-early proteins A1 and A2. We have isolated and characterized the gene A2 protein as part of an effort to determine the mechanism of second-step transfer. The A2 protein was purified by DNA-cellulose column chromatography followed by gel filtration and ion-exchange column chromatography. The A2 protein's identity was confirmed by two-dimensional gel electrophoresis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and thin-layer gel filtration in 6 M guanidine hydrochloride demonstrated a molecular weight of 15,000 for the A2 polypeptide. Migration of the A2 protein through gel filtration columns under nondenaturing conditions, in combination with sedimentation behavior, indicated dimerization of the A2 polypeptide. The existence of the A2 dimer was confirmed by protein cross-linking with dimethyl suberimidate and analysis of the cross-linked proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The amino acid composition, degree of polymerization, DNA-binding ability, and physical characteristics of the T5 gene A2 protein are consistent with a function of the A2 protein in DNA transfer.  相似文献   

12.
Mitochondrial DNA synthesis in adenovirus type 2-infected HeLa cells was measured at various times from 0 to 24 h postinfection. Although viral infection effectively turned off host chromosomal DNA synthesis, mitochondrial DNA synthesis was not inhibited. These findings indicate a dissociation between the regulation of host and mitochondrial DNA synthesis after infection with adenovirus type 2.  相似文献   

13.
14.
An in vitro system containing the T4 gene 43, 45, 44/62, 32, dda, and uvsX proteins catalyzes DNA synthesis that is dependent on the synapsis step of homologous genetic recombination. The rate of DNA synthesis in this system is highly dependent on the concentration of the uvsX recombinase (a recA-like protein). Here we report the effect of the T4 uvsY protein, a recombination accessory protein, on this reaction. Low concentrations of uvsY protein greatly stimulate DNA synthesis at low concentrations of uvsX protein, but these same concentrations inhibit DNA synthesis at high concentrations of uvsX protein. As a result, the addition of small amounts of uvsY protein lowers the minimum concentration of uvsX protein needed for the reaction 8-fold, and it lowers the uvsX protein concentration for maximum activity 4-fold. The uvsY protein can affect either the initiation or elongation phase of DNA synthesis, depending on the concentration of uvsX protein present. The implications of these results for the function of the uvsY protein in T4 DNA replication in vivo are discussed.  相似文献   

15.
The interaction between DNA and the structural protein IV of bacteriophage PM2 was studied by co-sedimentation, filter binding and electron microscopy. The co-sedimentation data and the sigmoid-shaped filter binding curve were interpreted in terms of co-operative binding. At a given DNA/protein input ratio, some DNA molecules were associated with a large amount of protein IV while others had no detectable protein bound to them. Electron microscopic examination of DNA-protein IV mixtures showed highly condensed DNA molecules alongside uncomplexed native DNA. Dissociation experiments revealed the presence of two types of complexes. Type I dissociated rapidly while type II had a long half-life. Dissociation of complexes obtained with increasing protein/DNA ratios suggested that the type I complex was a precursor of type II complex. Protein IV binds equally well to superhelical, relaxed or linear DNA as well as to single-stranded DNA. These observations lead to a model for the interaction and for the consequent alterations in the DNA structure.  相似文献   

16.
Plasmid pBR322 replication is inhibited after bacteriophage T4 infection. If no T4 DNA had been cloned into this plasmid vector, the kinetics of inhibition are similar to those observed for the inhibition of Escherichia coli chromosomal DNA. However, if T4 DNA has been cloned into pBR322, plasmid DNA synthesis is initially inhibited but then resumes approximately at the time that phage DNA replication begins. The T4 insert-dependent synthesis of pBR322 DNA is not observed if the infecting phage are deleted for the T4 DNA cloned in the plasmid. Thus, this T4 homology-dependent synthesis of plasmid DNA probably reflects recombination between plasmids and infecting phage genomes. However, this recombination-dependent synthesis of pBR322 DNA does not require the T4 gene 46 product, which is essential for T4 generalized recombination. The effect of T4 infection on the degradation of plasmid DNA is also examined. Plasmid DNA degradation, like E. coli chromosomal DNA degradation, occurs in wild-type and denB mutant infections. However, neither plasmid or chromosomal degradation can be detected in denA mutant infections by the method of DNA--DNA hybridization on nitrocellulose filters.  相似文献   

17.
18.
Bacteriophage T5 DNA was examined in an electron microscope after limited digestion with exonuclease III from Escherichia coli. The effect of the exonuclease treatment was to convert each naturally occurring single-chain interruption in T5 DNA into a short segment of single-stranded DNA. The locations of these segments were determined for T5st(+) DNA, T5st(0) DNA, and fragments of T5st(0) DNA generated by EcoRI restriction endonuclease. The results indicate that single-chain interruptions occurr in a variable, but nonrandom, manner in T5 DNA. T5st(+) DNA has four principal interruptions located at sites approximately 7.9, 18.5, 32.6, and 64.8% from one end of the molecule. Interruptions occur at these sites in 80 to 90% of the population. A large number of additional sites, located primarily at the ends of the DNA, contain interruptions at lower frequencies. The average number of interruptions per genome, as determined by this method, is 8. A similar distribution of breaks occurs in T5st(0) DNA, except that the 32.6% site is missing. At least one of the principal interruptions is reproducibly located within an interval of 0.2% of the entire DNA.  相似文献   

19.
20.
Good evidence is provided that fMet-tRNA binding and aminoacid incorporation, when single-stranded DNA is used instead of mRNA in an E. coli cell-free system, are strictly dependent on the magnesium concentration. Ten sites homologous to the initiation sites of translation can be detected on denatured T5 stO DNA when using ribosomes and initiation factors from uninfected E. coli F. In S-30 extracts, at high magnesium concentrations and in the presence of neomycin, initiation of the translation of denatured T5 stO DNA begins anywhere on the molecule, and yet high molecular weight polypeptides are synthesized. The template potentiality of the denatured T5 stO DNA decreased when using ribosomes plus initiation factors and crude extracts from T5 stO-infected bacteria. By in vitro formation of initiation complexes sites analogous to initiation sites of translation were localized on T5 stO DNA molecules using single-stranded fragments separated by sedimentation in alkaline sucrose gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号