首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical modification of carboxyl residues in polypeptide subunits of the mitochondrial bc1 complex causes a decoupling effect, that is inhibition of the proton pumping activity, without affecting the rate of electron transfer to ferricytochrome c. The study presented here is aimed at localizing and identifying the residues whose modification results in decoupling of the complex. Glutamate-53 in subunit IX (the DCCD-binding protein) and aspartate-166 in the Rieske iron-sulfur protein are the residues modified by N,N'-dicyclohexylcarbodiimide (DCCD) and N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ), respectively. The results obtained also suggest that the carboxy-terminal sequence of the Core protein II, which is fairly rich in acidic residues, may also play a role in the vectorial proton translocation activity of the complex.  相似文献   

2.
Y Wang  D S Beattie 《Biochemistry》1992,31(36):8455-8459
In a recent study [Wang & Beattie (1991) Arch. Biochem. Biophys. 291, 363-370], we reported that dicyclohexylcarbodiimide (DCCD) inhibited proton translocation in the cytochrome bf complex reconstituted into proteoliposomes and was bound selectively to cytochrome b6. To establish the site of binding of DCCD on cytochrome b6, the cytochrome bf complex labeled with [14C]DCCD was selectively digested with chymotrypsin and trypsin. A 17-kDa fragment containing radioactive DCCD and the heme moiety was obtained after chymotrypsin digestion, while a 12.5-kDa fragment containing both radioactive DCCD and the heme moiety was obtained after trypsin digestion, suggesting that the site of DCCD binding might be on aspartate-140, aspartate-155, or glutamate-166. Extensive digestion of cytochrome b6 isolated from a [14C]DCCD-labeled cytochrome bf complex with trypsin followed by isolation and sequencing of two radioactive peptides obtained revealed that DCCD is bound at either residue aspartate-155 or residue glutamate-166 localized in amphipathic extramembranous helix IV. In addition, the cytochrome bf complex labeled with [14C]DCCD was reconstituted into liposomes and digested with trypsin. Three fragments of 9.3, 10.5, and 11.5 kDa were obtained, suggesting that the four-helix model for the topography of cytochrome b6 in the membrane is correct.  相似文献   

3.
Chemical modification of the bovine heart cytochrome bc1 complex with N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ) has been reported to inhibit the proton pumping activity without affecting the rate of electron transfer to ferricytochrome c. This study aims to examine the effect of EEDQ on energy-linked reversed electron transfer in the bc1 complex reconstituted into potassium-loaded phospholipid vesicles. Generation of a valinomycin-mediated potassium-diffusion potential induced the reduction of cytochrome b in the reconstituted bc1 complex in the presence of sodium ascorbate. The time course of the cytochrome b reduction was well correlated with that of the absorbance change of safranine, an optical probe for measuring membrane potential. Treatment of the bc1 complex with EEDQ caused a decrease in the potential-induced reduction of cytochrome b as well as in the proton translocation activity. But a significant loss in the ubiquinol-cytochrome c reducing activity was not observed in the EEDQ-treated bc1 complex. The time- and concentration-dependent effect of EEDQ on the reversed electron transfer was well correlated with that of the proton translocation activity of the bc1 complex. These findings strongly support the idea that the potential-induced reversal of electron transfer is coupled to the reverse flow of protons in the cytochrome bc1 complex.  相似文献   

4.
N,N'-dicyclohexylcarbodiimide (DCCD) has been reported to inhibit proton translocation by cytochrome bc(1) and b(6)f complexes without significantly altering the rate of electron transport, a process referred to as decoupling. To understand the possible role of DCCD in inhibiting the protonogenic reactions of cytochrome bc(1) complex, we investigated the effect of DCCD modification on flash-induced electron transport and electrochromic bandshift of carotenoids in Rb. sphaeroides chromatophores. DCCD has two distinct effects on phase III of the electrochromic bandshift of carotenoids reflecting the electrogenic reactions of the bc(1) complex. At low concentrations, DCCD increases the magnitude of the electrogenic process because of a decrease in the permeability of the membrane, probably through inhibition of F(o)F(1). At higher concentrations (>150 microM), DCCD slows the development of phase III of the electrochromic shift from about 3 ms in control preparations to about 23 ms at 1.2 mM DCCD, without significantly changing the amplitude. DCCD treatment of chromatophores also slows down the kinetics of flash-induced reduction of both cytochromes b and c, from 1.5-2 ms in control preparations to 8-10 ms at 0.8 mM DCCD. Parallel slowing of the reduction of both cytochromes indicates that DCCD treatment modifies the reaction of QH(2) oxidation at the Q(o) site. Despite the similarity in the kinetics of both cytochromes, the onset of cytochrome c re-reduction is delayed 1-2 ms in comparison to cytochrome b reduction, indicating that DCCD inhibits the delivery of electrons from quinol to heme c(1). We conclude that DCCD treatment of chromatophores leads to modification of the rate of Q(o)H(2) oxidation by the iron-sulfur protein (ISP) as well as the donation of electrons from ISP to c(1), and we discuss the results in the context of the movement of ISP between the Q(o) site and cytochrome c(1).  相似文献   

