首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We conducted a field study to examine the influence of hydroperiod and concomitant changes in abiotic (wetland size, pH, conductivity, dissolved oxygen and water temperature) and biotic (predatory fish presence) characteristics on macroinvertebrate communities in isolated wetlands in southern New Hampshire. Invertebrates were sampled using dipnet sweeps in 42 wetlands with short (<4 months), intermediate (4–11 months) or long (permanent) hydroperiods in 1998 and 1999. We found that invertebrate genera richness, and to a lesser degree abundance, increased linearly along the hydrological gradient, and in response to temperature and dissolved oxygen. Relative abundance of genera also differed markedly with respect to hydroperiod. Most notably, invertebrate communities changed from Acilius-dominated communities to Notonecta-dominated communities. Invertebrate relative abundances in permanent wetlands also differed with respect to the occurrence of predatory fish. Some genera (e.g., Libellula, and Dytiscus) were more likely to occur in permanent wetlands without fish, whereas other genera (e.g., Buena, and Basiaeshna) were more likely to occur in wetlands with predatory fish. Because aquatic invertebrate communities differed markedly with respect to wetland hydroperiod, and in relation to the occurrence of predatory fish, it is essential to retain a diversity of wetlands in the landscape to ensure the long-term persistence of aquatic invertebrate biodiversity.  相似文献   

2.
Summary A study was begun in 1976 to measure succession patterns following soil disturbance within a sagebrush community in northwestern Colorado. The principal hypothesis was that type of disturbance affects the direction of succession, resulting in different plant communities over time. Successional dynamics were studied through 1988. Four types of soil disturbance resulted in 3 early seral communities: one dominated by grasses, one by annuals, and one intermediate. The annual-dominated communities were opportunistic on these sites, lasting 3–5 years and not determining the direction in which succession proceeded following their replacement. Twelve years after disturbance, 3 communities (one grass-dominated, one shrub-dominated, and one intermediate) occupied the site, the characteristics of which were functions of type of initial soil disturbance. For the period of time covered by this study (12 years), degree of disturbance was found to affect the direction of succession, resulting in different plant communities over time. There were, however, successional characteristics toward the end of the study that suggest that over a longer time period, succession might progress to a single community regardless of type of disturbance.  相似文献   

3.
We used data from a 15-year experiment in a C4-dominated grassland to address the effects of community structure (i.e., plant species richness, dominance) and disturbance on invasibility, as measured by abundance and richness of exotic species. Our specific objectives were to assess the temporal and spatial patterns of exotic plant species in a native grassland in Kansas (USA) and to determine the factors that control exotic species abundance and richness (i.e., invasibility). Exotic species (90% C3 plants) comprised approximately 10% of the flora, and their turnover was relatively high (30%) over the 15-year period. We found that disturbances significantly affected the abundance and richness of exotic species. In particular, long-term annually burned watersheds had lower cover of exotic species than unburned watersheds, and fire reduced exotic species richness by 80–90%. Exotic and native species richness were positively correlated across sites subjected to different fire (r = 0.72) and grazing (r = 0.67) treatments, and the number of exotic species was lowest on sites with the highest productivity of C4 grasses (i.e., high dominance). These results provide strong evidence for the role of community structure, as affected by disturbance, in determining invasibility of this grassland. Moreover, a significant positive relationship between exotic and native species richness was observed within a disturbance regime (annually burned sites, r = 0.51; unburned sites, r = 0.59). Thus, invasibility of this C4-dominated grassland can also be directly related to community structure independent of disturbance. Received: 9 February 1999 / Accepted: 12 May 1999  相似文献   

4.
Disturbance and organisms on boulders   总被引:4,自引:0,他引:4  
K. A. McGuinness 《Oecologia》1987,71(3):420-430
Summary The tops of intertidal boulders on the east coast of Australia may carry a half-dozen algae, while the undersides may support a dozen or more species of sessile animals; mobile forms such as molluscs, crustaceans, and echinoderms are also common. These organisms are disturbed when boulders are moved by waves or buried in sand. Experiments were done to test the hypothesis that these disturbances are responsible for the reduced diversity and abundance of the assemblages on the undersides of small boulders. Boulders on one shore were bolted to the substratum to prevent movement by waves. In two separate experiments on another shore, boulders with and without attached organisms were buried in a few centimetres of sand. All experiments included relevant controls and were done high and low on the shore using rocks of several sizes.The assemblages of algae developing on the tops of all stabilised boulders, regardless of size, were similar to those on boulders free to roll indicating that, in contrast to results elsewhere, disturbance by waves was too infrequent or slight to affect these species. The tops of rocks were also rarely buried in sand and the main influences on the community in this situation were apparently exposure at low-tide and grazing gastropods.More species, however, did settle or survive on the undersides of rocks which were free of sand or could not be moved by waves; thus disturbances were important in this situation. In the absence of disturbance low on the shore, much or all space was occupied and sessile species such as sponges and ascidians overgrew other forms and reduced diversity. This did not happen higher on the shore and here diversity was simply an increasing function of rock-size. Overall disturbance played a similar role in all places — it killed organisms and created free space — but the final effects on the community varied depending upon the species present and the actions of other factors.  相似文献   

