首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A rapid and simple analytical method for unsaturated disaccharide isomers formed by enzymatic digestion from hyaluronic acid, chondroitin sulfate, dermatan sulfate, heparan sulfate, and heparin by high-performance liquid chromatography using an amine-bound silica column with a linear gradient of sodium dihydrogen phosphate was developed. The analyses were performed on isomers of two groups belonging to the chondroitin sulfate family and the heparin sulfate family. In both families, disaccharide isomers eluted in the order non-, mono-, di-, and trisulfated disaccharides by elevating salt concentrations. The method was applied to the analysis of constituent disaccharides of representative sulfated glycosaminoglycans, which proved that most constituents could be quantified separately. This method is advantageous in that enzymatic digests can be applied directly on a column without any pretreatment and good resolution of several disaccharides can be obtained by one chromatography.  相似文献   

2.
Heparin like glycosaminoglycans (HLGAGs) are struc-turally complex linear polysaccharides composed of re-peating disaccharide unit of uronic (α-L-iduronic or β-D-glucuronic) acid linked 1→4 to α-D-glucosamine, whichis a highly variable sulfation pattern and ascribes to eachglycosaminoglycan (GAG) chain a unique structuralsignature. This signature dictates specific the GAG-pro-tein interactions underlying critical biological processesrelated to cell and tissue functions [1]. Only in fe…  相似文献   

3.
The antler is the most rapidly growing tissue in the animal kingdom. According to previous reports, antler glycosaminoglycans (GAGs) consist of all kinds GAGs except for heparan sulfate (HS). Chondroitin sulfate is the major antler GAG component comprising 88% of the total uronic acid content. In the current study, we have isolated HS from antler for the first time and characterized it based on both NMR spectroscopy and disaccharide composition analysis. Antler GAGs were isolated by protease treatment and followed by cetylpyridinium chloride precipitation. The sensitivity of antler GAGs to heparin lyase III showed that this sample contained heparan sulfate. After incubation of antler GAGs with chondroitin lyase ABC, the HS-containing fraction was recovered by ethanol precipitation. The composition of HS disaccharides in this fraction was determined by its complete depolymerization with a mixture of heparin lyase I, II, and III and analysis of the resulting disaccharides by the reversed-phase (RP) ion pairing-HPLC, monitored by the fluorescence detection using 2-cyanoacetamide as a post-column labeling reagent. Eight unsaturated disaccharides (DeltaUA-GlcNAc, DeltaUA-GlcNS, DeltaUA-GlcNAc6S, DeltaUA2S-GlcNAc, DeltaUA-GlcNS6S, DeltaUA2S-GlcNS, DeltaUA2S-GlcNAc6S, DeltaUA2S-GlcNS6S) were produced from antler HS by digestion with the mixture of heparin lyases. The total content of 2-O-sulfo disaccharide units in antler HS was higher than that of heparan sulfate from most other animal sources.  相似文献   

4.
Capillary zone electrophoresis (CZE) was used to separate eight commercial disaccharide standards of the structure delta UA2X(1----4)-D-GlcNY6X (where delta UA is 4-deoxy-alpha-L-threo-hex-4-enopyranosyluronic acid, GlcN is 2-deoxy-2-aminoglucopyranose, S is sulfate, Ac is acetate, X may be S, and Y is S or Ac). These eight disaccharides had been prepared from heparin, heparan sulfate, and derivatized heparins. A similar CZE method was recently reported for the analysis of eight chondroitin and dermatan sulfate disaccharides (A. Al-Hakim and R.J. Linhardt, Anal. Biochem. 195, 68-73, 1991). Two of the standard heparin/heparan sulfate disaccharides, having an identical charge of -2, delta UA2S(1----4)-D-GlcNAc and delta UA(1----4)-D-GlcNS, were not fully resolved using standard sodium borate/boric acid buffer. This buffer had proven effective in separating chondroitin/dermatan sulfate disaccharides of identical charge. Resolution of these two heparin/heparan sulfate disaccharides could be improved by extending the capillary length, preparing the buffer in 2H2O, or eliminating boric acid. Baseline resolution was achieved in sodium dodecyl sulfate in the absence of buffer. The structure and purity of each of the eight new commercial heparin/heparan sulfate disaccharide standards were confirmed using fast-atom-bombardment mass spectrometry and high-field 1H-NMR spectroscopy. Heparin and heparan sulfate were then depolymerized using heparinase (EC 4.2.2.7), heparin lyase II (EC 4.2.2.-), heparinitase (EC 4.2.2.8), and a combination of all three enzymes. CZE analysis of the products formed provided a disaccharide composition of each glycosaminoglycan. As little as 50 fmol of disaccharide could be detected by ultraviolet absorbance.  相似文献   