5.
Radiolabeled N,N'-dicyclohexylcarbodiimide (DCCD) was bound selectively in a time- and concentration-dependent manner to cytochrome b6 of an enzymatically active cytochrome bf complex isolated from spinach chloroplasts. Maximum labeling of cytochrome b6 was observed with 30 nmol DCCD per nmol cytochrome b6 in the cytochrome bf complex incubated for 30-60 min at 12 degrees C. After incubation of the cytochrome bf complex with DCCD under these conditions, the rate of proton ejection in the complex reconstituted into liposomes was decreased approximately 65-70% when compared to controls; however, under these same conditions the rate of electron transfer through either the soluble bf complex or the complex reconstituted into liposomes was only decreased around 20%. These results suggest that the mechanism of proton translocation through the cytochrome bf complex of spinach chloroplasts is similar to that of the cytochrome bc1 complex from yeast mitochondria in which proton pumping but not electron transfer is also inhibited by DCCD (D. S. Beattie and A. Villalobo, 1982, J. Biol. Chem. 257, 14,745-14,752).  相似文献   

6.
Calmodulin stimulation of adenylate cyclase of intestinal epithelium   总被引:4,自引:0,他引:4  
The effect of dicyclohexylcarbodiimide (DCCD) on the proton pumping two-subunit cytochrome c oxidase from Paracoccus denitrificans was investigated. Purified Paracoccus oxidase was reconstituted into phospholipid vesicles by cholate dialysis. Following incubation with increasing amounts of DCCD, proton ejection was recorded in response to reductant pulses with reduced cytochrome c. Concentrations of DCCD which greatly reduced proton pumping by bovine cytochrome c oxidase used as a control were found to exert only a minor effect on proton translocation by Paracoccus oxidase. Similarly, incubation of the bacterial enzyme with [14C]DCCD failed to reveal the specific covalent interaction previously demonstrated to occur with bovine cytochrome c oxidase, and here also shown for the oxidase of yeast. Thus, Paracoccus oxidase differs in its interaction with DCCD from the functionally analogous eukaryotic enzymes.  相似文献   

7.
The electron transfer activity of purified cytochrome b6-f complex of spinach chloroplast is inhibited by dicyclohexylcarbodiimide (DCCD) in a concentration and incubation time dependent manner. The maximum inhibition of 75% is observed when 300 mole of DCCD per mole of protein (based on cytochrome f) is incubated with cytochrome b6-f complex at room temperature for 40 min. The inhibition of the complex is not due to the formation of cross links between subunits but due to the modification of carboxyls. The amount of DCCD incorporation is directly proportional to the activity loss, suggesting that some carboxyl groups in the complex are directly or indirectly involved in the catalytic function. The incorporated DCCD is located mainly at cytochrome b6 protein. The partially inhibited complex shows the same H+/e-ratio as that of the intact complex when embedded in phospholipid vesicles.  相似文献   

8.
Crystallographic structures of the mitochondrial ubiquinol/cytochrome c oxidoreductase (cytochrome bc(1) complex) suggest that the mechanism of quinol oxidation by the bc(1) complex involves a substantial movement of the soluble head of the Rieske iron-sulfur protein (ISP) between reaction domains in cytochrome b and cytochrome c(1) subunits. In this paper we report the results of steered molecular dynamics simulations inducing, through an applied torque within 1 ns, a 56 degrees rotation of the soluble domain of ISP. For this purpose, a solvated structure of the bc(1) complex in a phospholipid bilayer (a total of 206,720 atoms) was constructed. A subset of 91,061 atoms was actually simulated with 45,131 moving atoms. Point charge distributions for the force field parametrization of heme groups and the Fe(2)S(2) cluster of the Rieske protein included in the simulated complex were determined. The simulations showed that rotation of the soluble domain of ISP is actually feasible. Several metastable conformations of the ISP during its rotation were identified and the interactions stabilizing the initial, final, and intermediate positions of the soluble head of the ISP domain were characterized. A pathway for proton conduction from the Q(o) site to the solvent via a water channel has been identified.  相似文献   