5.
Brown KM  Fraser KP  Barnes DK  Peck LS 《Oecologia》2004,141(1):121-129
Ice is a major structuring force in marine and freshwater environments at high latitudes. Although recovery from scouring has been quantified in time, the frequency of scouring in the Antarctic has not. We placed grids of markers at 9–17 m depth at two sites, to study ice-scouring over 2 years at Adelaide island (Antarctic Peninsula). We quantified the time scale of scour frequencies, and linked this to community mortality, age and diversity. Markers were hit from zero to at least three times in 2 years. At the least disturbed site (South Cove) 24% of markers were destroyed per year, whereas in North Cove 60% of markers were destroyed. There were significant differences in scouring frequency between our two sites: a given area in North Cove was on average hit twice as often as one in South Cove. Compared with near shore environments elsewhere, faunas of both sites were characteristic of high disturbance regimes, exhibiting low percent cover, diversity, ages and a high proportion of pioneers. Aspects of the encrusting communities studied reflected the differences between site disturbance regimes. North Cove was scoured twice as often, and bryozoan communities there had half the number of species, two-thirds the space occupation and twice the mortality level of those in South Cove. Maximum age in North Cove bryozoans was also half that in South Cove. Although there are natural disturbance events that rival ice-scouring in either frequency or catastrophic power at lower latitudes, none do both nor across such a wide depth range. We suggest that ice scour effects on polar benthos are even more significant than the same magnitude of disturbance at lower latitudes as recovery rates of high latitude communities are very slow. Climate warming seems likely to increase iceloading of near shore polar waters, so that some of the worlds most intensely disturbed faunas may soon suffer even more disturbance.  相似文献   

6.
Anderson MJ  Millar RB  Blom WM  Diebel CE 《Oecologia》2005,146(2):279-286
von Bertalanffy curves were used to describe the nonlinear relationship between assemblages inhabiting holdfasts of the kelp Ecklonia radiata and the volume of the holdfast. This was done using nonlinear canonical analyses of principal coordinates (NCAP). The volume of the holdfast is a proxy for the age of the plant and, thus, the canonical axis is a proxy for succession in the marine invertebrate community inhabiting the holdfast. Analyses were done at several different taxonomic resolutions on the basis of various dissimilarity measures. Assemblages in relatively large holdfasts demonstrated ongoing variation in community structure with increasing volume when the dissimilarity used was independent of sample size. Smaller holdfasts had proportionately greater abundances of ophiuroids and encrusting organisms (bryozoans, sponges, ascidians), while larger holdfasts were characterised by proportionately greater abundances of crustaceans, polychaetes and molluscs. Such linear and nonlinear multivariate models may be applied to analyse system-level responses to the growth of many habitat-forming organisms, such as sponges, coral reefs, coralline algal turf or forest canopies.  相似文献   

7.
对不同防治对策下施用氯敌鼠作为杀鼠剂对农田小哺乳动物群落结构的影响进行了研究.结果表明,杀鼠剂对群落组成有很大影响,灭鼠时机、灭鼠次数不同,群落的反应也不同.秋季灭鼠,小哺乳动物数量逐年下降,3 年后可达到较低密度.群落多样性也逐年下跌,且回升极弱.春季灭鼠,数量可持续在低水平,群落多样性较其它处理高,对化学灭鼠破坏的生物多样性有较强的恢复力.灭鼠频次的增加对小哺乳动物总体数量降低有强化作用.可以认为,化学灭鼠明显地降低了群落中小哺乳动物的密度,也降低了群落的多样性.促使小哺乳动物群落向着优势种突出、种类单调、群落稳定性差的方向演替.  相似文献   