5.
The disaccharide repeating-units of heparan sulfate   总被引:11,自引:0,他引:11  
Five disaccharides have been isolated after degradation of heparan sulfate by heparinase (heparin lyase) and heparitinase (heparan sulfate lyase) and are suggested to represent the repeating units of the polysaccharide. They all contain a 4,5-unsaturated uronic acid residue and are: (a) A trisulfated disaccharide that is apparently identical to a disaccharide repeating-unit of heparin; (b) a disulfated disaccharide that seems unique for heparan sulfate and contains 2-deoxy-2-sulfamidoglucose and uronic acid sulfate residues; (c) a nonsulfated disaccharide containing a 2-acetamido-2-deoxyglucose residue; (d) a monosulfated disaccharide containing a 2-acetamido-2-deoxyglucose sulfate residue; and (e) a monosulfated disaccharide containing a 2-deoxy-2-sulfamidoglucose residue. Yields of these disaccharides from different heparan sulfate fractions are discussed in relation to possible arrangements of these units in the intact polymer.  相似文献   

6.
1. Six kinds of unsaturated disaccharides were prepared by enzymatic digestion of heparin and heparan sulfate with heparitinases I0 and IV, and subsequent column chromatography. They were identified by HPLC showing good separation from each other. 2. The content of each unsaturated disaccharide fraction was determined colorimetrically, and found to range from 130.7 to 722.3 mumol. 3. Molecular extinction coefficient of each unsaturated disaccharide was calculated from absorbance at a wavelength of around 230 nm where a peak appeared on the ultraviolet spectrum of each disaccharide solution at pH 2. The values varied from 6000 to 6600.  相似文献   

