首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an approach using syntactosemantic rules for the extraction of relational information from biomedical abstracts. The results show that by overcoming the hurdle of technical terminology, high precision results can be achieved. From abstracts related to baker's yeast, we manage to extract a regulatory network comprised of 441 pairwise relations from 58,664 abstracts with an accuracy of 83 - 90%. To achieve this, we made use of a resource of gene/protein names considerably larger than those used in most other biology related information extraction approaches. This list of names was included in the lexicon of our retrained partof- speech tagger for use on molecular biology abstracts. For the domain in question an accuracy of 93.6 - 97.7% was attained on Part-of-speech-tags. The method can be easily adapted to other organisms than yeast, allowing us to extract many more biologically relevant relations. The main reason for the comparable precision rates is the ontological model that was built beforehand and served as a guiding force for the manual coding of the syntactosemantic rules.  相似文献   

2.
MOTIVATION: The MEDLINE database of biomedical abstracts contains scientific knowledge about thousands of interacting genes and proteins. Automated text processing can aid in the comprehension and synthesis of this valuable information. The fundamental task of identifying gene and protein names is a necessary first step towards making full use of the information encoded in biomedical text. This remains a challenging task due to the irregularities and ambiguities in gene and protein nomenclature. We propose to approach the detection of gene and protein names in scientific abstracts as part-of-speech tagging, the most basic form of linguistic corpus annotation. RESULTS: We present a method for tagging gene and protein names in biomedical text using a combination of statistical and knowledge-based strategies. This method incorporates automatically generated rules from a transformation-based part-of-speech tagger, and manually generated rules from morphological clues, low frequency trigrams, indicator terms, suffixes and part-of-speech information. Results of an experiment on a test corpus of 56K MEDLINE documents demonstrate that our method to extract gene and protein names can be applied to large sets of MEDLINE abstracts, without the need for special conditions or human experts to predetermine relevant subsets. AVAILABILITY: The programs are available on request from the authors.  相似文献   

3.
Recognizing names in biomedical texts: a machine learning approach   总被引:9,自引:0,他引:9  
MOTIVATION: With an overwhelming amount of textual information in molecular biology and biomedicine, there is a need for effective and efficient literature mining and knowledge discovery that can help biologists to gather and make use of the knowledge encoded in text documents. In order to make organized and structured information available, automatically recognizing biomedical entity names becomes critical and is important for information retrieval, information extraction and automated knowledge acquisition. RESULTS: In this paper, we present a named entity recognition system in the biomedical domain, called PowerBioNE. In order to deal with the special phenomena of naming conventions in the biomedical domain, we propose various evidential features: (1) word formation pattern; (2) morphological pattern, such as prefix and suffix; (3) part-of-speech; (4) head noun trigger; (5) special verb trigger and (6) name alias feature. All the features are integrated effectively and efficiently through a hidden Markov model (HMM) and a HMM-based named entity recognizer. In addition, a k-Nearest Neighbor (k-NN) algorithm is proposed to resolve the data sparseness problem in our system. Finally, we present a pattern-based post-processing to automatically extract rules from the training data to deal with the cascaded entity name phenomenon. From our best knowledge, PowerBioNE is the first system which deals with the cascaded entity name phenomenon. Evaluation shows that our system achieves the F-measure of 66.6 and 62.2 on the 23 classes of GENIA V3.0 and V1.1, respectively. In particular, our system achieves the F-measure of 75.8 on the "protein" class of GENIA V3.0. For comparison, our system outperforms the best published result by 7.8 on GENIA V1.1, without help of any dictionaries. It also shows that our HMM and the k-NN algorithm outperform other models, such as back-off HMM, linear interpolated HMM, support vector machines, C4.5, C4.5 rules and RIPPER, by effectively capturing the local context dependency and resolving the data sparseness problem. Moreover, evaluation on GENIA V3.0 shows that the post-processing for the cascaded entity name phenomenon improves the F-measure by 3.9. Finally, error analysis shows that about half of the errors are caused by the strict annotation scheme and the annotation inconsistency in the GENIA corpus. This suggests that our system achieves an acceptable F-measure of 83.6 on the 23 classes of GENIA V3.0 and in particular 86.2 on the "protein" class, without help of any dictionaries. We think that a F-measure of 90 on the 23 classes of GENIA V3.0 and in particular 92 on the "protein" class, can be achieved through refining of the annotation scheme in the GENIA corpus, such as flexible annotation scheme and annotation consistency, and inclusion of a reasonable biomedical dictionary. AVAILABILITY: A demo system is available at http://textmining.i2r.a-star.edu.sg/NLS/demo.htm. Technology license is available upon the bilateral agreement.  相似文献   