8.
Species richness, cover and community structure of reef-building corals were assessed at 599 sites on 135 reefs along the Great Barrier Reef (GBR) between 1994 and 2001, with focus on the nearshore area. Communities were described hierarchically, with smaller regional communities forming part of higher level communities at increasing spatial scales. Site richness increased from the coast to the mid-continental shelf, declining on the outer shelf. Richness also increased with depth to 5 m, stabilizing thereafter. An anomaly was present in a 400 km section adjacent to the northern, ‘wet tropics’ coast, where site richness was 67 and 41% lower than the adjacent far northern and central GBR, respectively; this was probably due to the disturbance regime, with an apparent anthropogenic component. Site richness also declined in the Southern GBR, probably due to naturally marginal conditions. All indicator species had highest values in five small Far Northern and Central GBR communities. In the eight depauperate communities no indicator species had high values, indicating that these communities represent degraded, yet potentially transitional forms of the more diverse communities of the Far Northern and Central GBR. The study shows that on the GBR, disturbance results in the local removal of corals rather than a shift to suites of other coral species.  相似文献   

9.
From percentage covers of sessile organisms obtained over about 3 yr by suspending concrete plates at depths of 1.0, 2.5, 4.0 and 5.5 m in Nabeta Bay, Shimoda, Pacific coast of Japan, changes of five indices of community structure, i.e. number of species (S), Shannon-Weaver diversity (H′), evenness (J′), McNaughton's dominance (MD) and Horn's similarity (HS), were investigated throughout succession. Colonization curves became horizontal after reaching a maximum at 6 months after immersion at all depths. The number of species appeared to approach equilibrium during the first year of immersion. In the period from 13 to 37 months after immersion, the five indices indicated that communities at the upper two depths had stabilized structures within a limited range of variation, as represented by low HS values, whereas those at the lower two depths had simplified structures, as indicated by low S orH′ values. Furthermore, the results of cluster analysis of samples at four depths indicated that 13 to 37-month communities at the upper two depths had advanced, converged structures, whereas those at the lower depths had young, non-converged structures. The stability of community structure observed at the upper two depths could be due to domination of two long-lived species, the kelpEisenia bicyclis and the oysterCrassostrea nippona. On the other hand, the simplification of community structure at the lower two depths seems to be due to reduced domination of these two species as a result of disturbances such as scouring by sand. Contributions from the Shimoda Marine Research Center, No. 514.  相似文献   

10.
In constructing models of species and community distributions along environmental gradients in the Great Smoky Mountains, R. H. Whittaker (1956) focused on old-aged, apparently stable, natural communities. More recent studies indicate that disturbance gradients potentially influence and are influenced by the complex environmental gradients of Whittaker's original models. Using primarily fire and exotic species invasion as examples, this paper shows: 1) disturbance parameters vary along the topographic, elevation and moisture gradients in the Great Smoky Mountains in much the same way as temperature, moisture and solar radiation change; 2) species composition at different locations along the major environmental gradients is partially determined by the disturbance parameter; 3) species characteristics such as mode of reproduction are often correlated with specific disturbance parameters; 4) functional aspects of ecosystem response to disturbance vary along environmental gradients; and 5) man-caused disturbance may vary along environmental or biotic gradients. Since disturbance gradients may parallel physical environmental gradients, the two may be difficult to distinguish. Modification of disturbance frequencies along major environmental gradients may result in slow shifts in the distribution of both individual species and whole communities.Botanical nomenclature follows Radford et al. (1968).  相似文献   

11.
R. G. Death 《Oecologia》1996,108(3):567-576
The effect of disturbance history on the recovery of benthic invertebrate communities following disturbance was investigated in four streams in the Southern Alps of New Zealand. Two of the streams had a history of fluctuating discharge and temperature while the others did not. Recovery from disturbance was tested experimentally using baskets of cobbles, a third of which were disturbed every week for 9 weeks, a further third every 3 weeks and the final third left undisturbed. Algal biiomass, number of invertebrate taxa and total number of invertebrates all declined in baskets disturbed more frequently. Although the relative abundance of some taxa declined with time since the last disturbance, no taxa showed a significant decline in absolute abundance. However, several taxa showed marked increases in relative abundance in the less disturbed treatments particularly at the more stable sites. In contrast to the predictions of ecological theory, numbers of taxa and total invertebrates appeared to recover more quickly in the more complex communities at the stable sites. However, if these communities are considered to represent only stable communities, they do support the view that more complex communities will be more resilient. Community structure at the stable sites was also more similar between baskets in the undisturbed treatment than at the unstable sites, suggesting communities had reached a constant state more quickly. The more rapid recovery of communities measured at the stable sites may have been a consequence of experimental scale; disturbed patches were only 0.045 m2 in area and the higher densities of invertebrates at the stable sites meant a larger pool of colonists was available following each experimental disturbance. Nevertheless, ideas of stability in ecological theory and the scale of most spate events suggest this is the appropriate scale for examining community recovery. Furthermore, the larger pool of available colonists could not explain all the differences in community response, as patterns of change in community structure at the stable sites differed considerably more from those expected by purely random colonisation processes than at the unstable sites.  相似文献   