7.
Proteoglycans were extracted from nuclease-digested sonicates of 10(9) rat basophilic leukemia (RBL-1) cells by the addition of 0.1% Zwittergent 3-12 and 4 M guanidine hydrochloride and were purified by sequential CsCl density gradient ultracentrifugation, DE52 ion exchange chromatography, and Sepharose CL-6B gel filtration chromatography under dissociative conditions. Between 0.3 and 0.8 mg of purified proteoglycan was obtained from approximately 1 g initial dry weight of cells with a purification of 200-800-fold. The purified proteoglycans had a hydrodynamic size range of Mr 100,000-150,000 and were resistant to degradation by a molar excess of trypsin, alpha-chymotrypsin, Pronase, papain, chymopapain, collagenase, and elastase. Amino acid analysis of the peptide core revealed a preponderance of Gly (35.4%), Ser (22.5%), and Ala (9.5%). Approximately 70% of the glycosaminoglycan side chains of RBL-1 proteoglycans were digested by chondroitinase ABC and 27% were hydrolyzed by treatment with nitrous acid. Sephadex G-200 chromatography of glycosaminoglycans liberated from the intact molecule by beta-elimination demonstrated that both the nitrous acid-resistant (chondroitin sulfate) and the chondroitinase ABC-resistant (heparin/heparan sulfate) glycosaminoglycans were of approximately Mr 12,000. Analysis of the chondroitin sulfate disaccharides in different preparations by amino-cyano high performance liquid chromatography revealed that 9-29% were the unusual disulfated disaccharide chondroitin sulfate di-B (IdUA-2-SO4----GalNAc-4-SO4); the remainder were the monosulfated disaccharide GlcUA----GalNAc-4-SO4. Subpopulations of proteoglycans in one preparation were separated by anion exchange high performance liquid chromatography and were found to contain chondroitin sulfate glycosaminoglycans whose disulfated disaccharides ranged from 9-49%. However, no segregation of subpopulations without both chondroitin sulfate di-B and heparin/heparan sulfate glycosaminoglycans was achieved, suggesting that RBL-1 proteoglycans might be hybrids containing both classes of glycosaminoglycans. Sepharose CL-6B chromatography of RBL-1 proteoglycans digested with chondroitinase ABC revealed that less than 7% of the molecules in the digest chromatographed with the hydrodynamic size of undigested proteoglycans, suggesting that at most 7% of the proteoglycans lack chondroitin sulfate glycosaminoglycans.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Proteoglycans synthesized in cultured mast cells derived from horse serum-immunized lymph node cells were analyzed. Treatment of the 35S-proteoglycans extracted from these cells with either chondroitinase ABC or AC resulted in 95% +/- 7% and 84% +/- 7%, respectively (mean +/- S.E., n = 3), of the radioactivity associated with disaccharides eluting in the included volume of PD-10. The 35S-proteoglycans were not hydrolyzed by nitrous acid elimination treatment. The chondroitinase ABC-generated disaccharides were analyzed by aminocyano high performance liquid chromatography. 35S-Disaccharides eluted in a major peak at a retention time of 8.1 min, corresponding to the disaccharide of chondroitin 4-sulfate proteoglycan (delta Di-4S), and a second peak at 12 min, corresponding to the disaccharide of chondroitin sulfate D proteoglycan (delta Di-diSD). Further treatment with chondro-4-sulfatase did not affect the retention time of the disaccharide corresponding to delta Di-diSD whereas this peak disappeared after the digested proteoglycan was treated either by chondro-6-sulfatase or by both sulfatases. Therefore, this disaccharide was identified as chondroitin sulfate D. Quantification of the radiolabeled disaccharides showed that delta Di-diSD contributed 20% +/- 2% (n = 3) of the total sulfated disaccharides of the chondroitin sulfate of these cultured cells. The role of fibroblasts in inducing the shift of chondroitin sulfate D into heparin proteoglycan in these mast cells was also investigated by using three types of monolayers: mouse embryonic skin fibroblasts (MESF), rat embryonic skin fibroblasts (RESF), and 3T3 fibroblasts. 35S-Proteoglycans that were extracted from the lymph node-derived mast cells cultured for 30 days on MESF and on 3T3 fibroblast monolayers were 93% +/- 4% and 30% +/- 7% (n = 3) susceptible to nitrous acid elimination, respectively. No degradation by nitrous acid was observed in 35S-proteoglycans extracted from cells cultured on RESF monolayer. Since the MESF was found to be the most potent monolayer in the induction of heparin synthesis, the kinetics of changes in the synthesis of proteoglycan types were determined in lymph node-derived mast cells cultured on MESF for up to 30 days. It was found that the synthesis of chondroitin sulfate gradually declined whereas that of heparin starting between 4 and 7 days after plating gradually increased. From the 17th day on, only the synthesis of heparin was detected.  相似文献   

9.
High-voltage capillary zone electrophoresis (CZE) has been used for the first time in the analysis of non-, mono-, di-, and trisulfated disaccharides derived from chondroitin sulfate, dermatan sulfate, and hyaluronic acid. These glycosaminoglycans are first depolymerized using polysaccharide lyases. The resulting unsaturated disaccharide products can be detected by their ultraviolet absorbance at 232 nm. Different retention times were obtained for each unsaturated disaccharide analyzed by CZE. The application of a constant voltage across a 70-cm fused silica capillary using a single, simple buffer system resolved an eight-component mixture within 40 min. Quantitation of disaccharides derived from chondroitin sulfate using chondroitin ABC lyase (EC 4.2.2.4) and mixtures of unsaturated disaccharide standards was possible requiring only picogram quantities of sample. The disaccharides examined had a net charge of from -1 to -4 and were resolved primarily on the basis of net charge and secondarily on the basis of charge distribution. Two unsulfated disaccharides both containing the same unsaturated uronic acid residue were analyzed. One was from chondroitin having an N-acetylgalactosyl residue and one from hyaluronate having an N-acetylglycosyl residue. Despite the fact that they differed only by the chirality at one center, these disaccharides were resolved by CZE. CZE is a fast and simple method that represents a powerful new tool for analysis and separation of acidic disaccharide components of glycosaminoglycans.  相似文献   

