首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Sulfur (S) deficiency is prevailing all over the world and becoming an important issue for crop improvement through maximising its utilization efficiency by plants for sustainable agriculture. Its interaction with other regulatory molecules in plants is necessary to improve our understanding on its role under changing environment. Our knowledge on the influence of S on ethylene signaling is meagre although it is a constituent of cysteine (Cys) required for the synthesis of reduced glutathione (GSH) and S-adenosyl methionine (SAM), a precursor of ethylene biosynthesis. Thus, there may be an interaction between S assimilation, ethylene signaling and plant responses under optimal and stressful environmental conditions. The present review emphasizes that responses of plants to S involve ethylene action. This evaluation will provide an insight into the details of interactive role of S and ethylene signaling in regulating plant processes and prove profitable for developing sustainability under changing environmental conditions.  相似文献   

4.
5.
Wing vein development in Drosophila is controlled by different morphogenetic pathways, including Notch. Hairless (H) antagonizes Notch target gene activation by binding to the Notch signal transducer Suppressor of Hairless [Su(H)]. Accordingly, overexpression of H phenocopies reduction of Notch activity. Deletion of the Su(H)-binding domain in H-C2 results in loss of H activity. However, overexpression of H-C2 induces formation of ectopic veins. In a screen for genetic modifiers of this phenotype, we have identified several genes involved in Notch and epidermal growth factor (EGF) signaling. Most notably veinlet, an activator of EGF signaling, acts downstream of H-C2. H-C2 positively regulates veinlet maybe through inhibition of inter-vein determinants in agreement with a model, whereby Notch and EGF signaling pathways cross-regulate vein pre-patterning.  相似文献   

6.
Regulation of cross-talk in yeast MAPK signaling pathways   总被引:1,自引:0,他引:1  
MAP kinase (MAPK) modules are conserved three-kinase cascades that serve central roles in intracellular signal transduction in eukaryotic cells. MAPK pathways of different inputs and outputs use overlapping sets of signaling components. In yeast, for example, three MAPK pathways (pheromone response, filamentous growth response, and osmostress adaptation) all use the same Ste11 MAPK kinase kinase (MAPKKK). How undesirable leakage of signal, or cross-talk, is prevented between these pathways has been a subject of intensive study. This review discusses recent findings from yeast that indicate that there is no single mechanism, but that a combination of four general strategies (docking interactions, scaffold proteins, cross-pathway inhibition, and kinetic insulation) are utilized for the prevention of cross-talk between any two MAPK modules.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
The plant signaling hormones salicylic acid (SA) and jasmonic acid (JA) are regulators of inducible defenses that are activated upon pathogen or insect attack. Cross-talk between SA- and JA-dependent signaling pathways allows a plant to finely tune its response to the attacker encountered. In Arabidopsis, pharmacological experiments revealed that SA exerts a strong antagonistic effect on JA-responsive genes, such as PDF1.2, indicating that the SA pathway can be prioritized over the JA pathway. SA-mediated suppression of the JA-responsive PDF1.2 promoter was exploited for setting up a genetic screen aiming at the isolation of signal transduction mutants that are impaired in this cross-talk mechanism. The PDF1.2 promoter was fused to the herbicide resistance gene BAR to allow for life/death screening of a population of mutagenized transgenic plants. Non-mutant plants should survive herbicide treatment when methyl jasmonate (MeJA) is applied, but suppression of the JA response by SA should be lethal in combination with the herbicide. Conversely, crucial SA/JA cross-talk mutants should survive the combination treatment. SA effectively suppressed the expression of the PDF1.2::BAR transgene. However, suppression of the BAR gene did not result in suppression of herbicide resistance. Hence, a screening method based on quantitative differences in the expression of a reporter gene may be better suited to identify SA/JA cross-talk mutants. Here, we demonstrate that the PDF1.2::GUS reporter will be excellently suited in this respect.Key words: plant defense, salicylic acid, jasmonic acid, cross-talk, mutant screen, Arabidopsis  相似文献   