12.
Community succession in the metabolism, biomass and maturity of sessile organisms on concrete plates immersed at depths of 1.0, 2.5, 4.0 and 5.5 m in Nabeta Bay, Shimoda, pacific coast of Japan, was investigated over a period of about 3 yr. Gross primary production of the community (Pg) and community respiration (R) showed maxima at 10 and 13 months after immersion, and then Pg decreased significantly at all depths, whereas R was reduced only at the lower two depths. A parameter of community biomass, chlorophylla (Chl.a), showed a similar successional change to Pg. Five other parameters, i.e. dry mass (DM), ash dry mass (ADM), ash-free dry mass (AFDM), organic carbon (C) and organic nitrogen (N) increased significantly throughout succession, at least at the uppermost depth, but decreased significantly in the period 13–37 months after immersion at the lowest depth. Successional changes in five indices reflecting community maturity, i.e. the ratios of estimated daily gross primary production/estimated daily respiration (Pg/R), gross primary production/organic carbon (Pg/C), gross primary production/chlorophylla (Pg/Chl.a), organic carbon/organic nitrogen (C/N) and Margalef's pigment diversity (D430/D665), also differed among the depths, especially at 37 months after immersion. Succession at the upper two depths appeared to progress toward a mature state, as opposed to retrogression to an immature state at the lower two depths. This difference in successional changes in these 13 parameters between depths agrees with the prediction of Margalef (1968) and Odum (1969), despite the tendency for Pg/R to be more heterotrophic in an open system. Contributions from the Shimoda Marine Research Center, No. 515.  相似文献   

13.
Disturbances reduce the biota in stream ecosystems, and leave biological legacies, including remnant species, which potentially influence post-disturbance community development but are poorly understood. We investigated whether three remnant species, the snail Radix peregra, the mayfly Serratella ignita and the freshwater shrimp Gammarus pulex, affected community development in mesocosms that mimicked disturbed habitat patches in streams. Following 21 days of colonisation, we found that the occurrence of legacy effects depended on the identity of the remnant species. Radix had the strongest effect. By bulldozing epilithon, the snails acted as ecological engineers that promoted settlement of filter feeders (Simuliidae) and invertebrate predators (especially Pentaneura and Aphelocheirus) and strongly deterred settlement of non-predatory chironomids (e.g. Heterotrissocladius and Microtendipes). Gammarus increased in density (by 665%) where remnant, probably through rapid reproduction. Baetis and Pentaneura were scarce, and Asellus absent, in remnant Gammarus treatments, as a consequence of interference and/or predation by the amphipods. In contrast, Serratella tolerated the colonisation of immigrant species and did not affect the structure of the developing benthic community. Despite the observed effects on the presence and abundance of benthos, remnant fauna had no significant effect on assemblage taxon richness, or that of any specific trophic group. The contrasting effects of remnant species on immigrant colonisation echoed differences in their life-history traits and foraging behaviours. Our results indicate that biota can generate spatial patchiness of epilithon and benthic invertebrates in stream ecosystems.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