10.
Heparan sulfate d-glucosaminyl 3-O-sulfotransferases (3-OSTs) catalyze the transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to position 3 of the glucosamine residue of heparan sulfate and heparin. A sixth member of the human 3-OST family, named 3-OST-5, was recently reported (Xia, G., Chen, J., Tiwari, V., Ju, W., Li, J.-P., Malmstrom, A., Shukla, D., and Liu, J. (2002) J. Biol. Chem. 277, 37912-37919). In the present study, we cloned putative catalytic domain of the human 3-OST-5 and expressed it in insect cells as a soluble enzyme. Recombinant 3-OST-5 only exhibited sulfotransferase activity toward heparan sulfate and heparin. When incubated heparan sulfate with [35S]PAPS, the highest incorporation of35S was observed, and digestion of the product with a mixture of heparin lyases yielded two major35S-labeled disaccharides, which were determined as DeltaHexA-GlcN(NS,3S,6S) and DeltaHexA(2S)-GlcN(NS,3S) by further digestion with 2-sulfatase and degradation with mercuric acetate. However, when used heparin as acceptor, we identified a highly sulfated disaccharide unit as a major product. This had a structure of DeltaHexA(2S)-GlcN(NS,3S,6S). Quantitative real-time PCR analysis revealed that 3-OST-5 was highly expressed in fetal brain, followed by adult brain and spinal cord, and at very low or undetectable levels in the other tissues. Finally, we detected a tetrasulfated disaccharide unit in bovine intestinal heparan sulfate. To our knowledge, this is the first report to describe not only the natural occurrence of tetrasulfated disaccharide unit but also the enzymatic formation of this novel structure.  相似文献   

11.
The purification of two heparitinases and a heparinase, in high yields from Flavobacterium heparinum was achieved by a combination of molecular sieving and cation-exchange chromatography. Heparinase acts upon N-sulfated glucosaminido-L-iduronic acid linkages of heparin. Substitution of N-sulfate by N-acetyl groups renders the heparin molecule resistant to degradation by the enzyme. Heparitinase I acts on N-acetylated or N-sulfated glucosaminido-glucuronic acid linkages of the heparan sulfate. Sulfate groups at the 6-position of the glucosamine moiety of the heparan sulfate chains seem to be impeditive for heparitinase I action. Heparitinase II acts upon heparan sulfate producing disulfated, N-sulfated and N-acetylated-6-sulfated disaccharides, and small amounts of N-acetylated disaccharide. These and other results suggest that heparitinase II acts preferentially upon N,6-sulfated glucosaminido-glucuronic acid linkages. The total degradation of heparan sulfate is only achieved by the combined action of both heparitinases. The 13C NMR spectra of the disaccharides formed from heparan sulfate and a heparin oligosaccharide formed by the action of the heparitinases are in accordance to the proposed mode of action of the enzymes. Comparative studies of the enzymes with the commercially available heparinase and heparitinase are described.  相似文献   

12.
In the structural analysis of heparin and heparan sulfate, it is customary to combine or pool like-sized fractions obtained by size-exclusion chromatography (SEC) of enzymatically derived heparin oligosaccharides. In this study, we examine the heterogeneity of preparative-scale SEC fractions obtained from enzymatic digests of porcine intestinal mucosa heparin. Each fraction was profiled by capillary electrophoresis with UV detection (CE−UV) using a 60 mM formic acid running buffer at pH 3.43. Differences in the composition and relative concentration of components of the SEC fractions were observed for disaccharides and larger oligosaccharides. The heterogeneity of the fractions becomes more pronounced when heparin is digested using a heparin lyase cocktail. The heterogeneity of preparative SEC fractions was further investigated by reversed-phase ion-pairing ultraperformance liquid chromatography coupled with mass spectrometry (RPIP−UPLC−MS) using the ion-pairing reagent, tributylamine (Bu3N). Our results suggest that preliminary profiling of preparative SEC fractions prior to pooling may simplify efforts to identify and/or isolate rare structures.  相似文献   