9.
The energy-linked nicotinamide nucleotide transhydrogenase (TH) purified from bovine heart mitochondria is inhibited by the carboxyl group modifiers, N,N'-dicyclohexylcarbodiimide (DCCD) and N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ). With either reagent, complete activity inhibition corresponds to modification of one carboxyl group per 2 mol (monomers) of this dimeric enzyme, suggesting half-site reactivity toward DCCD and EEDQ [D. C. Phelps, and Y. Hatefi (1984) Biochemistry 23, 4475-4480; 6340-6344]. It has also been shown in the former reference that DCCD appears to modify TH at the NAD(H)-binding site. The present paper presents data suggesting that EEDQ also binds at or near the NAD(H)-binding domain of TH, but at a site not identical to that of DCCD: TH modified with and inhibited approximately 85% by EEDQ could be further labeled with [14C]DCCD to the extent of 70% of the maximum in the same time period that unmodified TH was modified by [14C]DCCD to near saturation (1 mol DCCD/TH dimer); DCCD-modified TH did not bind to NAD-agarose, while EEDQ-modified TH showed partial affinity for NAD-agarose; 5'-AMP completely protected TH against modification by DCCD, but showed only a weak protective effect against EEDQ; by contrast, NMNH, which is a TH substrate and binds to the NADH site, did not protect TH against DCCD, but completely protected the enzyme against attack by EEDQ. The results are consistent with the possibility that DCCD modifies TH where the 5'-AMP moiety of NAD(H) binds, while EEDQ modifies the enzyme where the NMN(H) moiety of NAD(H) resides.  相似文献   

10.
The respiratory cytochrome bc(1) complex is a fundamental enzyme in biological energy conversion. It couples electron transfer from ubiquinol to cytochrome c with generation of proton motive force which fuels ATP synthesis. The complex from the α-proteobacterium Paracoccus denitrificans, a model for the medically relevant mitochondrial complexes, lacked structural characterization. We show by LILBID mass spectrometry that truncation of the organism-specific, acidic N-terminus of cytochrome c(1) changes the oligomerization state of the enzyme to a dimer. The fully functional complex was crystallized and the X-ray structure determined at 2.7-? resolution. It has high structural homology to mitochondrial complexes and to the Rhodobacter sphaeroides complex especially for subunits cytochrome b and ISP. Species-specific binding of the inhibitor stigmatellin is noteworthy. Interestingly, cytochrome c(1) shows structural differences to the mitochondrial and even between the two Rhodobacteraceae complexes. The structural diversity in the cytochrome c(1) surface facing the ISP domain indicates low structural constraints on that surface for formation of a productive electron transfer complex. A similar position of the acidic N-terminal domains of cytochrome c(1) and yeast subunit QCR6p is suggested in support of a similar function. A model of the electron transfer complex with membrane-anchored cytochrome c(552), the natural substrate, shows that it can adopt the same orientation as the soluble substrate in the yeast complex. The full structural integrity of the P. denitrificans variant underpins previous mechanistic studies on intermonomer electron transfer and paves the way for using this model system to address open questions of structure/function relationships and inhibitor binding.  相似文献   

11.
We report here that N,N'-dicyclohexylcarbodiimide (DCCD) decreases the H/2e stoichiometry of the cytochrome bc1 complex from 3.8 +/- 0.2 (10) to 2.1 +/- 0.1 (8) but has only a minimal effect on the H/2e ratio of cytochrome oxidase under the relatively mild conditions used. The effect on the bc1 complex cannot be explained by uncoupling, by inhibition of electron transport or by selective mitochondrial damage. We conclude that DCCD is an inhibitor of proton translocation within the bc1 complex. There are three possible explanations of this effect: (a) DCCD could alter the pathway of electron flow, (b) DCCD could prevent one of the proton translocation reactions but not electron transport, (c) DCCD could prevent the conduction of the translocated proton to the external phase.  相似文献   