14.
Summary The interactive effects of fertilization and disturbance on plant community structure and resource availability were studied by supplying four levels of nitrogen and applying four intensities of tilling to a 30 year old field in a factorial design for 2 year. Live above-ground biomass, root biomass, and litter generally increased with nitrogen supply and decreased with disturbance. Species composition varied significantly, with annuals increasing with both nitrogen and disturbance, but with perennials unaffected by nitrogen and decreased by disturbance. Species diversity decreased with disturbance, but decreased with nitrogen only in undisturbed vegetation. Root: shoot ratios decreased with added nitrogen, leaf allocation decreased with disturbance, and flowering allocation increased. Surprisingly, stem allocation was unaffected by disturbance. This result reflected a shift from vertical stems to horizontal stems as disturbance increased. Resource measurements suggested that the vegetation responded to interactions between the treatments as well as to direct treatment effects. Variation in light penetration was reduced by fertilization in undisturbed vegetation but not in tilled plots; variability was not directly affected by disturbance. The availability of nitrogen, the limiting soil nutrient, increased with fertilization but was not significantly affected by disturbance. In contrast, the ratio of ammonium to nitrate was significantly reduced by disturbance but unaffected by supply rates, suggesting that nitrogen may have had different effects under different disturbance regimes, even though its total availability was constant. While many community responses to fertilization and disturbance conformed to those reported earlier, resource and allocation measurements indicated that their interactions are not always predictable from their separate effects.  相似文献   

15.
The role of disturbance in community ecology has been studied extensively and is thought to free resources and reset successional sequences at the local scale and create heterogeneity at the regional scale. Most studies have investigated effects on either the disturbed patch or on the entire community, but have generally ignored any effect of or on the community surrounding disturbed patches. We used marine fouling communities to examine the effect of a surrounding community on species abundance within a disturbed patch and the effect of a disturbance on species abundance in the surrounding community. We varied both the magnitude and pattern of disturbance on experimental settlement plates. Settlement plates were dominated by a non-native bryozoan, which may have established because of the large amount of initial space available on plates. Percent covers of species within the patch were affected by the surrounding community, confirming previous studies' predictions about edge effects from the surrounding community on dynamics within a patch. Disturbance resulted in lower percent cover in the surrounding community, but there were no differences between magnitudes or spatial patterns of disturbance. Disturbance lowered population growth rates in the surrounding community, possibly by altering the abiotic environment or species interactions. Following disturbance, the recovery of species within a patch may be affected by species in the surrounding community, but the effects of a disturbance can extend beyond the patch and alter abundances in the surrounding community. The dependence of patch dynamics on the surrounding community and the extended effects of disturbance on the surrounding community, suggest an important feedback of disturbance on patch dynamics indirectly via the surrounding community.  相似文献   

16.
We investigated temporal patterns of recolonisation and disturbance in a benthic hard bottom community in high-arctic Kongsfjorden from 1980 to 2003 through annual photographic surveys. A manipulative sampling design was applied, where half of the study area (treatment areas) was cleared at the beginning of the study. Twenty-three different taxa and groups of benthic epifauna were found in the photographs. The benthic community structures of treatments and controls converged within the first decade, but significant differences prevailed until ≤13 years after the start of the study. We could distinguish between three different time intervals with increased inter-annual changes. While the observed differences during the first two intervals could be attributed to recolonisation and succession, the changes in interval 3 were mostly due to increased external forcing and characterised by low inter-group and high inter-annual differences. During this interval, brown algae (mainly Desmarestia) and the sea urchin Strongylocentrotus droebachiensis emerged in high densities, while sea anemone populations declined. Different recolonisation patterns for individual species were related to life span, rate of maturity, predators and larval settlement. We could not find a climax stage in the succession for the benthic community at Kvadehuken, presumably due to the constant level of disturbances at the site.  相似文献   

17.
The responses of soft sediment infauna were investigated in an intertidal sandflat to determine patterns of recolonization and succession at the community and population level. Experimental disturbance plots, 1 m2, were initiated in August and sampled for 4.5 months along with ambient sediments. Sediment grain-size was used as a general indicator of the physical state of the disturbance patches, and grain-size distributions among disturbance and ambient patches became similar after ∼2.5 months. Recolonization varied among the dominant infaunal taxa. Densities of infauna that were most abundant in the habitat, primarily syllid polychaetes, did not recover to ambient levels until 3-4 months after disturbance, when ambient densities were falling to winter lows. Multivariate analysis indicated that community recovery occurred by the end of the study period after 4.5 months. Although community structure recovered by the end of the study, the population structure of the dominant species Parapionosyllis longicirrata remained significantly different among ambient and disturbed patches. On all sampling dates except one, disturbance patches had a higher number of larger individuals than ambient sediments. Previous studies have shown that bedload transport of juveniles and adults, and other processes, can cause recolonization to be relatively rapid on intertidal sandflats. However, our results indicate that recovery times may be on the order of months at large disturbance sizes. Therefore, rapid responses may occur primarily in the case of small-scale (<1 m2) disturbance patches. Secondly, recovery at the community level does not necessarily mean that population-level characteristics of species comprising the community have recovered. Population-level differences may be longer lasting than indicated by community level indicators of recovery.  相似文献   