4.
MOTIVATION: With the rapid advancement of biomedical science and the development of high-throughput analysis methods, the extraction of various types of information from biomedical text has become critical. Since automatic functional annotations of genes are quite useful for interpreting large amounts of high-throughput data efficiently, the demand for automatic extraction of information related to gene functions from text has been increasing. RESULTS: We have developed a method for automatically extracting the biological process functions of genes/protein/families based on Gene Ontology (GO) from text using a shallow parser and sentence structure analysis techniques. When the gene/protein/family names and their functions are described in ACTOR (doer of action) and OBJECT (receiver of action) relationships, the corresponding GO-IDs are assigned to the genes/proteins/families. The gene/protein/family names are recognized using the gene/protein/family name dictionaries developed by our group. To achieve wide recognition of the gene/protein/family functions, we semi-automatically gather functional terms based on GO using co-occurrence, collocation similarities and rule-based techniques. A preliminary experiment demonstrated that our method has an estimated recall of 54-64% with a precision of 91-94% for actually described functions in abstracts. When applied to the PUBMED, it extracted over 190 000 gene-GO relationships and 150 000 family-GO relationships for major eukaryotes.  相似文献   

5.
The GENIA ontology is a taxonomy that was developed as a result of manual annotation of a subset of MEDLINE, the GENIA corpus. Both the ontology and corpus have been used as a benchmark to test and develop biological information extraction tools. Recent work shows, however, that there is a demand for a more comprehensive ontology that would go along with the corpus. We propose a complete OWL ontology built on top of the GENIA ontology utilizing the GENIA corpus. The proposed ontology includes elements such as the original taxonomy of categories, biological entities as individuals, relations between individuals using verbs and verb nominalizations as object properties, and links to the UMLS Metathesaurus concepts. AVAILABILITY: http://www.ece.ualberta.ca/~rrak/ontology/xGENIA/  相似文献   

6.
MOTIVATION: A large volume of experimental data on protein phosphorylation is buried in the fast-growing PubMed literature. While of great value, such information is limited in databases owing to the laborious process of literature-based curation. Computational literature mining holds promise to facilitate database curation. RESULTS: A rule-based system, RLIMS-P (Rule-based LIterature Mining System for Protein Phosphorylation), was used to extract protein phosphorylation information from MEDLINE abstracts. An annotation-tagged literature corpus developed at PIR was used to evaluate the system for finding phosphorylation papers and extracting phosphorylation objects (kinases, substrates and sites) from abstracts. RLIMS-P achieved a precision and recall of 91.4 and 96.4% for paper retrieval, and of 97.9 and 88.0% for extraction of substrates and sites. Coupling the high recall for paper retrieval and high precision for information extraction, RLIMS-P facilitates literature mining and database annotation of protein phosphorylation.  相似文献   

7.
MOTIVATION: Many entity taggers and information extraction systems make use of lists of terms of entities such as people, places, genes or chemicals. These lists have traditionally been constructed manually. We show that distributional clustering methods which group words based on the contexts that they appear in, including neighboring words and syntactic relations extracted using a shallow parser, can be used to aid in the construction of term lists. RESULTS: Experiments on learning lists of terms and using them as part of a gene tagger on a corpus of abstracts from the scientific literature show that our automatically generated term lists significantly boost the precision of a state-of-the-art CRF-based gene tagger to a degree that is competitive with using hand curated lists and boosts recall to a degree that surpasses that of the hand-curated lists. Our results also show that these distributional clustering methods do not generate lists as helpful as those generated by supervised techniques, but that they can be used to complement supervised techniques so as to obtain better performance. AVAILABILITY: The code used in this paper is available from http://www.cis.upenn.edu/datamining/software_dist/autoterm/  相似文献   

8.