16.
Sang J  Zhang A  Lin F  Tan M  Jiang M 《Cell research》2008,18(5):577-588
Using pharmacological and biochemical approaches, the signaling pathways between hydrogen peroxide (H2O2), calcium (Ca^2+)-calmodulin (CAM), and nitric oxide (NO) in abscisic acid (ABA)-induced antioxidant defense were investigated in leaves of maize (Zea mays L.) plants. Treatments with ABA, H2O2, and CaCl2 induced increases in the generation of NO in maize mesophyll cells and the activity of nitric oxide synthase (NOS) in the cytosolic and microsomal fractions of maize leaves. However, such increases were blocked by the pretreatments with Ca^2+ inhibitors and CaM antagonists. Meanwhile, pretreatments with two NOS inhibitors also suppressed the Ca^2+-induced increase in the production of NO. On the other hand, treatments with ABA and the NO donor sodium nitroprusside (SNP) also led to increases in the concentration of cytosolic Ca^2+ in protoplasts of mesophyll cells and in the expression of calmodulin 1 (CaM1) gene and the contents of CaM in leaves of maize plants, and the increases induced by ABA were reduced by the pretreatments with a NO scavenger and a NOS inhibitor. Moreover, SNP-induced increases in the expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes were arrested by the pretreatments with Ca^2+ inhibitors and CaM antagonists. Our results suggest that Ca^2+-CaM functions both upstream and downstream of NO production, which is mainly from NOS, in ABA- and H2O2-induced antioxidant defense in leaves of maize plants.  相似文献   

17.
The balance between pro- and anti-inflammatory cytokines plays an important role in determining the severity of inflammation in rheumatoid arthritis (RA). Antagonism between opposing cytokines at the level of signal transduction plays an important role in many other systems. We have begun to explore the possible contribution of signal transduction cross-talk to cytokine balance in RA by examining the effects of IL-1, a proinflammatory cytokine, on the signaling and action of IL-6, a pleiotropic cytokine that has both pro- and anti-inflammatory actions, in RA synovial fibroblasts. Pretreatment with IL-1 suppressed Janus kinase-STAT signaling by IL-6, modified patterns of gene activation, and blocked IL-6 induction of tissue inhibitor of metalloproteases 1 expression. These results suggest that proinflammatory cytokines may contribute to pathogenesis by modulating or blocking signal transduction by pleiotropic or anti-inflammatory cytokines. The mechanism of inhibition did not require de novo gene activation and did not depend upon tyrosine phosphatase activity, but, instead, was dependent on the p38 stress kinase. These results identify a molecular basis for IL-1 and IL-6 cross-talk in RA synoviocytes and suggest that, in addition to levels of cytokine expression, modulation of signal transduction also plays a role in regulating cytokine balance in RA.  相似文献   

18.
19.
Signaling by androgens and interferons (IFN) plays an important role in prostate cancer initiation and progression. Using microarray analysis, we describe here a functional cross-talk between dihydrotestosterone and interferon signaling. Glutathione S-transferase pull-down and co-immunoprecipitation experiments reveal that the androgen receptor and the interferon-activated RNase L interact with each other in a ligand-dependent manner. Furthermore, overexpression of wild type RNase L confers IFN sensitivity to a dihydrotestosterone-inducible reporter gene, whereas R462Q-mutated RNase L does not. Based on our data we hypothesize that in 22RV1 cells, activated androgen receptor (AR) contributes to the insensitivity to IFN of the cell. Accordingly, we show that AR knockdown restores responsiveness to IFNgamma. Our findings support a model in which both the activation of AR and the down-regulation of IFN signaling can synergize to promote cell survival and suppress apoptosis. This model provides the molecular basis to understand how mutated RNase L can lead to early onset PCa and illustrates how inflammatory cytokines and nuclear hormone signaling contribute to tumor development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号