18.
In the United States, the regulatory approach to wetland protection has a traditional focus on size as a primary criterion, with large wetlands gaining significantly more protection. Small, isolated wetlands have received less protection; however, these wetlands play a significant role in the maintenance of biodiversity of many taxonomic groups, including amphibians. An important question for directing conservation and management efforts for amphibians is whether size is a useful criterion for regulatory decisions. Because hydroperiod has an important influence on amphibian composition in wetlands, I conducted a study to examine the relative influence of wetland size and hydroperiod on amphibian occurrence. I sampled 103 wetlands in southern New Hampshire in 1998 and 1999 using dipnet sampling to document the presence of larval amphibians. Wetlands were placed into one of three hydroperiod categories; short (<4 months), intermediate (4–11 months), or long (permanent) based on field observations of drying pattern. Wetland size was determined from digitized national wetland inventory (NWI) maps (most wetlands) or measured in the field. I examined patterns of amphibian species richness and individual species occurrence using generalized linear models. Wetland size ranged from 0.01 to 3.27 ha. Overall, species richness was significantly influenced by hydroperiod (χ2 = 18.6, p <0.001), but not size (χ2 = 1.4, p = 0.24). Examination within hydroperiod categories revealed several significant relationships with wetland size. Species richness was related to wetland size in wetlands with short and intermediate hydroperiods, but not wetlands with long hydroperiods. Wetland size does not appear to be a useful sole criterion for determining wetland functional value for amphibians; assessments of functions of seasonally inundated wetlands for amphibians would benefit from examination of hydroperiod.  相似文献   

19.
Structural aspects of the shortgrass steppe plant community, functional groups, and species populations were examined in response to long-term heavy grazing and exclosure from grazing, contiguous wet or dry years, and an environmental gradient of topography. Of the three factors, relatively greater differences in community similarity were observed between catena positions, particularly on the ungrazed treatments. Grazing was intermediate between catena position and short-term weather in shaping plant community structure. Grazed treatments and ridgetops had a less variable species composition through fluctuations in weather.An increase with grazing of the dominant, heavily grazed species was observed. Basal cover and density of total species was also greater on grazed sites. The more uniform grazing lawn structure of the grazed plant communities had an influence on segregation of plant populations along topographical gradients. Segregation was less on grazed catenas, but diversity and the abundance of introduced and opportunistic-colonizer species was also less.Although the shortgrass steppe community was relatively invariant, less abundant species were dynamic and interactions occurred with respect to grazing, weather, and catena position. The effects of grazing may be mitigated by favorable growing seasons but magnified in unfavorable years in populations that are adapted to favorable sites. Grazing can be considered a disturbance at the level of the individual but it may or may not be a disturbance at the level of the population, and it is not a disturbance at the level of the community in this particular grassland.  相似文献   

20.
Both habitat heterogeneity and disturbance can profoundly influence ecological systems at many levels of biological and ecological organization. However, the joint influences of heterogeneity and disturbance on temporal variability in communities have received little attention despite the intense homogenizing influence of human activity. I performed a field manipulation of substrate heterogeneity in a small New England stream, and measured changes in benthic macroinvertebrate communities for 100 days—a period that included both a severe drought and a flood. Generally, community variability decreased with increasing substrate heterogeneity. However, within sampling intervals, this relationship tended to fluctuate through time, apparently tracking changes in hydrology. At the beginning of the experiment, community temporal variability clearly decreased along a gradient of increasing substrate heterogeneity—a result consistent with an observational study performed the previous year. During the subsequent weeks, droughts and flooding created exceptionally high variability in both hydrology and benthic macroinvertebrate community structure resulting in the disappearance of this relationship. However, during the last weeks of the experiment when hydrologic conditions were relatively more stable, the negatively sloped relationship between community temporal variability and habitat heterogeneity reemerged and mimicked relationships observed both early in the experiment and in the previous year’s study. High habitat heterogeneity may promote temporal stability through several mechanisms including stabilization of resources and increased refugia from minor disturbances or predation. However, the results of this experiment suggest that severe disturbance events can create large-scale environmental variability that effectively swamps the influence of habitat heterogeneity, illustrating that a thorough understanding of community temporal variability in natural systems will necessarily consider sources of environmental variability at multiple spatial and temporal scales. Handling editor: L. M. Bini  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号