Motivation

Predicting the part of speech (POS) tag of an unknown word in a sentence is a significant challenge. This is particularly difficult in biomedicine, where POS tags serve as an input to training sophisticated literature summarization techniques, such as those based on Hidden Markov Models (HMM). Different approaches have been taken to deal with the POS tagger challenge, but with one exception – the TnT POS tagger - previous publications on POS tagging have omitted details of the suffix analysis used for handling unknown words. The suffix of an English word is a strong predictor of a POS tag for that word. As a pre-requisite for an accurate HMM POS tagger for biomedical publications, we present an efficient suffix prediction method for integration into a POS tagger.

Results

We have implemented a fully functional HMM POS tagger using experimentally optimised suffix based prediction. Our simple suffix analysis method, significantly outperformed the probability interpolation based TnT method. We have also shown how important suffix analysis can be for probability estimation of a known word (in the training corpus) with an unseen POS tag; a common scenario with a small training corpus. We then integrated this simple method in our POS tagger and determined an optimised parameter set for both methods, which can help developers to optimise their current algorithm, based on our results. We also introduce the concept of counting methods in maximum likelihood estimation for the first time and show how counting methods can affect the prediction result. Finally, we describe how machine-learning techniques were applied to identify words, for which prediction of POS tags were always incorrect and propose a method to handle words of this type.

Availability and Implementation

Java source code, binaries and setup instructions are freely available at http://genomes.sapac.edu.au/text_mining/pos_tagger.zip.  相似文献   

9.
Although there are several corpora with protein annotation, incompatibility between the annotations in different corpora remains a problem that hinders the progress of automatic recognition of protein names in biomedical literature. Here, we report on our efforts to find a solution to the incompatibility issue, and to improve the compatibility between two representative protein-annotated corpora: the GENIA corpus and the GENETAG corpus. In a comparative study, we improve our insight into the two corpora, and a series of experimental results show that most of the incompatibility can be removed.  相似文献   

10.
RelEx--relation extraction using dependency parse trees   总被引:4,自引:0,他引:4  
MOTIVATION: The discovery of regulatory pathways, signal cascades, metabolic processes or disease models requires knowledge on individual relations like e.g. physical or regulatory interactions between genes and proteins. Most interactions mentioned in the free text of biomedical publications are not yet contained in structured databases. RESULTS: We developed RelEx, an approach for relation extraction from free text. It is based on natural language preprocessing producing dependency parse trees and applying a small number of simple rules to these trees. We applied RelEx on a comprehensive set of one million MEDLINE abstracts dealing with gene and protein relations and extracted approximately 150,000 relations with an estimated performance of both 80% precision and 80% recall. AVAILABILITY: The used natural language preprocessing tools are free for use for academic research. Test sets and relation term lists are available from our website (http://www.bio.ifi.lmu.de/publications/RelEx/).  相似文献   

11.
MOTIVATION: Natural language processing (NLP) methods are regarded as being useful to raise the potential of text mining from biological literature. The lack of an extensively annotated corpus of this literature, however, causes a major bottleneck for applying NLP techniques. GENIA corpus is being developed to provide reference materials to let NLP techniques work for bio-textmining. RESULTS: GENIA corpus version 3.0 consisting of 2000 MEDLINE abstracts has been released with more than 400,000 words and almost 100,000 annotations for biological terms.  相似文献   

12.
MOTIVATION: The ambiguity of biomedical entities, particularly of gene symbols, is a big challenge for text-mining systems in the biomedical domain. Existing knowledge sources, such as Entrez Gene and the MEDLINE database, contain information concerning the characteristics of a particular gene that could be used to disambiguate gene symbols. RESULTS: For each gene, we create a profile with different types of information automatically extracted from related MEDLINE abstracts and readily available annotated knowledge sources. We apply the gene profiles to the disambiguation task via an information retrieval method, which ranks the similarity scores between the context where the ambiguous gene is mentioned, and candidate gene profiles. The gene profile with the highest similarity score is then chosen as the correct sense. We evaluated the method on three automatically generated testing sets of mouse, fly and yeast organisms, respectively. The method achieved the highest precision of 93.9% for the mouse, 77.8% for the fly and 89.5% for the yeast. AVAILABILITY: The testing data sets and disambiguation programs are available at http://www.dbmi.columbia.edu/~hux7002/gsd2006  相似文献   