13.
One of the first steps in characterizing heparan sulfate (HS) and its close relative heparin is to conduct disaccharide composition analysis. This provides an overall picture of the structure of the polysaccharide in terms of its constituent disaccharides. This is of importance, for example, in the initial characterization of spatially and temporally regulated structures. Two protocols for conducting disaccharide analysis are presented here, both exploiting exhaustive digestion of the polysaccharide, yielding constituent disaccharides, by bacterial heparin lyases. The first method, suitable for microgram quantities of material, relies on the separation of the disaccharides by high-performance liquid chromatography (HPLC) coupled to ultraviolet absorbance detection and can be performed in 2 d. The second exploits reducing end-labeling with the fluorophore BODIPY hydrazide, separation by HPLC, and subsequent fluorescence detection and quantitation. The latter is a high-sensitivity method that requires nanograms of starting material and has a detection limit in the low fmol range, and is thus the most sensitive method for disaccharide compositional analysis of HS yet reported. Fluorescence detection can be routinely carried out in 3 d.  相似文献   

14.
The heparin disaccharides detected in farmed Atlantic salmon (Salmo salar) gills and intestines have, with one exception, been reported in porcine heparin. The relative amounts of disaccharides appear to be very different in the two species. Two chondroitin disaccharides with a proposed essential role in the zebrafish (Danio rerio) development and differentiation are detected in farmed Atlantic salmon. In addition, most of the chondroitin/dermatan sulfate and heparin disaccharides detected here have been reported in zebrafish, in support of the claims of the heparin presence in fish. The same chondroitin/dermatan disaccharides were detected in the bones of bony fishes. The rare disaccharide UA2S-GalNAc that was found in trace amounts in all 5 bony fishes was found in relative high amounts in gills and in significant amounts in intestines. The rare heparin disaccharide UA2S-GlcN was in relative highest amounts both in gills and intestines. In context with our previous reports, this communication suggests that glycosaminoglycans in farmed Atlantic salmon heparin need further studies in order to clarify structure and function.  相似文献   

15.
Dermatan sulfate increases the rate of inhibition of thrombin by heparin cofactor II (HCII) approximately 1000-fold by providing a catalytic template to which both the inhibitor and the protease bind. Dermatan sulfate is a linear polymer of D-glucuronic acid (GlcA) or L-iduronic acid (IdoA) alternating with N-acetyl-D-galactosamine (GalNAc) residues. Heterogeneity in dermatan sulfate results from varying degrees of O-sulfation and from the presence of the two types of uronic acid residues. To characterize the HCII-binding site in dermatan sulfate, we isolated the smallest fragment of dermatan sulfate that bound to HCII with high affinity. Dermatan sulfate was partially N-deacetylated by hydrazinolysis, cleaved with nitrous acid at pH 4, and reduced with [3H]NaBH4. The resulting fragments, containing an even number of monosaccharide units with the reducing terminal GalNAc converted to [3H]2,5-anhydro-D-talitol (ATalR), were size-fractionated and then chromatographed on an HCII-Sepharose column. The smallest HCII-binding fragments were hexasaccharides, of which approximately 6% bound. Based on ion-exchange chromatography, the bound material appeared to comprise a heterogeneous mixture of molecules possessing four, five, or six sulfate groups per hexasaccharide. Subsequently, hexasaccharides with the highest affinity for HCII were isolated by overloading the HCII-Sepharose column. The high-affinity hexasaccharides were fractionated by strong anion-exchange chromatography, and one major peak representing approximately 2% of the starting hexasaccharides was isolated. The high-affinity hexasaccharide was cleaved to disaccharides that were analyzed by anion-exchange chromatography, paper electrophoresis, and paper chromatography. A single disulfated disaccharide, IdoA(2-SO4)----ATalR(4-SO4) was observed, indicating that the hexasaccharide has the following structure: IdoA(2-SO4)----GalNAc(4-SO4)----IdoA(2-SO4)---- GalNAc(4-SO4)----IdoA(2-SO4)----ATalR(4-SO4). Since IdoA(2-SO4)----GalNAc(4-SO4) comprises only approximately 5% of the disaccharides present in intact dermatan sulfate, clustering of these disaccharides must occur during biosynthesis to form the high-affinity binding site for HCII.  相似文献   