12.
Two conserved charged amino acids, aspartate-186 and arginine-190, localized in the aqueous head region of the iron-sulfur protein of the cytochrome bc(1) complex of yeast mitochondria, were mutated to alanine, glutamate, or asparagine and isoleucine, respectively. The R190I mutation resulted in the complete loss of antimycin- and myxothiazol-sensitive cytochrome c reductase activity due to loss of more than 60% of the iron-sulfur protein in the complex. Mitochondria isolated from the D186A mutant had a 50% decrease in cytochrome c reductase activity but no loss of the iron-sulfur protein or the [2Fe-2S] cluster. The midpoint potential of the [2Fe-2S] cluster of the D186A mutant was decreased from 281 to 178 mV. The D186E and D186N mutations did not result in a loss of cytochrome c reductase activity or content of iron-sulfur protein; however, the redox potential of the [2Fe-2S] cluster of D186N was decreased from 281 to 241 mV. Molecular modeling/dynamics studies predicted that substituting an alanine for Asp-186 causes global structural changes in the head group of the iron-sulfur protein resulting in changes in the orientation of the [2Fe-2S] cluster and consequently a lowered redox potential. The rate of electrogenic proton pumping in the bc(1) complex isolated from mutant D186A reconstituted into proteoliposomes decreased 64%; however, the H(+)/2e(-) ratio of 1.9 was identical in the mutant and the wild-type complexes. The carboxyl binding reagent, N-(ethoxycarbonyl)-2-ethoxyl-1,2-dihydroquinoline (EEDQ) blocked electrogenic proton pumping in the bc(1) complex reconstituted into proteoliposomes without affecting electron transfer resulting in a decrease in the H(+)/2e(-) ratio to 1.2 and 1.1, respectively. EEDQ was bound to the iron-sulfur protein and core protein II in both the wild type and the D186A mutant, indicating that Asp-186 of the iron-sulfur protein is not required for proton translocation in the bc(1) complex.  相似文献   

13.
N,N'-dicyclohexylcarbodiimide (DCCD) has been reported to inhibit steady-state proton translocation by cytochrome bc(1) and b(6)f complexes without significantly altering the rate of electron transport, a process referred to as decoupling. In chromatophores of the purple bacterium Rhodobacter sphaeroides, this has been associated with the specific labeling of a surface-exposed aspartate-187 of the cytochrome b subunit of the bc(1) complex [Wang et al. (1998) Arch. Biochem. Biophys. 352, 193-198]. To explore the possible role of this amino acid residue in the protonogenic reactions of cytochrome bc(1) complex, we investigated the effect of DCCD modification on flash-induced electron transport and the electrochromic bandshift of carotenoids in Rb. sphaeroides chromatophores from wild type (WT) and mutant cells, in which aspartate-187 of cytochrome b (Asp(B187)) has been changed to asparagine (mutant B187 DN). The kinetics and amplitude of phase III of the electrochromic shift of carotenoids, reflecting electrogenic reactions in the bc(1) complex, and of the redox changes of cytochromes and reaction center, were similar (+/- 15%) in both WT and B187DN chromatophores. DCCD effectively inhibited phase III of the carotenoid bandshift in both B187DN and WT chromatophores. The dependence of the kinetics and amplitude of phase III of the electrochromic shift on DCCD concentration was identical in WT and B187DN chromatophores, indicating that covalent modification of Asp(B187) is not specifically responsible for the effect of DCCD-induced effects of cytochrome bc(1) complex. Furthermore, no evidence for differential inhibition of electrogenesis and electron transport was found in either strain. We conclude that Asp(B187) plays no crucial role in the protonogenic reactions of bc(1) complex, since its replacement by asparagine does not lead to any significant effects on either the electrogenic reactions of bc(1) complex, as revealed by phase III of the electrochromic shift of carotenoids, or sensitivity of turnover to DCCD.  相似文献   