13.
MOTIVATION: Full-text documents potentially hold more information than their abstracts, but require more resources for processing. We investigated the added value of full text over abstracts in terms of information content and occurrences of gene symbol--gene name combinations that can resolve gene-symbol ambiguity. RESULTS: We analyzed a set of 3902 biomedical full-text articles. Different keyword measures indicate that information density is highest in abstracts, but that the information coverage in full texts is much greater than in abstracts. Analysis of five different standard sections of articles shows that the highest information coverage is located in the results section. Still, 30-40% of the information mentioned in each section is unique to that section. Only 30% of the gene symbols in the abstract are accompanied by their corresponding names, and a further 8% of the gene names are found in the full text. In the full text, only 18% of the gene symbols are accompanied by their gene names.  相似文献   

14.

Background

Identification of discourse relations, such as causal and contrastive relations, between situations mentioned in text is an important task for biomedical text-mining. A biomedical text corpus annotated with discourse relations would be very useful for developing and evaluating methods for biomedical discourse processing. However, little effort has been made to develop such an annotated resource.

Results

We have developed the Biomedical Discourse Relation Bank (BioDRB), in which we have annotated explicit and implicit discourse relations in 24 open-access full-text biomedical articles from the GENIA corpus. Guidelines for the annotation were adapted from the Penn Discourse TreeBank (PDTB), which has discourse relations annotated over open-domain news articles. We introduced new conventions and modifications to the sense classification. We report reliable inter-annotator agreement of over 80% for all sub-tasks. Experiments for identifying the sense of explicit discourse connectives show the connective itself as a highly reliable indicator for coarse sense classification (accuracy 90.9% and F1 score 0.89). These results are comparable to results obtained with the same classifier on the PDTB data. With more refined sense classification, there is degradation in performance (accuracy 69.2% and F1 score 0.28), mainly due to sparsity in the data. The size of the corpus was found to be sufficient for identifying the sense of explicit connectives, with classifier performance stabilizing at about 1900 training instances. Finally, the classifier performs poorly when trained on PDTB and tested on BioDRB (accuracy 54.5% and F1 score 0.57).

Conclusion

Our work shows that discourse relations can be reliably annotated in biomedical text. Coarse sense disambiguation of explicit connectives can be done with high reliability by using just the connective as a feature, but more refined sense classification requires either richer features or more annotated data. The poor performance of a classifier trained in the open domain and tested in the biomedical domain suggests significant differences in the semantic usage of connectives across these domains, and provides robust evidence for a biomedical sublanguage for discourse and the need to develop a specialized biomedical discourse annotated corpus. The results of our cross-domain experiments are consistent with related work on identifying connectives in BioDRB.  相似文献   

15.
We introduce the first meta-service for information extraction in molecular biology, the BioCreative MetaServer (BCMS; http://bcms.bioinfo.cnio.es/). This prototype platform is a joint effort of 13 research groups and provides automatically generated annotations for PubMed/Medline abstracts. Annotation types cover gene names, gene IDs, species, and protein-protein interactions. The annotations are distributed by the meta-server in both human and machine readable formats (HTML/XML). This service is intended to be used by biomedical researchers and database annotators, and in biomedical language processing. The platform allows direct comparison, unified access, and result aggregation of the annotations.  相似文献   

16.
A high proportion of life science researches are gene-oriented, in which scientists aim to investigate the roles that genes play in biological processes, and their involvement in biological mechanisms. As a result, gene names and their related information turn out to be one of the main objects of interest in biomedical literatures. While the capability of recognizing gene mentions has made significant progress, the results of recognition are still insufficient for direct use due to the ambiguity of gene names. Gene normalization (GN) goes beyond the recognition task by linking a gene mention to a database ID. Unlike most previous works, we approach GN on the instance-level and evaluate its overall performance on the recognition and normalization steps in abstracts and full texts. We release the first instance-level gene normalization (IGN) corpus in the BioC format, which includes annotations for the boundaries of all gene mentions and the corresponding IDs for human gene mentions. Species information, along with existing co-reference chains and full name/abbreviation pairs are also provided for each gene mention. Using the released corpus, we have designed a collective instance-level GN approach using not only the contextual information of each individual instance, but also the relations among instances and the inherent characteristics of full-text sections. Our experimental results show that our collective approach can achieve an F-score of 0.743. The proposed approach that exploits section characteristics in full-text articles can improve the F-scores of information lacking sections by up to 1.8%. In addition, using the proposed refinement process improved the F-score of gene mention recognition by 0.125 and that of GN by 0.03. Whereas current experimental results are limited to the human species, we seek to continue updating the annotations of the IGN corpus and observe how the proposed approach can be extended to other species.  相似文献   