16.
A series of disaccharides derived from chondroitin sulfate and heparin/heparan sulfate were derivatized at their reducing ends with a fluorophore 2-aminobenzamide to develop a sensitive microanalytical method for glycosaminoglycans. The resulting labeled compounds derived from chondroitin sulfate or heparin/heparan sulfate were well-separated and quantified by HPLC equipped with a fluorescence detector. The detection limit was a low picomole level. This method was applied to the analysis of the disaccharide composition of tetra- and hexasaccharides derived from chondroitin sulfate and heparin/heparan sulfate as well as these glycosaminoglycan polysaccharides. The method was also successfully applied to the exosequencing of chondrohexasaccharides, where the fluorophore-labeled oligosaccharides were degraded exolytically from the nonreducing ends using bacterial eliminases. The resultant labeled fragments were identified by HPLC.  相似文献   

17.
Rats infected with the helminth Nippostrongylus brasiliensis were injected i.p. with 2 mCi of [35S] sulfate on days 13, 15, 17, and 19 after infection. The intestines were removed from animals on day 20 or 21 after infection, the intestinal cells were obtained by collagenase treatment and mechanical dispersion of the tissue, and the 35S-labeled mucosal mast cells (MMC) were enriched to 60 to 65% purity by Percoll centrifugation. The cell-associated 35S-labeled proteoglycans were extracted from the MMC-enriched cell preparation by the addition of detergent and 4 M guanidine HCl and were partially purified by density gradient centrifugation. The isolated proteoglycans were of approximately 150,000 m.w., were resistant to pronase degradation, and contained highly sulfated chondroitin sulfate side chains. Analysis by high-performance liquid chromatography of chondroitinase ABC-treated 35S-labeled proteoglycans from these rat MMC revealed that the chondroitin sulfate chains consisted predominantly of disaccharides with the disulfated di-B structure (IdUA-2SO4----GalNAc-4SO4) and disaccharides with the monosulfated A structure (G1cUA----GalNAc-4SO4). The ratio of disaccharides of the di-B to A structure ranged from 0.4 to 1.6 in three experiments. Small amounts of chondroitin sulfate E disaccharides (GlcUA----GalNAc-4,6-diSO4) were also detected in the chondroitinase ABC digests of the purified rat MMC proteoglycans, but no nitrous acid-susceptible heparin/heparan sulfate glycosaminoglycans were detected. The presence in normal mammalian cells of chondroitin sulfate proteoglycans that contain such a high percentage of the unusual disulfated di-B disaccharide has not been previously reported. The rat intestinal MMC proteoglycans are the first chondroitin sulfate proteoglycans that have been isolated from an enriched population of normal mast cells. They are homologous to the chondroitin sulfate-rich proteoglycans of the transformed rat basophilic leukemia-1 cell and the cultured interleukin 3-dependent mouse bone marrow-derived mast cell, in that these chondroitin sulfate proteoglycans as well as rat serosal mast cell heparin proteoglycans are all highly sulfated, protease-resistant proteoglycans.  相似文献   