14.
Ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex from Paracoccus denitrificans consists of only three polypeptide subunits (Yang, X., and Trumpower, B. L. (1986) J. Biol. Chem. 261, 12282-12289), whereas the analogous complexes of eukaryotic mitochondria consist of nine or more polypeptides (Schagger, H., Link, T. A., Engel, W. D., and von Jagow, G. (1986) Methods Enzymol. 126, 224-237). Using the purified three-subunit Paracoccus complex we have tested whether this simple cytochrome bc1 complex has the same electron transfer pathway and proton translocation activity as the bc1 complexes of mitochondria. Under presteady state conditions, the effects of inhibitors on reduction of cytochromes b and c1 by quinol and oxidant-induced reduction of cytochrome b indicate a cyclic electron transfer pathway and two routes of cytochrome b reduction in the three-subunit Paracoccus cytochrome bc1 complex. A novel method was developed to incorporate the cytochrome bc1 complex into liposomes with the detergent dodecyl maltoside. The enzyme reconstituted into liposomes translocated protons with an H+/2e value of 3.9. Carbonyl cyanide m-chlorophenylhydrazone eliminated proton translocation, while permitting the scalar release of protons from quinol, and thus reduced the H+/2e ratio to 2. These values agree with the predicted stoichiometries for proton translocation by a protonmotive Q cycle pathway. No inhibition of proton translocation by N',N'-dicyclohexylcarbodiimide was detected when the Paracoccus cytochrome bc1 complex was incubated with N',N'-dicyclohexylcarbodiimide before or after reconstitution into liposomes. Electron transfer in the three-subunit complex thus appears to occur by a protonmotive Q cycle pathway identical to that in mitochondrial cytochrome bc1 complexes. Only three polypeptides, cytochromes b, c1, and the Rieske iron-sulfur protein, are required for respiration and energy transduction in the cytochrome bc1 complex. The function of the supernumerary polypeptides in mitochondrial bc1 complexes is thus unclear.  相似文献   

15.
The cytochrome bc1 complex from bovine heart mitochondria is a multi-functional enzyme complex. In addition to electron and proton transfer activity, the complex also processes an activatable peptidase activity and a superoxide generating activity. The crystal structure of the complex exists as a closely interacting functional dimer. There are 13 transmembrane helices in each monomer, eight of which belong to cytochrome b, and five of which belong to cytochrome c1, Rieske iron-sulfur protein (ISP), subunits 7, 10 and 11, one each. The distances of 21 A between bL heme and bH heme and of 27 A between bL heme and the iron-sulfur cluster (FeS), accommodate well the observed fast electron transfers between the involved redox centers. However, the distance of 31 A between heme c1 and FeS, makes it difficult to explain the high electron transfer rate between them. 3D structural analyses of the bc1 complexes co-crystallized with the Qu site inhibitors suggest that the extramembrane domain of the ISP may undergo substantial movement during the catalytic cycle of the complex. This suggestion is further supported by the decreased in the cytochrome bc1 complex activity and the increased in activation energy for mutants with increased rigidity in the neck region of ISP.  相似文献   

16.
Xiao K  Liu X  Yu CA  Yu L 《Biochemistry》2004,43(6):1488-1495
Sequence alignment of the Rieske iron-sulfur protein (ISP) of cytochrome bc(1) complex from various sources reveals that bacterial ISPs contain an extra fragment. To study the role of this fragment in bacterial cytochrome bc(1) complex, Rhodobacter sphaeroides mutants expressing His-tagged cytochrome bc(1) complexes with deletion or single- or multiple-alanine substitution at various positions of this fragment (residues 96-107) were generated and characterized. The ISPDelta(96-107), ISP(96-107)A, and ISP(104-107)A mutant cells, in which residues 96-107 of ISP are deleted, and residues 96-107 and 104-107 are substituted with alanine, respectively, do not grow photosynthetically and show no bc(1) complex activity in intracytoplasmic membranes prepared from these mutant cells. The ISP(96-99)A, in which residues 96-99 are substituted with alanine, grows photosynthetically at a rate comparable to that of the complement cells, whereas ISP(100-103)A, in which residues 100-103 are substituted with alanine, has a longer lag period prior to photosynthetic growth. Chromatophores prepared from these two mutant cells have 48% and 9% of the bc(1) activity found in the complement chromatophores. The loss (or decrease) of bc(1) activity in these mutant membranes results from a lack (or decrease) of ISP in the membrane due to ISP protein instability and not from mutations affecting the assembly of cytochromes b and c(1) into the membrane, the binding affinity of cytochrome b to cytochrome c(1), or the ability of these two cytochromes to interact with ISP or subunit IV. The order of essentiality of residues in this fragment is residues 104-107 > residues 100-103 > residues 96-99.  相似文献   