17.
Perez-Iratxeta C  Keer HS  Bork P  Andrade MA 《BioTechniques》2002,32(6):1380-2, 1384-5
The increase of information in biology makes it difficult for researchers in any field to keep current with the literature. The MEDLINE database of scientific abstracts can be quickly scanned using electronic mechanisms. Potentially interesting abstracts can be selected by matching words joined by Boolean operators. However this means of selecting documents is not optimal. Nonspecific queries have to be effected, resulting in large numbers of irrelevant abstracts that have to be manually scanned To facilitate this analysis, we have developed a system that compiles a summary of subjects and related documents on the results of a MEDLINE query. For this, we have applied a fuzzy binary relation formalism that deduces relations between words present in a set of abstracts preprocessed with a standard grammatical tagger. Those relations are used to derive ensembles of related words and their associated subsets of abstracts. The algorithm can be used publicly at http:// www.bork.embl-heidelberg.de/xplormed/.  相似文献   

18.
To have a better understanding of the mechanisms of disease development, knowledge of mutations and the genes on which the mutations occur is of crucial importance. Information on disease-related mutations can be accessed through public databases or biomedical literature sources. However, information retrieval from such resources can be problematic because of two reasons: manually created databases are usually incomplete and not up to date, and reading through a vast amount of publicly available biomedical documents is very time-consuming. In this paper, we describe an automated system, MuGeX (Mutation Gene eXtractor), that automatically extracts mutation-gene pairs from Medline abstracts for a disease query. Our system is tested on a corpus that consists of 231 Medline abstracts. While recall for mutation detection alone is 85.9%, precision is 95.9%. For extraction of mutation-gene pairs, we focus on Alzheimer's disease. The recall for mutation-gene pair identification is estimated at 91.3%, and precision is estimated at 88.9%. With automatic extraction techniques, MuGeX overcomes the problems of information retrieval from public resources and reduces the time required to access relevant information, while preserving the accuracy of retrieved information.  相似文献   

19.
SUMMARY: POSBIOTM-NER is a trainable biomedical named-entity recognition system. POSBIOTM-NER can be automatically trained and adapted to new datasets without performance degradation, using CRF (conditional random field) machine learning techniques and automatic linguistic feature analysis. Currently, we have trained our system on three different datasets. GENIA-NER was trained based on GENIA Corpus, GENE-NER based on BioCreative data and GPCR-NER based on our own POSBIOTM/NE corpus, respectively, which would be used in GPCR-related pathway extraction.  相似文献   

20.
Zhu F  Shen B 《PloS one》2012,7(6):e39230
Biological named entity recognition, the identification of biological terms in text, is essential for biomedical information extraction. Machine learning-based approaches have been widely applied in this area. However, the recognition performance of current approaches could still be improved. Our novel approach is to combine support vector machines (SVMs) and conditional random fields (CRFs), which can complement and facilitate each other. During the hybrid process, we use SVM to separate biological terms from non-biological terms, before we use CRFs to determine the types of biological terms, which makes full use of the power of SVM as a binary-class classifier and the data-labeling capacity of CRFs. We then merge the results of SVM and CRFs. To remove any inconsistencies that might result from the merging, we develop a useful algorithm and apply two rules. To ensure biological terms with a maximum length are identified, we propose a maximal bidirectional squeezing approach that finds the longest term. We also add a positive gain to rare events to reinforce their probability and avoid bias. Our approach will also gradually extend the context so more contextual information can be included. We examined the performance of four approaches with GENIA corpus and JNLPBA04 data. The combination of SVM and CRFs improved performance. The macro-precision, macro-recall, and macro-F(1) of the SVM-CRFs hybrid approach surpassed conventional SVM and CRFs. After applying the new algorithms, the macro-F1 reached 91.67% with the GENIA corpus and 84.04% with the JNLPBA04 data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号