18.
Topically applied heparin and heparan sulfate disaccharides, with the basic structure delta-4,5 uronyl-(1----4)-glucosamine and bearing a sulfate at the C-6 position of the glucosamine residue, are antihemostatics as potent as heparin, producing uncontrollable hemorrhage from small blood vessels. The finding that other sulfated disaccharides with the same sulfate:hexosamine:uronic acid ratios but with the sulfate at a different position (C-2), or with different glycosidic linkage (1----3), were inactive as inhibitors of hemostasis indicates that a specific structure is needed to produce the effect. The inhibitory activity of the normal hemostatic process could be reversed by ATP. Molecular models show that part of the disaccharide inhibitors and ATP hold a similar structural conformation.  相似文献   

19.
Porcine mucosal heparin was partially depolymerized with heparinlyase I and then fractionated into low-molecularweight (<5000)and high-molecular-weight (>5000) oligosaccharides by pressurefiltration. The high-molecular-weight oligosaccharide mixture({small tilde}50 wt% of the starting heparin) also containedintact heparin. This intact polymer complicates oligosacsharidepurification. Thus, the low-molecular-weight fraction was usedto prepare homogeneous oligosaccharides for structural characterization.The low-molecular-weight oligosaccharide mixture was first fractionatedby low pressure gel permeation chromatography into size-uniformmixtures of disaccharides, tetrasaccharides, hexasaccharides,octasaccharides, decasaccharides, dodecasaccharides, tetradecasaccharidesand higher oligosaccharides. Each size-fractionated mixturewas then purified on the basis of charge by repetitive semi-preparativestrong-anion-exchange high-performance liquid chromatography.This approach has led to the isolation of 14 homogeneous oligosaccharidesfrom disaccharide to tetradecasaccharide. The purity of theseheparin-derived oligosaccharides was determined by gradientpolyacrylamide gel electrophoresis, analytical strong-anion-exchangehigh-performance liquid chromatography, capillary electrophoresisand one-dimensional nuclear resonance spectroscopy. The structureof these oligosaccharides was established using 600 MHz two-dimensionalnuclear resonance spectroscopy . The spectral methods used includedhomonuclear correlation spectroscopy, nuclear Overhauser effectspectroscopy and heteronuclear multiple quantum coherence spech-clscopy.The 1H/1H connectivities of the protons of each sugar residuein an oligosaccharide were established by two-dimensional homonuclearcorrelation spectroscopy, while 1H/13C assignments were madeusing 1H inverse detection. One- and two-dimensional nuclearresonance spectroscopic analysis of these heparin oligosaccharidesshowed two closely related groups of heparin-oligosaccharidesare afforded by enzymatic depolymerization of heparin. One groupis fully sulphated, having the structures  相似文献   

20.
Volpi N  Maccari F 《Biomacromolecules》2005,6(6):3174-3180
In this paper, glycosaminoglycans from the body of the large freshwater mollusc bivalve Anodonta anodonta were recovered at about 0.6 mg/g of dry tissue, composed of chondroitin sulfate (approximately 38%), nonsulfated chondroitin (about 21%), and heparin (41%). This last polysaccharide was found to consist of a large percentage (approximately 88%) of a fast-moving species possessing a lower molecular mass and sulfate group amount and about 12% of a more sulfated, slow-moving component having a greater molecular mass. The chondroitin sulfate was composed of approximately 28% of the 6-sulfated disaccharide, 46% of the 4-sulfated disaccharide, and about 26% of the nonsulfated disaccharide, with a charge density value of 0.74. Heparin was subjected to the oligosaccharide mapping after treatment with heparinase and then separation of the resulting unsaturated oligosaccharides by SAX-HPLC. A heparin sample from Anodonta anodonta showed a degree of sulfation similar to that of bovine mucosal heparin because of the presence of approximately the same mol % of the trisulfated disaccharide (DeltaUA2S(1-->4)-alpha-D-GlcN2S6S), a slight modification of the other oligosaccharides, and a significant increase of the disaccharide bearing the sulfate group in position 3 of the N-sulfoglucosamine 6-sulfate (-->4)-beta-D-GlcA(1-->4)-alpha-D-GlcN2S3S6S(1-->) part of the ATIII-binding region. However, the anticoagulant activity of mollusc heparin was quite similar to that of pharmaceutical grade heparin. The data obtained again emphasize the heterogeneity of GAGs from molluscs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号