17.
Sequence alignment of cytochrome b of the cytochrome bc1 complex from various sources reveals that bacterial cytochrome b contain an extra fragment at the C terminus. To study the role of this fragment in bacterial cytochrome bc1 complex, Rhodobacter sphaeroides mutants expressing His-tagged cytochrome bc1 complexes with progressive deletion from this fragment (residues 421-445) were generated and characterized. The cytbDelta-(433-445) bc1 complex, in which 13 residues from the C-terminal end of this fragment are deleted, has electron transfer activity, subunit composition, and physical properties similar to those of the complement complex, indicating that this region of the extra fragment is not essential. In contrast, the electron transfer activity, binding of cytochrome b, ISP, and subunit IV to cytochrome c1, redox potentials of cytochromes b and c1 in the cytbDelta-(427-445), cytbDelta-(425-445), and cytbDelta-(421-445) mutant complexes, in which 19, 21, or all residues of this fragment are deleted, decrease progressively. EPR spectra of the [2Fe-2S] cluster and the cytochromes b in these three deletion mutant bc1 complexes are also altered; the extent of spectral alteration increases as this extra fragment is shortened. These results indicate that the first 12 residues (residues 421-432) from the N-terminal end of the C-terminal extra fragment of cytochrome b are essential for maintaining structural integrity of the bc1 complex.  相似文献   

18.
The crystal structure of bovine mitochondrial cytochrome bc1 complex, an integral membrane protein complex of 11 different subunits with a total molecular mass of 242 kDa, demonstrated a tightly associated dimer consisting of three major regions: a matrix region primarily made of subunits core1, core2, 6, and 9; a transmembrane-helix region of 26 helices in the dimer contributed by cytochrome b, cytochrome c1, the Rieske iron-sulfur protein (ISP), subunits 7, 10, and 11; and an intermembrane-space region composed of extramembrane domains of ISP, cytochrome c1, and subunit 8. The structure also revealed the positions of and distances between irons of prosthetic groups, and two symmetry related cavities in the transmembrane-helix region upon dimerization of the bc1 complex. Extensive crystallographic studies on crystals of bc1 complexed with inhibitors of electron transfer identified binding pockets for both Qo and Qi site inhibitors. Discrete binding sites for subtypes of Qo site inhibitors have been mapped onto the Qo binding pocket, and bindings of different subtypes of Qo site inhibitors are capable of inducing dramatic conformational changes in the extramembrane domain of ISP. A novel electron transfer mechanism for the bc1 complex consistent with crystallographic observations is discussed.  相似文献   

19.
The sensitivity of the H+/2e- ratio of the redox-driven proton pumping by the NADH: ubiquinone reductase (complex I) of the submitochondrial particles to dicyclohexylcarbodiimide (DCCD) was studied by a thermodynamic approach, measuring the membrane potential and delta pH across the membrane and the redox potential difference across the complex I span of the respiratory chain. The delta Gr/delta muH+ ratio did not decrease upon additions of 50 or 100 nmol of DCCD per mg protein in the presence of oligomycin although the H+/2e- ratio has been demonstrated to decrease upon DCCD addition in kinetic experiments with mitochondria. Complex I then becomes reminiscent of the cytochrome bc1 complex, which shows DCCD sensitivity of the kinetically but not thermodynamically determined H+/2e- ratio.  相似文献   

20.
The clathrin-coated vesicle proton translocating complex is composed of a maximum of eight polypeptides. The function of the components of this system have not been defined. Proton pumping catalyzed by the reconstituted, 200-fold purified proton translocating complex of clathrin-coated vesicles is inhibited 50% at a dicyclohexylcarbodiimide (DCCD)/protein ratio of 0.66 mumol of DCCD/mg of protein. At an identical DCCD/protein ratio, the 17-kDa component of the proton pump is labeled by [14C]DCCD. Through toluene extraction, the 17-kDa subunit has been isolated from the holoenzyme. The 17-kDa polypeptide diminished proteoliposome acidification when coreconstituted with either bacteriorhodopsin or the intact clathrin-coated vesicle proton translocating ATPase. In both instances, treatment of the 17-kDa polypeptide with DCCD restored proteoliposome acidification. Moreover, the proton-conducting activity of the 17-kDa polypeptide is abolished by trypsin digestion. These results demonstrate that the 17-kDa polypeptide present in the isolated proton ATPase of clathrin-coated vesicles is a subunit which functions as a transmembranous proton pore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号